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Abstract The authors introduce a new idea related to Montel-type theorems in higher di-
mension and prove some Montel-type criteria for normal families of holomorphic mappings
and normal holomorphic mappings of several complex variables into P N(C) for continu-
ously moving hyperplanes in pointwise general position. The main results are also true for
continuously moving hypersurfaces in pointwise general position. Examples are given to
show the sharpness of the results.
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1 Introduction

The study of value distribution theory may be considered to have its origin in the famous
Picard’s theorem.

Theorem 1.1 (see [11]) Suppose that f is a meromorphic function on the complex plane.
If f omits three mutually distinct points on the Riemann sphere, then f is a constant.

A central result in the theory of normal families is the following Montel’s theorem related
to Picard’s theorem.

Theorem 1.2 (see [11]) Let F be a family of meromorphic functions on a domain D of
the complex plane. Suppose that there exist three mutually distinct points w1, w2, w3 on the
Riemann sphere such that each f in F omits wi (i = 1, 2, 3). Then F is a normal family on D.

In the case of higher dimension, Bloch [4], Fujimoto [7] and Green [8] established Picard-type
theorem for holomorphic mappings of Cn into PN (C), the complex N -dimensional projective
space. Nochka [12] extended the result in [4, 7, 8] to the case of finite intersection multiplicity.
In [15], the present first author gave some normality criteria for families of holomorphic map-
pings of several complex variables into PN(C) for fixed hyperplanes related to Nochka’s results.
Motivated by the accomplishment of the second main theorem of value distribution theory in
higher dimension for moving hyperplanes (see, e.g., [13]), Wang [18] extended Picard-type the-
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orem of holomorphic mappings of C into PN (C) to the case of moving hyperplanes in pointwise
general position. By starting from Fujimoto-Green’s and Nochka’s Picard-type theorems and
using the heuristic principle obtained by Aladro and Krantz [2], Tu and Li [17] obtained some
normality criteria for families of holomorphic mappings of several complex variables into PN (C)
for moving hyperplanes in pointwise general position. Bargmann, Bonk, Hinkkanen and Mar-
tin [3] introduced a new idea related to Montel’s theorem and proved a normality critrion for
families of meromorphic functions omitting three continuous functions. It seems clear that the
idea in these researches suggests some insights into the normal holomorphic mappings and nor-
mal family of holomorphic mappings of several complex variables into PN (C) for continuously
moving targets in pointwise general position. This line of thought will be pursued in this note.

2 Main Results

For the general reference of this paper, see [1, 3, 15, 17].
Let PN (C) be the complex projective space of dimension N , and ρ : C

N+1\{0} → PN (C)
be the standard projective mapping. Let h be a holomorphic mapping from a domain D in Cn

into PN (C). For any a ∈ D, then h has a reduced representation

h̃(z) = (h0(z), · · · , hN(z))

on some neighborhood U of a in D, i.e., h0(z), · · · , hN (z) are holomorphic functions on U

without common zeroes such that h(z) = ρ(h̃(z)) on U . Let F be a family of holomorphic
mappings of a domain D in Cn into PN(C). F is said to be a normal family on D if any
sequence in F contains a subsequence which converges uniformly on compact subsets of D to
a holomorphic mapping of D into PN (C), where a subsequence {f (p)} ⊂ F is said to converge
uniformly on compact subsets of D to a holomorphic mapping f of D into PN (C) if and only
if, for any a ∈ D, each f (p)(z) has a reduced representation

f̃ (p)(z) = (f (p)
0 (z), · · · , f

(p)
N (z))

on some fixed neighborhood U of a in D such that {f (p)
i (z)}∞p=1 converges uniformly on compact

subsets of U to a holomorphic function fi(z) (i = 0, · · · , N) on U with the property that

f̃(z) := (f0(z), · · · , fN(z))

is a reduced representation of f(z) on U .
Let Ω ⊂ Cn be a hyperbolic domain and M be a complete complex Hermitian manifold with

metric ds2
M . A holomorphic mapping f(z) from Ω into M is said to be a normal holomorphic

mapping from Ω into M if and only if there exists a positive constant c such that for all z ∈ Ω
and all ξ ∈ Tz(Ω),

|ds2
M (f(z), df(z)(ξ))| ≤ cKΩ(z, ξ),

where df(z) is the mapping from Tz(Ω) into Tf(z)(M) induced by f and KΩ denotes the
Kobayashi metric for Ω. For the detailed discussion of normal holomorphic mapping, see [1].
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Let E be a subset of Cn. For z ∈ E, define the linear form

