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Abstract Seventy years ago, Myers and Steenrod showed that the isometry group of a
Riemannian manifold without boundary has a structure of Lie group. In 2007, Bagaev and
Zhukova proved the same result for a Riemannian orbifold. In this paper, the authors first
show that the isometry group of a Riemannian manifold M with boundary has dimension
at most 1

2
dim M(dim M − 1). Then such Riemannian manifolds with boundary that their

isometry groups attain the preceding maximal dimension are completely classified.
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1 Introduction

Let M be a connected smooth Riemannian manifold with or without boundary. A priori,
there exist two definitions of isometry on M . The first one is defined to be a distance-preserving
bijection of M as we think of M as a metric space. The second is defined to be a diffeomorphism
of M onto itself which preserves the metric tensor. In the case of Riemannian manifolds without
boundary, these two definitions are equivalent according to Myers and Steenrod [9] in 1939 (see
also [7, pp. 169–172] for a proof). Moreover, Myers and Steenrod [9] proved the following result
on the isometry group of a Riemannian manifold without boundary.

Fact 1.1 Let M be a connected smooth Riemannian manifold without boundary. Then the
isometry group I(M) is a Lie transformation group with respect to the compact-open topology.
For each x ∈ M , the isotropy subgroup Ix(M) is compact. If M is compact, I(M) is also
compact.

Kobayashi [6] gave a different proof to Fact 1.1 by the concept of G-structure from the
original one by Myers-Steenrod. Furthermore, Kobayashi proved that there exists a natural
embedding of the isometry group I(M) into the orthonormal frame bundle O(M) of M such
that I(M) becomes a closed submanifold of O(M). It is this submanifold structure that makes
I(M) into a Lie transformation group. Following this idea, he further proved the result below.
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Fact 1.2 (see [6, pp. 46–47]) Let M be an n-dimensional connected Riemannian manifold
without boundary. Then the isometry group I(M) has dimension at most (n+1)n

2 . If dim I(M) =
n(n+1)

2 , then M is isometric to one of the following spaces of constant sectional curvature:
(a) an n-dimensional Euclidean space Rn,

(b) an n-dimensional unit sphere Sn = {x ∈ Rn+1 : |x| = 1} in Rn+1,

(c) an n-dimensional projective space RPn = Sn/{±1},
(d) an n-dimensional, simply connected hyperbolic space Hn of constant sectional curvature

−1.

As long as the isometry group of a Riemannian orbifold is concerned, quite recently, Bagaev
and Zhukova [1] showed the same result as Facts 1.1–1.2. They generalized the idea of Kobayashi
to their setting by using the orthonormal frame bundle of a Riemannian orbifold. In this paper,
we consider a special class of orbifolds — manifolds with boundary. We firstly observe that the
dimension of the isometry group I(M) of a Riemannian manifold M with boundary does not
exceed 1

2 dimM(dimM − 1). Then we classify such Riemannian manifolds M with boundary
that the isometry groups I(M) attain the preceding maximal dimension. We divide the lengthy
classification list into three parts: Theorems 1.1–1.3, due to that their proofs will use different
ideas. The notations in Fact 1.2 will be used in the following theorems.

Theorem 1.1 Let M be an n-dimensional compact, connected smooth Riemannian manifold
with boundary and n ≥ 2. Suppose that the isometry group I(M) is of dimension n(n−1)

2 . Then
M is diffeomorphic to either of the following four manifolds: the closed n-dimensional unit ball
Dn = {x ∈ Rn : |x| ≤ 1} in Rn, the two cylinder-like manifolds Sn−1×[0, 1] and RPn−1×[0, 1],
and the manifold RPn \ U constructed from RPn with an n-dimensional open disk U ⊂ RPn

removed, where the closure U in RPn is diffeomorphic to Dn. Furthermore, we can characterize
the metric tensor gM of M as follows.

(1) If M is diffeomorphic to Dn, then the metric gM of M is rotationally symmetric with
respect to a unique interior point O of M . That is, gM can be expressed by gM = dt2 +
ϕ2(t)gSn−1 , where gSn−1 is the standard metric on the unit sphere Sn−1 ⊂ Rn and the function
ϕ : (0, R] → (0,∞) is smooth, ϕ(0) = 0, and

ϕ(even)(0) = 0, ϕ̇(0) = 1.

(2) If M is diffeomorphic to Sn−1 × [0, 1], then the metric gM can be expressed by dt2 +
f2(t)gSn−1 , where T is a positive number and f is a positive smooth function on [−T

2 ,
T
2 ]. The

similar statement holds for M diffeomorphic to RPn−1 × [0, 1].
(3) Suppose that M is diffeomorphic to RPn \U . Then we can find a Riemannian manifold

M ′ = Sn × [−T
2 ,

T
2 ] endowed with the metric dt2 + f2(t)gSn−1 , where f : [−T

2 ,
T
2 ] → (0,∞)

is an even smooth function, and an involutive isometry β of M ′ defined by β(x, t) = (−x,−t)
such that M is the quotient space of M ′ by the group {1, β}.

Theorem 1.2 Let M be a noncompact connected Riemannian manifold with boundary ∂M
and of dimension n ≥ 2 such that dim I(M) = n(n−1)

2 and ∂M has at least one compact
component. Then M is diffeomorphic to either Sn−1 × [0, 1) or RPn−1 × [0, 1). In the former
case, the metric gM of M can be expressed by dt2 + f2(t)gSn−1 , where f : [0, T ) → (0,∞) is
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a smooth function and T is a positive number or ∞. Moreover, M is complete if and only if
T = ∞. The similar statement holds for the latter case.

Theorem 1.3 Let M be a connected Riemannian manifold with noncompact boundary ∂M
and of dimension n ≥ 2 such that dim I(M) = n(n−1)

2 . Denote by Hk, k ≥ 2, the k-dimensional
complete simple connected Riemannian space of constant sectional curvature −1. Then M is
diffeomorphic to either Rn−1 × [0, 1] or Rn−1 × [0, 1). Furthermore, we can characterize the
metric tensor gM of M as follows.

(1) If M is diffeomorphic to Rn−1 × [0, 1], then there exists a positive number T and a
smooth function f : [0, T ] → (0,∞) such that the metric tensor gM on M can be expressed by
gM = dt2 + f2(t)gRn−1 or gM = dt2 + f2(t)gHn−1 with t ∈ [0, T ]. Of course, we identify H1

with R1. The metric gM in this case is always complete.

(2) If M is diffeomorphic to Rn−1 × [0, 1), then there exist a number T ∈ (0,∞] and a
smooth function f : [0, T ) → (0,∞) such that the metric tensor gM on M can be expressed by
gM = dt2 + f2(t)gRn−1 or gM = dt2 + f2(t)gHn−1 with t ∈ [0, T ). Moreover, the metric gM is
complete if and only if T = ∞.

This paper is organized as follows. In Section 2, we prove the fact that the two definitions
of isometry coincide on Riemannian manifolds with boundary (see Proposition 2.1). It seems
that Bagaev-Zhukova [1] did not mention this fact in their setting of Riemannian orbifolds.
The idea of making reduction to the boundary in the proof of Proposition 2.1 will be used
many times afterwards. In this section we also show the above mentioned observation that
the isometry group I(M) of a Riemannian manifold M with boundary is a Lie transformation
group of dimension at most 1

2 dimM(dimM − 1) (see Theorem 2.1). Although our proof of the
observation is based on the idea of Proposition 2.1, to avoid the troublesome argument of point
set topology, we also use the result in [1] that I(M) has a Lie group structure. In Sections 3–5,
we use the metric geometry and the theory of transformation group to prove Theorems 1.1–1.3.

2 Some Properties of Isometry Group

In the following sections, we always let M be an n-dimensional connected, smooth Rie-
mannian manifold with boundary and n ≥ 2. With the induced metric from M , the boundary
∂M of M is an (n − 1)-dimensional Riemannian manifold without boundary. Note that ∂M
has at most countable connected components. Consider a diffeomorphism φ of M onto itself
which preserves the metric tensor. If p is an interior point of M , then φ maps p to another
interior point, say q, and the differential map Dφ at p induces an orthogonal transform from
the tangent space at p to the one at q. If u is a point on the boundary ∂M , then the tangent
space TuM at u should be thought of as the upper half space

{x = (x1, x2, · · · , xn) ∈ Rn : xn ≥ 0}

of the Euclidean space Rn. That is,

TuM = Tu(∂M) + {λnu : λ ≥ 0},
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where nu is the inner unit normal vector at u. Since φ maps u to another point v on ∂M , the
differential map Dφ at u maps nu to nv, and maps Tu(∂M) orthogonally onto Tv(∂M). Hence,
in this sense, we may also call that the differential map Dφ at u is an orthogonal transform from
TuM onto TvM . Hence φ leaves the boundary ∂M invariant and induces an isometry of ∂M .
Recall the two definitions of isometry on a Riemannian manifold with or without boundary
given in the beginning of the introduction section. By [9], they are equivalent on ∂M , i.e.,
a distance-preserving bijection on ∂M is a diffeomorphism of ∂M which preserves the metric
tensor on ∂M , and vice versa.

Let d( · , · ) be the distance function on M induced by the metric tensor of M and ψ a
bijection on M which preserves d( · , · ). Since ψ is a homeomorphism of M onto itself, its
restrictions to the boundary ∂M is a homeomorhism onto itself, so is the restriction to the
interior of M . In fact, we have a stronger property about ψ in the following proposition.

Proposition 2.1 A distance-preserving bijection ψ of M is a diffeomorphism which pre-
serves the metric tensor of M , and vice versa. That is, the two definitions of isometry of M
are equivalent.

Proof We only prove that a distance-preserving bijection ψ of M is a diffeomorphism
which preserves the metric tensor of M , since the vice versa part is easy. We first consider the
property of ψ near a point p in the interior Int(M) of M . There exists an open neighborhood
U ⊂ Int(M) of p such that the restriction ψ|U of ψ to U is a distance-preserving map onto the
open neighborhood V = ψ(U) ⊂ Int(M) of q = ψ(p). Since the two definitions of isometry
for Riemannian manifolds without boundary are equivalent (see [7, pp. 169–172] for a proof),
ψ|U : U → V is a diffeomorphism preserving the metric tensor. Hence, ψ|Int(M) : Int(M) →
Int(M) is also a diffeomorphism preserving the metric tensor. It suffices to prove that for each
point p ∈ ∂M , ψ is smooth near p and Dψ at p is an orthogonal transform from TpM onto
TqM , where q = ψ(p) ∈ ∂M . We divide the proof into two steps.