L(z)(Z0, · · · , ZN) :=
N∑

j=0

aj(z)Zj,

where aj(z) (0 ≤ j ≤ N) are continuous functions on E without common zeroes. Then

H(z) := ρ({(Z0, Z1, · · · , ZN) ∈ C
N+1\{0} : L(z)(Z0, Z1, · · · , ZN ) = 0})

is called a continuous moving hyperplane in PN (C) corresponding to the linear form L(z) (z ∈
E). Continuous moving hyperplanes Hj(z) (where j = 1, · · · , q; q ≥ N+1) are said to be located
in PN (C) in general position on E if there exists some point z0 ∈ E such that the hyperplanes
Hj(z0) (j = 1, · · · , q) are located in general position. Continuous moving hyperplanes Hj(z)
(where j = 1, · · · , q; q ≥ N + 1) are said to be located in PN (C) in pointwise general position
on E if for any fixed point z0 ∈ E, the hyperplanes Hj(z0) (j = 1, · · · , q) are located in
general position. In the special case, when E is a domain D of Cn and aj(z) (0 ≤ j ≤ N) are
holomorphic in D, H(z) is said to be a moving hyperplane in PN(C).

Let f be a holomorphic mapping from a domain D in Cn into PN (C), and H(z) be a
continuous moving hyperplane in PN(C) defined by the linear form L(z)(Z0, Z1, · · · , ZN ) (z ∈
D). For any a ∈ D, let f have a reduced representation

f̃(z) = (f0(z), · · · , fN (z))

on a neighborhood U of a. We consider the continuous function

F (z) := L(z)(f0(z), · · · , fN(z)), z ∈ U.

If F (a) �= 0, then f(a) ∈ PN (C)\H(a). When f(z) ∈ PN (C)\H(z) for all z ∈ D, we say that
the holomorphic mapping f omits the continuous moving hyperplane H(z) on D. Since F (z) is
only continuous in U , we cannot define the multiplicity for a zero of F (z) in U . Therefore, we
cannot define the finite intersection multiplicity for f with the continuous moving hyperplane
H(z) on D.

Bloch [4], Fujimoto [7] and Green [8, 9] extended the Picard’s theorem and Montel’s theorem
to the case of higher dimension and got the following results.

Theorem 2.1 (see [4, 7, 8]) Suppose that f is a holomorphic mapping from Cn into PN (C).
If f omits 2N + 1 hyperplanes in PN (C) located in general position, then f is constant.

Theorem 2.2 (see [4, 9]) Let {Hj}2N+1
j=1 be a set of hyperplanes in PN (C) located in general

position. Then PN (C)\ 2N+1∪
j=1

Hj is complete hyperbolic and hyperbolically imbedded to PN (C).

Wang [18] obtained a weak Picard-type theorem of holomorphic mappings of C into PN (C)
for moving hyperplanes in pointwise general position. For example (see, e.g., [18, p. 40]),
f̃(z1, z2) := (1, ez) (from C to C2) omits three moving hyperplanes Z0 = 0, Z1 = 0, ezZ0+Z1 =
0 (z ∈ C, (Z0, Z1) ∈ C2), where these three moving hyperplanes are located in pointwise general
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position on C. However, f(z) := ρ(f̃(z)) (from C to P 1(C)) is not a constant. Although a
holomorphic mapping from C into PN (C) omitting 2N + 1 moving hyperplanes in pointwise
general position may not be a constant, Tu and Li [17] extended Theorem 2.2 to the case of
moving hyperplanes in pointwise general position and proved the following results.