Step 1 Recall that np denotes the inner unit normal vector at p. Choose δ > 0 so small
that the geodesic γ(p, t) := expp(tnp), t ∈ [0, δ], satisfies

d(γ(p, t), ∂M) = d(γ(p, t), γ(p, 0)) = t. (2.1)

Since the geodesic emanating from each point with this property is unique, the image ψ ◦ γ of
γ under the distance-preserving bijection ψ is also a geodesic perpendicular to the boundary
∂M at the initial point q. Actually, we will see later that the differential Dψ at p maps np
to nq. In ∂M , we choose a small open neighborhood V ⊂ ∂M of p such that for each point
p′ ∈ V the geodesic γ(p

′, t), t ∈ [0, δ2 ], satisfies (2.1). Then the map γ( · , t) : p′ 	→ γ(p′, t) gives
a diffeomorphism of V onto a hypersurface Vt in Int(M) for each t ∈ (0, δ2 ]. We can define the
similar map from the neighborhood ψ(V ) ⊂ ∂M of q and denote the map also by γ( · , t). We
observe that

ψ ◦ γ( · , t) = γ( · , t) ◦ ψ
holds for each p ∈ V and each t ∈ [0, δ2 ] so that γ(ψ(V ), t) = ψ(Vt). Hence the map ψ|V can be
thought of as the composition of three diffeomorphisms:

ψ|V ( · ) = (γ( · , t))−1 ◦ ψ ◦ γ( · , t).
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So ψ|V is a diffeomorphism of V onto ψ(V ). Since ψ|Vt is an isometry of Vt onto ψ(Vt) for each
0 < t ≤ δ

2 , letting t → 0, we see that ψ|V is a one-to-one distance-preserving map of V onto
ψ(V ). Since the two definitions of isometry for Riemannian manifolds without boundary are
equivalent, ψ|V is a diffeomorphism onto ψ(V ) preserving the metric tensor.

Step 2 By Step 1 and its preceding argument, we take a small open neighborhood U ⊂M

of p such that the exponential map expp at p is a diffeomorphism from some neighborhood Ũ of
0 in TpM onto U . Recall that the partial derivative of ψ exists at the direction of the inner unit
normal np, and equals nq. On the other hand, by Step 1, ψ|∂M preserves the metric tensor on
∂M . Hence we see that the differential map Dψ at each p in U ∩∂M is an orthogonal transform
from TpM to Tψ(p)M . Since ψ is a homeomorphism, we assume that ψ(U) is contained in a
normal coordinate neighborhood of q. Since both expp and expq are local diffeomorphisms, the
equality

ψ ◦ expp = expq ◦(Dψ(p)), in Ũ ,

gives that ψ|U is a diffeomorphism onto ψ(U). Moreover, ψ preserves the metric tensor on M .

The above proof essentially follows the idea in [7, pp. 169–172]. We repeat it here because
the idea and notations will be used many times later. The following lemma is elementary and
useful, but its proof is omitted.

Lemma 2.1 Let φ be an isometry of M . If φ has a fixed point p ∈ M and the differential
Dφ at p is the identity map of TpM , then φ is the identity map of M .

Proposition 2.2 (1) Let φ be an isometry of M . Then the restriction φ|∂M to the boundary
∂M is an isometry of ∂M . Moreover, if φ leaves each point of a component B of ∂M fixed,
then φ is the identity map of M .

(2) Let φ be an element in the identity component I0(M) of the isometry group of M . The
restriction φ|B to a connected component B of ∂M is an element in the identity component
I0(B) of the isometry group of B. This map

ι : I0(M) → I0(B), φ 	→ φ|B
gives a continuous monomorphism with the image closed in I0(B). That is, ι is a regular
embedding of the Lie group I0(M) into the Lie group I0(B).

Proof (1) The first statement have been shown in the proof of Proposition 2.1. If each
point p of a component B of ∂M is fixed by φ, then the differential Dφ at p is the identity map
of TpM . By Lemma 2.1, φ is the identity map of M .

(2) For a given point p in a connected component B of ∂M , we claim that each element φ
in I0(M) maps p to a point in B. Otherwise, we assume that φ(p) lies in another component
B′ distinct from B. Choosing a path {φt} in I0(M) with φ0 = idM and φ1 = φ, we obtain
a path {φt(p)} connecting p and φ(p). Since each diffeomorphism of M maps ∂M onto ∂M ,
we find that the path {φt(p)} lies on ∂M , which leads to a contradiction. By the proof of
Proposition 2.1, we know that φ|B is an isometry of B, which is actually an element of I0(B).
Moreover, if φ|B is the identity map of B, then by (1), φ is the identity map of M . Thus, the
map ι : I0(M) → I0(B), φ 	→ φ|B gives a continuous monomorphism of I0(M) into I0(B).
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Finally, we need to show that the image of I0(M) under ι is closed in I0(B) with respect
to the compact-open topology. We divide the proof into two steps.

Step 1 We show that for a sequence {φn} of isometries in I0(M) such that

φn|B → idB in I0(B),

there holds φn → idM in I0(M). By Fact 1.1, I0(B) has the structure of a Lie group, whose
topology from its smooth structure coincides with the compact-open topology. We may assume
that φn|B → idB in the C1 topology of I0(B). That is, φn|K converges to the identity map
idK in the sense of the C1 norm in each compact neighborhood K in the topological space B.
Then, by using the normal coordinate charts with respect to each point in K (see the last three
lines of the proof of Proposition 2.1), we find that there exists a compact neighborhood K of
M such that K ⊂ K and φn(p) converges uniformly to p for each point p ∈ K.

Step 2 We show that if a sequence {φn} of isometries in I0(M) satisfies φn|B → φ in
I0(B), then there exists ψ ∈ I0(M) such that ψ|B = φ. Since, by [1, 9], both I0(B) and I0(M)
have structures of Lie groups, they can be endowed with a Riemannian metric. By the Cauchy
criterion, φn|B converges in I0(B) if and only if φn|B(φm|B)−1 converges to idB as m,n→ ∞.
Then, Step 1 tells us that φn(φm)−1 converges to idM as m,n → ∞. That is, φn converges to
some ψ ∈ I0(M) such that ψ|B = φ.

As an immediate corollary of Proposition 2.2 and Fact 1.2, we obtain the following theorem.

Theorem 2.1 The isometry group I(Mn) has a structure of Lie group of dimension at
most n(n−1)

2 .

3 Proof of Theorem 1.1

Let M be a Riemannian manifold satisfying the condition of Theorem 1.1 in this section. By
Proposition 2.2 and Fact 1.2, the isometry group I(B) of each component B of ∂M attains the
maximal dimension n(n−1)

2 , so B is isometric to either Sn−1 or RPn−1 with constant sectional
curvature 1. If n = 2, ∂M consists of circles. But our argument later also goes through in this
case.

Suppose that there exists a component B isometric to the sphere Sn−1. By the proof of
Fact 1.2 (see [6, pp. 46–47]), G := I0(M) is isomorphic to SO(n) and its action on B is just
the linear action of SO(n) on Sn−1. We may identify G with SO(n), B with Sn−1 up to a
scaling of metric. Recall that G acts transitively on Sn−1 and the isotropy group Gx at each
point x of Sn−1 is isomorphic to H := SO(n − 1). Here we use the notation in the proof of
Proposition 2.1. Choose a positive number δ > 0 such that the map γ( · , t) is a diffeomorphism
of B onto a hypersurface Bt in Int(M) for each t ∈ (0, δ]. Since the G-action interchanges with
γ( · , t), G leaves each Bt invariant. We claim that the G-action on M has the principal orbit
whose type is SO(n)/SO(n − 1). Recall that the union of the principal orbits forms an open
and dense subset of M . For the detail of this, see Theorem 4.27 in [5, pp. 216–220], where only
manifolds without boundary are considered. But Theorem 4.27 in [5] also holds for our case
by virtue of the map γ( · , t). The claim follows from that the union M(H) of orbits with type
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G/H contains the open subset
⋃

t∈[0,δ)

Bt in M . Therefore, every component of ∂M is isometric

to Sn−1. By Theorems 4.19 and 4.27 in [5], the orbit space M(H)/G is a connected smooth
1-manifold, whose boundary coincides with the orbit space ∂M/G. Hence, ∂M has at most
two components. We also have the similar argument when ∂M has a component isometric to
RPn−1. Summing up, we have proved the lemma below.

Lemma 3.1 ∂M has at most two components, each of which is isometric to either Sn−1

or RPn−1. Moreover, if ∂M has two components, then the two components are isometric up
to a scaling of metric.

Lemma 3.2 Let ∂M have two components. Then M is diffeomorphic to either Sn−1× [0, 1]
or RPn−1 × [0, 1]. If M is diffeomorhic to Sn−1 × [0, 1], then there exist a positive number T
and a positive smooth function f(t) on [0, T ] such that the Riemannian metric gM on M can
be expressed by

gM = dt2 + f2(t)gSn−1 .

The similar statement holds for M diffeomorphic to RPn−1 × [0, 1].

Proof We only prove the case that both the two component of ∂M are isometric to Sn−1.
By the proof of Lemma 3.1, the orbit spaceM(H)/G is a closed interval. On the other hand, the
orbit space M(H)/G is a dense subset in the total orbit space M/G. Therefore, M = M(H),
i.e., all the orbits of G-action on M are of principal type. So M is a smooth fiber bundle with
fiber Sn−1 over a compact interval. Actually, it will be proved that M is diffeomorphic to the
product of Sn−1 and a compact interval.