Theorem 2.3 (see [17]) Let F be a family of holomorphic mappings of a domain D in
C

n into PN (C), and H1(z), · · · , H2N+1(z) (z ∈ D) be 2N + 1 moving hyperplanes in PN (C)
located in pointwise general position on D. If each f in F omits Hj(z) (j = 1, · · · , 2N + 1) on
D, then F is a normal family on D.

Bargmann, Bonk, Hinkkanen and Martin [3] proved a normality criterion for families of
meromorphic functions omitting three continuous functions as follows.

Theorem 2.4 (see [3]) Let F be a family of meromorphic functions on a domain D of
the complex plane. Suppose that there exist three continuous functions w1(z), w2(z), w3(z) on
D with values in the Riemann sphere P 1(C) such that w1(z), w2(z), w3(z) are three mutually
distinct points for any fixed z ∈ D. If each f in F omits wi(z) (i = 1, 2, 3) on D, then F is a
normal family on D.

Inspired by these developments, we prove Montel-type criteria for normal families of holo-
morphic mappings and normal holomorphic mappings of several complex variables into PN (C)
for continuously moving hyperplanes in pointwise general position as follows.

Theorem 2.5 Let F be a family of holomorphic mappings of a domain D in Cn into
PN (C), and H1(z), · · · , H2N+1(z) (z ∈ D) be 2N+1 continuously moving hyperplanes in PN (C)
located in pointwise general position on D. If each f in F omits Hj(z) (j = 1, · · · , 2N + 1) on
D, then F is a normal family on D.

Theorem 2.6 Let f be a holomorphic mapping from a bounded domain D in Cn into
PN (C), and H1(z), · · · , H2N+1(z) (z ∈ D ) be 2N + 1 continuously moving hyperplanes in
PN (C) located in pointwise general position on D. If f omits Hj(z) (j = 1, · · · , 2N + 1) on D,
then f is a normal holomorphic mapping from D into PN (C).

As an application of Theorem 2.5, we give a necessary and sufficient condition for a family
to be normal as follows.

Corollary 2.1 Let F be a family of holomorphic mappings of the ball

B(R) := {z ∈ C
n : ‖z‖ < R}

into P 1(C) (0 < R ≤ +∞). Then F is a normal family on B(R) if and only if for each
sequence {fi(z)}∞i=1 in F , there exist three continuously moving hyperplanes H1(z), H2(z), H3(z)
(z ∈ B(R)) in P 1(C) located in pointwise general position on B(R) such that for each closed
ball B(r) := {z ∈ Cn : ‖z‖ ≤ r} (0 < r < R), infinitely many mappings in {fi(z)}∞i=1 omit
Hj(z) (j = 1, 2, 3) on B(r).

Here we give some examples to complement our theory in this paper.
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Example 2.1 Let {fk(z)}∞k=1 be a family of holomorphic mappings of the unit disc D into
P 1(C), where fk(z) has a reduced representation f̃k(z) = (kz, 1) on D (k = 1, 2, · · · ). Then
{fk(z)}∞k=1 is not normal on D. Let the continuously moving hyperplanes H1(z), H2(z), H3(z)
in P 1(C) be defined by the linear equations Z1 = 0, xZ0 + Z1 = 0, xZ0 + 2Z1 = 0 (z ∈ D)
respectively. Then H1(z), H2(z), H3(z) are three continuously moving hyperplanes in P 1(C)
located in general position (but not in pointwise general position) on D such that each fk omits
Hj(z) (j = 1, 2, 3) on D. Thus Theorem 2.5 fails for 2N + 1 continuously moving hyperplanes
located “only” in general position on D.

Example 2.2 Let F := {fk(z)}∞k=1 be a family of holomorphic mappings of C into P 1(C),
where fk(z) has a reduced representation f̃k(z) on C as follows:

f̃1(z) = (1, 0), f̃2(z) = (1, 1), f̃3(z) = (0, 1) and f̃k(z) =
(
1,

z

k

)
, k ≥ 4.

Let the continuously moving hyperplanes H1(z), H2(z), H3(z) in P 1(C) be defined by the linear
equations (|z| + 1)Z0 + Z1 = 0, (|z| + 2)Z0 + Z1 = 0, (|z| + 3)Z0 + Z1 = 0 (z ∈ C) respec-
tively. Then H1(z), H2(z), H3(z) are three continuously moving hyperplanes in P 1(C) located
in pointwise general position on C such that each fk omits Hj(z) (j = 1, 2, 3) on C.

Let H(z) be a moving hyperplane in P 1(C) defined by the linear equation a0(z)Z0 +
a1(z)Z1 = 0, where a0(z) and a1(z) are holomorphic functions on C without common ze-
roes. If f1, f2, f3 omit H(z) on C, then by Picard theorem H(z) can be defined by the linear
equation Z0 + c0Z1 = 0 (where c0 is a nonzero complex number). Thus f4 cannot omit H(z) on
C. Therefore, F can omit three continuously moving hyperplanes in P 1(C) located in pointwise
general position on C but cannot omit any moving hyperplane in P 1(C) on C.

Example 2.3 Let D be the unit disc {z ∈ C : |z| < 1} with the Bergman metric and
let P 1(C) carry the Fubini-Study metric. Let f be a holomorphic mapping of D into P 1(C),
where f(z) has a reduced representation f̃(z) := (1, e

1
(z−1)2 ) on D. Let the continuously moving

hyperplanes H1(z), H2(z), H3(z) in P 1(C) be defined by the linear equations

Z0 = 0, Z1 = 0, Z0 − e−
2

|z−1|2 Z1 = 0, z ∈ D

respectively. Then H1(z), H2(z), H3(z) are three continuously moving hyperplanes in P 1(C)
located in pointwise general position on D and in general position on D such that f omits
Hk(z) (k = 1, 2, 3) on D.

But f is not normal on D. In fact, by the definition, f is normal on D if and only if

|h′(z)|
1 + |h(z)|2 ≤ C0

1
1 − |z|2 , z ∈ D

for some finite constant C0, where h(z) := e
1

(z−1)2 . However, take

z(t) := 1 −
√

2
2

t +
√

2
2

t
√−1, 0 < t <

√
2

2
.

Then z(t) ∈ D
(
0 < t <

√
2

2

)
. Since

(1 − |z(t)|2) |h′(z(t))|
1 + |h(z(t))|2 =

√
2 − t

t2
→ +∞, t → 0+,
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we have

sup
{
(1 − |z|2) |h′(z)|

1 + |h(z)|2 : z ∈ D
}

= +∞.

So f is not normal on D. Therefore, Theorem 2.6 does not hold for 2N +1 continuously moving
hyperplanes located in pointwise general position “only” on D or “only” in general position on
D .

Now we give an outline of our proofs of Theorems 2.5 and 2.6. The main results in this
paper are evolved by Theorems 2.3 and 2.4. Generally speaking, the proof on proving normality
is achieved by using the so-called Zaclman’s lemma (the reparametrization lemma), Hurwitz’s
theorem, and Picard-type theorem as follows: if the family is not normal, then one can use
Zaclman’s lemma to produce a “nonconstant” holomorphic map on C which also satisfies a
property by Hurwitz’s theorem, and then it leads a contradiction to the Picard-type theorem.
Since a holomorphic mapping from C into PN(C) omitting 2N + 1 moving hyperplanes in
pointwise general position may not be a constant, there are some gaps for one to use the
idea in proving the normality with moving targets. In the proof of Theorem 2.3 (with moving
hyperplanes), the key idea (see [17]) is as follows: when one applies Zaclman’s lemma to produce
a nonconstant holomorphic map h from C into PN (C), h can actually omit a set of fixed
hyperplanes by Hurwitz’s theorem. Hence, the Picard-type theorems with fixed hyperplanes
could be applied to get the normality with moving hyperplanes. But in the case of continuously
moving hyperplanes in Theorems 2.5 and 2.6, some related sequences of functions are continuous
but not holomorphic, and then we need some new approach to overcome the difficulty. Here we
will employ an argument in [3] and introduce the topological degree of a continuous function
to finish our proofs of Theorem 2.5.