We use the notation in the proof of Proposition 2.1 in what follows. Let B and B′ be the
components of ∂M . The two spheres B and B′ may have different sizes. Choose a point p ∈ B.
Then we claim that the geodesic γ(p, t) with initial velocity np terminates at some point p′ ∈ B′

and with the ending velocity np′ at a positive time determined later. Indeed, choosing p′ ∈ ∂M

such that d(p,B′) = d(p, p′) =: T (p), we can find a geodesic between p and p′ whose length
is T (p). It is clear that this geodesic is perpendicular to the boundary ∂M at p′. It is also
perpendicular to ∂M at p. Otherwise, we can find another point q on B and a path � connecting
q and p′ of length less than T (p). Choosing an element α ∈ G mapping q to p, we obtain a
path α(�) connecting p and α(p′) ∈ B′ of length less than T (p). This gives a contradiction to
the definition of d(p,B′). Therefore, this geodesic is exactly the one {γ(p, t) : t ∈ [0, T (p)]} in
the claim. We claim again that T (p) equals the distance T between B and B′. Actually, there
exists a p0 such that the geodesic γ(p0, [0, T (p0)]) satisfies

T (p0) = d(p0, γ(p0, T (p0))) = d(B,B′).

But G acts transitively on the set of geodesics

{γ(p, [0, T (p)]) : p ∈ B}

connecting B and B′, which implies that these geodesics have the same length T . So each point
p in B has the same distance T to B′.
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We claim that the map γ( · , t) : B → M is a diffeomorphism of B onto the hypersurface
Bt for each t ∈ [0, T ]. Similarly as the preceding paragraph, this map is surjective. It is also
injective. Otherwise, there exist 0 < T ′ < T and two distinct points p1 and p2 in B such that
γ(p1, T

′) = γ(p2, T
′) =: q. Then we get a curve γ(p1, [0, T ′]) ∪ γ(p2, [T ′, T ]) irregular at point

q with length T connecting B and B′, which is a contradiction. Since this map is equivariant
with respect to the G actions on B and Bt, every point of Bt is a regular point of the map by
the Sard theorem. Combining above, we know that the map γ( · , t) : B → Bt is one-to-one,
onto and its differential does not degenerate, that is, it is a diffeomorphism.

Now we show that any two geodesics in the set {γ(p, [0, T ]) : p ∈ B} are equal if they
intersect. Suppose that there exist distinct points p1, p2 ∈ B and positive times t1, t2 in (0, T )
such that γ(p1, t1) = γ(p2, t2). Then by the argument in the preceding paragraph, we know
t1 �= t2, say t1 < t2. Then the piecewise smooth curve γ(p1, [0, t1])∪ γ(p2, [t2, T ]) connecting B
and B′ has length t1 + (T − t2) < T . This is a contradiction.

The statements in the above two paragraphs shows that the map

γ( · , · ) : [0, T ]×B →M, (p, t) 	→ γ(p, t)

is a diffeomorphism. Moreover, since G leaves each hypersurface Bt invariant and acts isomet-
rically and effectively on it, Bt is a sphere with constant sectional curvature. Therefore, the
Riemannian metric gM of M can be written as gM = dt2 +f2(t)gSn−1 for some positive smooth
function f(t) on [0, T ].

Lemma 3.3 If ∂M is connected, then ∂M must be isometric to the unit sphere Sn−1.

Proof Suppose that ∂M is isometric to the real projective space RPn−1 with the constant
sectional curvature and n ≥ 3. Then n should be even since RP even does not bound by the
unoriented cobordism theory (see [9, pp. 52–53]). Denote by G the identity component of the
isometry group of M . Since dimG = n(n−1)

2 , G is isomorphic to SO(n)/{±1} and its action on
the boundary RPn−1 is induced by the linear action of SO(n) on Sn−1. Moreover, the isotropy
subgroup H := Gp at each point p on ∂M is isomorphic to SO(n − 1). Following the proof of
Lemma 3.1, the G action on M has principal orbits of type G/H = RPn−1. Denote by M(H)
the union of principal orbits. Then the orbit space M(H)/G is diffeomorphic to the interval
[0, 1). Since M(H)/G is dense in the total orbit space M/G, for the G action on M , there exists
only one orbit G/J other than the principal ones. It is this orbit G/J that corresponds to the
endpoint 1 of the orbit space M/G. Since H can be thought of as a proper subgroup of J in
the sense of conjugacy, the Lie algebra J of J contains a subalgebra isomorphic to so(n − 1).
Simple computation shows that J is isomorphic to either so(n) or so(n− 1).

Case 1 If J is so(n), then J equals G. This means that topologically M is the cone of
RPn−1, which does not have the structure of a manifold. Actually, the cone of RPn−1 is
homeomorphic to the orbifold Dn/{±1}. This is a contradiction.

Case 2 If J is isomorphic to so(n − 1), then the exception orbit G/J is a submanifold of
codimension 1 in M . So the G action on G/J is also effective. Since G attains the largest-
possible dimension n(n−1)

2 , G/J is isometric to RPn−1 by Fact 1.2, which implies that G/J is
also a principal orbit. This is a contradiction.
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Lemma 3.4 If ∂M is isometric to the sphere Sn−1, then M is homeomorphic to either
Dn or RPn \ U , where U is an n-dimensional open disk such that its closure U in RPn is
homeomorphic to the closed unit ball Bn ⊂ Rn.