Theorem 2.6 is only a counterpart of Theorem 2.5 for normal holomorphic mapping. By [1,
Proposition 1.14], a holomorphic mapping f from a bounded domain Ω in Cn into PN(C) is a
normal holomorphic mapping if and only if for every sequence of holomorphic mappings ϕj(z)
from the unit disc U in C into Ω, the sequence {foϕj(z)}∞j=1 from U into PN (C) is a normal
family on U . So in many cases, a criterion for normal family will trivially imply a counterpart for
normal mapping. However, when f omits 2N+1 continuously moving hyperplanes, the sequence
{foϕj(z)}∞j=1 may not omit these continuously moving hyperplanes. Therefore, Theorem 2.5
does not tell whether {foϕj(z)}∞j=1 is a normal family. Although Theorem 2.6 cannot come
directly from Theorem 2.5, the argument in proving Theorem 2.5 will be modified to give the
proof of Theorem 2.6 in this paper.

3 Proofs of the Main Results

To prove our results, we need some preparations.

Lemma 3.1 Let F be a family of holomorphic mappings of a domain D in C
n into PN (C).

The family F is not normal on D if and only if there exist a compact set K ⊂ D and sequences
{fi} ⊂ F , {pi} ⊂ K, {ri} with ri > 0 and ri → 0+ and {ui} ⊂ Cn Euclidean unit vectors such
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that

gi(ξ) := fi(pi + riuiξ),

where ξ ∈ C satisfies pi + riuiξ ∈ D, converges uniformly on compact subsets of C to a non-
constant holomorphic mapping g of C into PN(C).

For the proof of Lemma 3.1, see [2, Theorem 3.1].

Lemma 3.2 Let f be a holomorphic mapping of a hyperbolic domain D in Cn into PN (C).
Then f is not normal on D if and only if there exist {pi} ⊂ D, {ri} with ri > 0 and ri → 0+

and {ui} ⊂ Cn Euclidean unit vectors such that

gi(ξ) := fi(pi + riuiξ), ξ ∈ C,

where lim
i→∞

ri

d(pi,Cn\D) = 0 (where d(p, q) is the Euclidean distance between p and q in Cn),
converges uniformly on compact subsets of C to a nonconstant holomorphic mapping g of C

into PN (C).

Remark 3.1 Lemma 3.2 is only a version of Lemma 3.1 for normal holomorphic mapping.
The proof of Lemma 3.2 is a slight modification of that of Theorem 3.1 in [2]. Here we correct
a mistake in [2, Corollary 3.1] (see [10, Theorem 6.4]).

Moreover, we need some facts about the topological degree of a continuous map. See [5,
Chapter 1] for a detailed discussion. In the special case which we need, [5, Theorem 3.1, p. 16]
reduces to the following (see [3, Theorem 4.4]).

Lemma 3.3 Let M be the set of all triples (f, U, y), where U is a bounded open subset of
C, f : U → C is a continuous function, and y ∈ C \ f(∂U). Then there exists exactly one
integer-valued function d : M → Z which satisfies the following conditions:

(1) d(f, U, y) = 1 for f(z) ≡ z and y ∈ U ;

(2) d(f, U, y) = d(f, U1, y) + d(f, U2, y) whenever U1 and U2 are disjoint open subsets of U

such that y �∈ f(U \ (U1 ∪ U2));

(3) d(f(t, ·), U, y(t)) is independent of t whenever f : [0, 1] × U → C and y : [0, 1] → C are
continuous such that y(t) �∈ f(t, ∂U) for every t ∈ [0, 1].

The function d : M → Z is called the local degree or topological degree, and furthermore
satisfies

(4) d(f, U, y) �= 0 implies U ∩ f−1(y) �= ∅;
(5) d(g, U, y) = d(f, U, y) whenever g : U → C is continuous such that |g(z) − f(z)| <

dist(y, f(∂U)) for each z ∈ U.

Proof of Theorem 2.5 If F is not a normal family on D, then, by Lemma 3.1, there exist
a compact set K ⊂ D and sequences {fk} ⊂ F , {pk} ⊂ K, {rk} with rk > 0 and rk → 0+ and
{uk} ⊂ Cn Euclidean unit vectors such that

gk(ξ) := fk(pk + rkukξ),



380 Z. H. Tu and S. S. Zhang

where ξ ∈ C satisfies pk + rkukξ ∈ D, converges uniformly on compact subsets of C to a
“nonconstant” holomorphic mapping g of C into PN (C). We will prove that g must be a
constant holomorphic mapping of C into PN (C), and then get a contradiction.

Let the linear form

Li(z)(Z) := ai0(z)Z0 + ai1(z)Z1 + · · · + aiN (z)ZN

define the continuously moving hyperplane Hi(z) (z ∈ D) in PN (C), where Z = (Z0, · · · , ZN )
∈ CN+1, aij(z) (j = 0, 1, · · · , N) are continuous functions on D without common zeroes, and
i = 1, · · · , 2N + 1. Since K is a compact subset of D, without loss of generality, we assume
that {pk} (⊂ K) converges to p0 (∈ K).

Let g have a reduced representation

g̃(ξ) = (g0(ξ), g1(ξ), · · · , gN (ξ))

on C. We consider the entire function

Gi(ξ) := ai0(p0)g0(ξ) + ai1(p0)g1(ξ) + · · · + aiN (p0)gN(ξ)

on C for a fixed i (i = 1, 2, · · · , 2N + 1).
( i ) If Gi(ξ) ≡ 0 on C, then g intersects Hi(p0) on C with multiplicity ∞.
(ii) If Gi(ξ) �≡ 0 on C, we will prove Gi(ξ) �= 0 everywhere on C.
In fact, suppose Gi(ξ) �≡ 0 on C and Gi(ξ0) = 0 for some ξ0 ∈ C. Choose r > 0 such that

ξ0 is the only zero point of Gi(ξ) on E := {ξ ∈ C; |ξ − ξ0| ≤ r}. Let k0 be a positive integer
such that gk(ξ) := fk(pk + rkukξ) (k ≥ k0) are well-defined on E. Thus, by the assumption,
{gk(ξ)}∞k=k0

converges uniformly to g on E.
Therefore, by the definition of convergence, ξ0 has a compact neighborhood (again denoted

by E) such that gk(ξ) := fk(pk + rkukξ) (k ≥ k0) has a reduced representation

g̃k(ξ) = (gk0(ξ), gk1(ξ), · · · , gkN (ξ))

on E and g̃k(ξ) converges to g̃(ξ) uniformly on E as k → ∞. Therefore, the continuous function

Gik(ξ) := ai0(pk + rkukξ)gk0(ξ) + · · · + aiN (pk + rkukξ)gkN (ξ)

converges to the holomorphic function Gi(ξ) uniformly on E as k → ∞.
Since Gi(ξ) is holomorphic on E, the topological degree d(Gi, E, 0) is the winding number

of Gi(∂E) about 0 (see [5, p. 30]). Hence the argument principle implies that d(Gi, E, 0) is the
number of times Gi assuming the value 0 on E. Therefore, we have d(Gi, E, 0) �= 0. By the
conclusion (5) of Lemma 3.3, we have

d(Gik, E, 0) = d(Gi, E, 0)(�= 0)

for sufficiently large k. By the conclusion (4) of Lemma 3.3, we get Gik(ξ) must take on the
value 0 on E for sufficiently large k. Since each fk omits Hi(z) on D by the assumption of
Theorem 2.5, this is impossible.
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Combining (i) and (ii), we have that g intersects Hi(p0) on C with multiplicity ∞ (i =
1, 2, · · · , 2N + 1). Since H1(z), · · · , H2N+1(z) (z ∈ D) are 2N + 1 continuously moving hy-
perplanes in PN (C) located in pointwise general position, H1(p0), · · · , H2N+1(p0) are 2N + 1
hyperplanes in PN (C) located in general position. By Nochka’s Picard-type theorem in [12], g

must be a constant mapping of C into PN (C). The proof of Theorem 2.5 is completed.