Proof We use the notation in the proof of Lemmas 3.1–3.3. Recall that G = SO(n) and
H = SO(n−1). By the similar argument in the proof of Lemma 3.3, there exists only one orbit
G/J other than the principal orbits among all the orbits of the G action on M . Also by the
argument in the proof of Lemma 3.3, we know that either J is SO(n) or J contains a subgroup
of finite index and isomorphic to SO(n− 1).

Case 1 If J is SO(n), then M is the cone of Sn−1 homeomorphic to the closed unit disk
Dn.

Case 2 If SO(n − 1) is a subgroup of J of finite index, then the exceptional orbit G/J
is a submanifold of codimension 1 in M . Hence G acts effectively on G/J . Since ∂M is
connected, G/J has to be isometric to RPn−1 by Fact 1.2. Therefore, M is homeomorphic
to the mapping cone Sn−1 × [0, 1]/ ∼, where the equivalent relation ∼ on Sn−1 × [0, 1] is
defined by (x, 1) ∼ (−x, 1) (for the concept of mapping cone, see [4, p. 13]). Clearly, M is also
homeomorphic to the punctured real projective space RPn \ U .

Example 3.1 Define an effective SO(n)-action on

RPn = {[r0 : r1 : · · · : rn] | (r0, · · · , rn) ∈ Rn+1 \ {0}}

by the linear action on the last n-coordinates. Then this action has the unique fixed point
p = [1 : 0 : · · · : 0], the principal orbits are isomorphic to Sn−1, and the unique exceptional
orbit is isomorphic to RPn−1. Here the exceptional orbit means an orbit which has the same
dimension as the principal orbit, but is not principal (see [2, p. 181]). Removing the equivariant
open neighborhood U of p, we obtain the manifold RPn \ U with an SO(n)-action such that
all the orbits are principal and isomorphic to Sn−1 except one exceptional orbit RPn−1.

Lemma 3.5 If M is homeomorphic to the n-dimensional closed disk Dn, then there exist a
point O in the interior of M and a positive number R > 0 such that the exponential map expO
at O is a diffeomorphism of the closed ball centered at the origin 0 ∈ TOM and of radius R
in TOM onto M . Moreover, the Riemannian metric gM of M is rotationally symmetric with
respect to O so that it can be expressed by

gM = dt2 + ϕ2(t)gSn−1 ,

where the function ϕ : (0, R] → (0,∞) is smooth, ϕ(0) = 0, and

ϕ(even)(0) = 0, ϕ̇(0) = 1.

Proof We use the notation in the proof of Theorem 2.1 and Lemma 3.4. Denote by B

the boundary ∂M . We know that B is a sphere of constant sectional curvature. By the proof
of Lemma 3.4, there exists a unique fixed point O ∈ Int(M) of the G action on M . The G
action on the tangent space TOM at O gives an isomorphism of G onto the special orthogonal
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transformation group SO(TOM) of the Euclidean space TOM . We denote by B(0, r) the set of
tangent vectors of length less than r at O, and by S(0, r) the set of tangent vectors of length r at
O. We also denote by S(r) the set of points in M with distance r to O, by exp the exponential
map at O.

Choose a point p ∈ B such that d(O, p) = d(O,B) =: R. Then there exists a unit tangent
vector V0 at O such that p = exp(RV0), and the geodesic exp(tV0) (t ∈ [0, R]) is perpendicular
to B at p. Choose an arbitrary unit tangent vector V at O. We claim that the geodesic exp(tV )
(t ≥ 0) meets the boundary B perpendicularly at time R. Actually, choosing an isometry α ∈ G

such that the differential dα at O maps V0 to V , we find that the geodesic expO(tV ) (t ∈ [0, R])
is the image of the one exp(tV0) (t ∈ [0, R]) under the isometry α. Since G acts transitively on
B, for each point p ∈ B, there exists a V ∈ S(0, 1) such that exp(RV ) = p. By the uniqueness
of the geodesic perpendicular to B at a given point, we find that if exp(RV ) = exp(RW ) for any
two vectors V,W ∈ S(0, 1), then V = W . Hence exp : S(0, R) → S(R) is a smooth bijection
and there is no cut point of O in the interior of M . So, exp gives a diffeomorphism of B(0, R)
onto Int(M). To prove that this diffeomorphism can extend to the boundary, by the Gauss
lemma, we only need to show that the restriction of exp to S(0, R) is a diffeomorphism onto
S(R) = B.

Recall that G acts on both S(0, R) and S(R). Moreover, the exponential map exp :
S(0, R) → S(R) is an equivariant smooth bijection map with respect to the G actions. By the
Sard theorem, there exists a regular value of exp |S(0,R). On the other hand, by the equivariant
property, all points of S(R) are regular values. That is, the map exp : S(0, R) → S(R) is a
diffeomorphism.

The similar statement holds for each (n− 1)-dimensional sphere S(r), 0 < r ≤ R, in M . So
the metric gM of M has rotational symmetry with respect to O. The expression of gM follows
from the argument in [10, pp. 12–13].