Proof of Theorem 2.6 If f is not normal on D, then, by Lemma 3.2, there exist sequences
{pk} ⊂ D, {rk} with rk > 0 and rk → 0+ and {uk} ⊂ Cn Euclidean unit vectors, with
lim

i→∞
ri

d(pi,Cn\D) = 0, such that
gk(ξ) := f(pk + rkukξ),

where ξ ∈ C satisfies pk + rkukξ ∈ D, converges uniformly on compact subsets of C to a
“nonconstant” holomorphic mapping g of C into PN (C). We will prove that g must be a
constant holomorphic mapping of C into PN (C), and then get a contradiction.

In fact, since D is compact, without loss of generality, we assume that {pk} (⊂ D) con-
verges to p0 (∈ D). By the same reasoning as that in the proof of Theorem 2.5, we can
get that g intersects Hi(p0) on C with multiplicity ∞. Since H1(z), · · · , H2N+1(z) (z ∈ D)
are 2N + 1 continuously moving hyperplanes in PN (C) located in pointwise general position,
H1(p0), · · · , H2N+1(p0) are 2N + 1 hyperplanes in PN(C) located in general position. By
Nochka’s Picard-type theorem in [12], g must be a constant mapping of C into PN (C). This
proves Theorem 2.6.

In order to prove Corollary 2.1, we need the following lemma.

Lemma 3.4 Let h be a holomorphic mapping of the ball B(R) := {z ∈ Cn : ‖z‖ <

R} into P 1(C) (0 < R ≤ +∞). Then there exist three continuously moving hyperplanes
H1(z), H2(z), H3(z) (z ∈ B(R)) in P 1(C) located in pointwise general position on B(R) such
that h omits Hj(z) (j = 1, 2, 3) on B(R).

Proof Let h have a reduced representation

h̃(z) = (h0(z), h1(z))

on the ball B(R). Define

U(z) :=
1

|h0(z)|2 + |h1(z)|2
(

h0(z) h1(z)

−h1(z) h0(z)

)
, z ∈ B(R).

Then U(z) is a unitary matrix for each z ∈ B(R). Obviously we have

h̃(z) = (|h0(z)|2 + |h1(z)|2)(1, 0)U(z), z ∈ B(R).

Take
(ak(z), bk(z)) := (1, k)U(z), z ∈ B(R)

for k = 1, 2, 3. Then (ak(z), bk(z)) is continuous on B(R) and (ak(z), bk(z)) �= (0, 0) everywhere
on B(R) (k = 1, 2, 3). Let the linear form

Lk(z)(Z0, Z1) := ak(z)Z0 + bk(z)Z1
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define the continuously moving hyperplane Hk(z) (z ∈ B(R)) in P 1(C) for k = 1, 2, 3.

Since ⎛⎝a1(z) b1(z)
a2(z) b2(z)
a3(z) b3(z)

⎞⎠ =

⎛⎝1 1
1 2
1 3

⎞⎠U(z), z ∈ B(R),

we have that H1(z), H2(z), H3(z) (z ∈ B(R)) are three continuously moving hyperplanes in
P 1(C) located in pointwise general position on B(R) and

Lk(z)(h0(z), h1(z)) = ak(z)h0(z) + bk(z)h1(z) = |h0(z)|2 + |h1(z)|2

is nowhere zero on B(R) (k = 1, 2, 3). Therefore, h omits Hk(z) (k = 1, 2, 3) on B(R). This
proves Lemma 3.4.

Remark 3.2 (1) Let f be a meromorphic function on the unit disc of C with

lim sup
r→1−

T (r, f)
log 1

1−r

= ∞,

where T (r, f) is the Nevanlinna characteristic function of f . Then f misses at most two values
in P 1(C) (see [14, Theorem VII. 18]). Therefore, the example and Picard theorem imply that
the assumption “three continuously moving hyperplanes” in Lemma 3.4 cannot be replaced
by “three fixed hyperplanes”. But it is not clear whether the assumption “three continuously
moving hyperplanes” in Lemma 3.4 can be replaced by “three moving hyperplanes”.

(2) Let g be a holomorphic mapping of the ball B(R) := {z ∈ Cn : ‖z‖ < R} into
PN (C) (0 < R ≤ +∞). In the special case which g has a reduced representation g̃(z) =
(g0(z), · · · , gN (z)) on the ball B(R) with g0(z) �= 0 everywhere on B(R). Take

ek := (0, · · · , 0, 1, 0, · · · , 0),

where ek has a 1 in the kth coordinate, and 0s elsewhere (k = 2, · · · , N + 1). Then

{g̃(z), e2, · · · , eN+1}

is a basis of CN+1 for each z ∈ B(R) and, by Gram-Schmidt orthogonalization process, we get
a unitary (N + 1) × (N + 1) matrix U(z) for each z ∈ B(R). Therefore, by the method in the
proof of Lemma 3.4, we can find 2N +1 continuously moving hyperplanes H1(z), · · · , H2N+1(z)
(z ∈ B(R)) in PN (C) located in pointwise general position on B(R) such that g omits Hj(z)
(j = 1, · · · , 2N + 1) on B(R). But for a general holomorphic mapping g of B(R) into PN (C)
with N > 1, it is not clear how to find such a unitary (N + 1) × (N + 1) matrix U(z) for each
z ∈ B(R).

Proof of Corollary 2.1 Suppose that F satisfies the condition. For a given sequence
{fi(z)}∞i=1 in F and a point z0 ∈ B(R), then by the assumption, there exist three continuously
moving hyperplanes H1(z), H2(z), H3(z) (z ∈ B(R)) in P 1(C) located in pointwise general
position on B(R) such that some subsequence {fik

(z)}∞k=1 omits Hj(z) (j = 1, 2, 3) on B(r0),
where |z0| < r0 < R (note z0 ∈ B(r0)). By Theorem 2.5, {fik

(z)}∞k=1 has a subsequence
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which converges uniformly on compact subsets of B(r0) to a holomorphic mapping of B(r0)
into P 1(C), i.e., there exists a neighborhood B(r0) of z0 in B(R) such that {fi(z)}∞i=1 has a
subsequence which converges uniformly on compact subsets of B(r0) to a holomorphic mapping
of B(r0) into P 1(C). Thus, by the usual diagonal argument, {fi(z)}∞i=1 has a subsequence
which converges uniformly on compact subsets of B(R) to a holomorphic mapping of B(R) into
P 1(C). Therefore, F is normal on B(R).

Suppose that F is normal on B(R). For a given sequence {fi(z)}∞i=1 in F , then there
exists a subsequence {fik

(z)}∞k=1 which converges uniformly on compact subsets of B(R) to a
holomorphic mapping h of B(R) into P 1(C). By Lemma 3.4, there exist three continuously
moving hyperplanes H1(z), H2(z), H3(z) (z ∈ B(R)) in P 1(C) located in pointwise general
position on B(R) such that h omits Hj(z) (j = 1, 2, 3) on B(R). For a given closed ball
B(r0) (0 < r0 < R), since {fik

(z)}∞k=1 converges uniformly on B(r0) to h, we have {fik
(z)}∞k=1

omits Hj(z) (j = 1, 2, 3) on B(r0) for sufficiently large k. Therefore, there exists k0 such that
{fik

(z)}∞k=k0
omits Hj(z) (j = 1, 2, 3) on B(r0).

The proof of Corollary 2.1 is completed.

4 Concluding Remark

In this paper, we have restricted our attention to the continuously moving hyperplanes. In
fact, it is not difficult to generalize Theorems 2.5 and 2.6 to the case of continuously moving hy-
persurfaces in PN (C) located in pointwise general position by Eremenko’s Picard-type theorem
in [6] and the argument of this paper (see [16]). We omit these considerations here.
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