Remark 3.1 We can list closed geodesic balls with suitable radii in the three spaces Rn, Sn

and Hn as concrete examples of the manifold M in Lemma 3.5. Simultaneously, the geodesic
annuli of these three spaces form examples of the manifold in Lemma 3.4. The manifold M in
our consideration need not have constant sectional curvature, whose curvature can be computed
explicitly in terms of the function f (see [10, pp. 65–68]). Because of the large symmetry on
them, this class of manifolds, including geodesic balls in Rn, Sn and Hn, may be thought of as
the simplest class of compact Riemannian manifolds with boundary.

Lemma 3.6 We use the notation in the proof of Lemma 3.4. Suppose that M is homeo-
morphic to RPn \ U . Then we can find a Riemannian manifold M ′ = Sn × [−T

2 ,
T
2 ] endowed

with the metric dt2 + f2(t)gSn−1 , where f : [−T
2 ,

T
2 ] → (0,∞) is an even smooth function, and

an involutive isometry β of M ′ defined by β(x, t) = (−x,−t) such that M is the quotient space
of M ′ by the group {1, β}. Here −x means the antipodal point of x in Sn−1. Of course, M is
diffeomorphic to RPn \ U .

Proof First of all, let us forget the Riemannian metric on M . Consider a topological model
of M — the mapping cone Sn−1×[0, 1]/ ∼. Recall that the equivalent relation ∼ means (x, 1) ∼
(−x, 1), where x 	→ −x is the deck transformation of the 2-fold covering Sn−1 → RPn−1. Then
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M is the quotient of M ′ := Sn−1× [0, 2] by the group generated by the involution β of M given
by

β(x, t) = (−x, 2 − t).

Then we endow M ′ with the induced Riemannian metric from M . Since each isometry of
M can be lifted to two isometries of M ′, M ′ also satisfies the condition of Theorem 1.1. By
Lemma 3.2, there exist a positive number T and a smooth function f : [−T

2 ,
T
2 ] → (0,∞) such

that M ′ is diffeomorphic to Sn−1 × [−T
2 ,

T
2 ] and the metric gM ′ is given by

gM ′ = dt2 + f2(t)gSn−1 ,

where gSn−1 is the standard metric on the unit sphere Sn−1. On the other hand, since the deck
transform β : M ′ →M ′, (x, t) 	→ (−x,−t) is an isometry of M ′, we can see that −x is actually
the antipodal point of x ∈ Sn−1 and f(t) is an even function.

We finally complete the proof of Theorem 1.1 by combining all the lemmas in this section.

4 Proof of Theorem 1.2

Let M be a Riemannian manifold satisfying the condition of Theorem 1.2 in this section. Let
B be a compact component of ∂M . By Proposition 2.2 and Fact 1.2, the isometry group I(B)
of B has the largest-possible dimension n(n−1)

2 , so B is isometric to either Sn−1 or RPn−1 with
constant sectional curvature. Suppose the former case holds. Then G := I0(M) is isomorphic to
SO(n) and the isotropy subgroup Gx at each point x ∈ B is isomorphic to H := SO(n− 1). By
the same argument in the proof of Lemma 3.1, the G action on M has principal orbit type G/H
and ∂M has at most two components. We claim that ∂M is connected, i.e. ∂M = B. Actually,
since the orbit space M(H)/G is a connected smooth 1-manifold, whose boundary coincides
with the orbit space ∂M/G, M(H)/G is a compact interval if ∂M has two components. Since
the orbit space M(H)/G is dense in the total orbit space M/G, we have that M(H) = M and
M is diffeomorphic to Sn−1 × [0, 1]. This contradicts the noncompactness of M . By the same
reason, we also have M(H) = M . We have the similar argument for the latter case. Summing
up, we obtain the following results.

Lemma 4.1 M is diffeomorphic to either Sn−1 × [0, 1) or RPn−1 × [0, 1).

Lemma 4.2 (1) Let M be complete. If M is diffeomorphic to Sn−1× [0, 1), then the metric
gM of M can be expressed by

gM = dt2 + f2(t)gSn−1 ,

where f : [0,∞) → (0,∞) is a smooth function. The similar statement holds for M diffeomor-
phic to RPn−1 × [0,∞).

(2) Let M be noncomplete. If M is diffeomorphic to Sn−1 × [0, 1), then there exists a finite
positive number T such that the metric gM of M can be expressed by

gM = dt2 + f2(t)gSn−1 ,

where f : [0, T ) → (0,∞) is a smooth function. The similar statement holds for M diffeomorphic
to RPn−1 × [0, 1).
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Proof We only prove the case that M is diffeomorphic to Sn−1× [0, 1). We use the notation
in the proof of Proposition 2.1 and Lemma 4.1. Choose an arbitrary point q in the interior of
M such that the distance of q to the boundary B is D. Cutting M along the orbit through q

of the G action, we obtain a compact part M1 diffeomorphic to Sn−1× [0, 1] and a noncompact
part diffeomorphic to M , on both of which G acts isometrically. By the proof of Lemma 3.2, the
map γ( · , · ) : B× [0, D] →M1 is a diffeomorphism. Since q is arbitrary, there exists T ∈ (0,∞]
such that the map γ( · , · ) : B × [0, T ) →M is a diffeomorphism. Moreover, T is ∞ if and only
if M is complete.

5 Proof of Theorem 1.3

Since the compact transformation group theory cannot be applied directly to isometry
groups of Riemannian manifolds with noncompact boundary, we need new ideas to classify
Riemannian manifolds with noncompact boundary whose isometry groups attain the maximal
dimension.

Denote by Gk and Gk the identity components of the isometry groups of Rk and Hk,
respectively. Recall that Gk is the identity component of O(1, k) and semisimple for each k ≥ 2.
However, Gk is the semidirect product of SO(k) and Rk, and it is not semisimple for each
k ≥ 1 (see [10, p. 5 and p. 77]). Let M be a Riemannian manifold satisfying the assumption
of Theorem 1.5 throughout this section. By Proposition 2.2 and Fact 1.2, every component of
∂M with the induced Riemannian metric from M is isometric to either Rn−1 or the (n − 1)-
dimensional complete and simply connected Riemannian manifoldHn−1(c) of constant sectional
curvature c < 0. Note that all Hn−1(c)’s, c < 0, have the same isometry group isomorphic to
the semidirect product of Gn−1 and Z2. Suppose that a component of ∂M is isometric to Rn−1.
Then I0(M) is isomorphic to Gn−1, which acts effectively and isometrically on each component
of ∂M . Hence, we find that each component of ∂M should be isometric to Rn−1. The similar
argument goes through if ∂M has a component isometric to Hn−1(c) for some c < 0.

Lemma 5.1 Each component of ∂M is isometric to either Rn−1 and Hn−1(c) for some
c < 0. Moreover, the components of ∂M are mutually isometric up to a scaling of metric.

Lemma 5.2 We use the notation of Proposition 2.1. Let B be a component of the boundary
∂M and p an arbitrary point of B. Let I be the maximal existence interval of the geodesic
γ(p, t) = expp(tnp) perpendicular to B at the initial point p. Then the map

γ : B × I →M, (q, t) 	→ γ(q, t)

is well-defined and gives a diffeomorphism of B × I onto M . Consequently, if I is a compact
interval, then M is diffeomorphic to B × [0, 1]; if I is an interval open at the right endpoint,
then M is diffeomorphic to B × [0, 1).

Proof Denote by G the identity component of I(M). Then G = Gn−1 if B is isometric to
Rn−1, G = Gn−1 if B is isometric to Hn−1(c) for some c < 0.

Since G acts transitively on B, we can see that, for every point q ∈ B, the geodesic γ(q, t)
perpendicular to B at the initial point q also has the maximal existence interval I. We claim that
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for any two distinct points p, q ∈ B, the two geodesics {γ(p, t) : t ∈ I} and {γ(q, t) : t ∈ I} do
not intersect at a point x such that x = γ(p, s) = γ(q, s) for some s ∈ I and d(x, p) = d(x, q) = s.
Otherwise, there exist two distinct points p, q ∈ B and s > 0 satisfying x = γ(p, s) = γ(q, s)
and d(x, p) = d(x, q) = s. Since G acts transitively on B, there exists an α ∈ G mapping p to q.
By the equality γ(α(p), s) = α(γ(p, s)), we can see that x is a fixed point of α. However, we can
choose an α having no fixed point on B. Then, we reach an contradiction. Here are the details
of choosing such α. If B is Rn−1, α may be chosen to be the translation x 	→ x+ (q − p). If B
is Hn−1(c) for some c < 0 and n ≥ 3, we may assume without loss of generality that c = −1
and B is the upper half space

{x = (x1, · · · , xn−2, xn−1) : x1, · · · , xn−2 ∈ R, xn−1 > 0}

endowed with the hyperbolic metric

dx2
1 + · · · + dx2

n−1

x2
n−1

.

Express the two distinct points p and q into coordinate forms: p = (p1, · · · , pn−1), q =
(q1, · · · , qn−1). If pn−1 = qn−1, α may also be chosen to be the similar translation as above; if
pn−1 �= qn−1, we take

α : (x1, · · · , xn−1) 	→ qn−1

pn−1
(x− (p1, · · · pn−2, 0)) + (q1, · · · , qn−2, 0).

We claim that the subset Bt = {γ(p, t) : p ∈ B} is a Riemannian submanifold isometric to
B for each t ∈ I. By the equality α ◦ γ( · , t) = γ( · , t) ◦ α for every α ∈ G, Bt is exactly an
orbit of the G action, so it is a submanifold of M . Remember that the map γ( · , t) : B → Bt is
surjective and G-equivariant. By the claim in the preceding paragraph, this map is one-to-one.
Hence, it gives a diffeomorphism of B onto Bt. Since G acts effectively and isometrically on
Bt, the claim follows from Fact 1.2.

The left part of the proof is similar to that of Lemma 3.2. There also holds that for each
(p, t) ∈ B × I,

d(B,Bt) = d(γ(p, t), B) = d(γ(p, t), p) = t.

And the geodesic {γ(p, t) : t ∈ I} is perpendicular to Bt at point γ(p, t).

The proof of Theorem 1.3 follows from Lemma 5.2.
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