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Abstract The author uses analytic methods to study the distribution of integral ideals and
Hecke Grössencharacters in algebraic number fields. Nowak’s results on the distribution
of integral ideals, and Chandrasekharan and Good’s results on the distribution of Hecke
Grössencharacters are improved.
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1 Introduction and Main Results

Let K be an algebraic number field of finite degree n over the field Q of rational numbers.
The Dedekind zeta-function ζK(s) of the field K is defined by, for σ > 1,

ζK(s) =
∑

a

1
N(a)s

, s = σ + it,

where a varies over the integral ideals of K, and N(a) denotes its norm.
For a large real variable x, denote A(x) the number of integral ideals a with norm N(a) ≤ x,

i.e.,

A(x) =
∑

N(a)≤x

1.

It was already known to Weber [1] that

A(x) = cx + O(x1− 1
n ), (1.1)

where c is a constant depending only on K, namely

c = h
2r1+r2πr2R

ω
√|Δ| .

Here r1 is the number of real conjugates and 2r2 is the number of non-real conjugates of K

(thus r1 + 2r2 = n), ω is the number of roots of unity in K, Δ is the discriminant, R is the
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so-called regulator, and h is the class number. The estimate (1.1) was improved by Landau [2]
to

A(x) = cx + O(x1− 2
n+1+ε), (1.2)

where and throughout this paper ε is a sufficiently small positive constant, and may not be the
same at each occurrence. In the opposite direction, Landau also showed that the Ω-result of
this error term is Ω(x

n−1
2n ).

No improvement of the upper bound (1.2) had been established until early 1990’s. For
quadratic fields, the problem is essentially a planar lattice point problem. Based on Huxley’s
deep works on planar lattice point problems, Huxley and Watt [3] proved

A(x) = cx + O(x
23
73 (log x)

315
146 ).

For cubic fields, Müller [4] proved

A(x) = cx + O(x
43
96+ε).

For any algebraic number field of degree n ≥ 3, Nowak [5] successfully combined Landau’s
classical method with Titchmarch’s two-dimensional exponential sum method to obtain the
best result hitherto

A(x) = cx +

{
O(x1− 2

n + 8
n(5n+2) (log x)

10
5n+2 ) for 3 ≤ n ≤ 6,

O(x1− 2
n + 3

2n2 (log x)
2
n ) for n ≥ 7.

(1.3)

In this paper, we are able to improve Nowak’s result when n is large.

Theorem 1.1 For any number field of degree n over Q, we have

A(x) = cx + O(x1− 3
n+6+ε).

Remark 1.1 When n is large, our result 1 − 3
n+6 is much better than Nowak’s result

1− 2
n + 3

2n2 . In fact, it is easy to check that our result is better than Nowak’s result when n is
greater than 9.

Our arguments can also be used to study the distribution of Hecke Grössen characters on
ideals in algebraic number field K of finite degree n over Q. More precisely, we want to study
the sum

B(x) =
∑

N(a)≤x

λ(a),

where λ is the Hecke Grössencharacter on ideals. The detailed definition of the Hecke Grössen-
character on ideals will be given in Section 4 because of its complex description.

Although, Landau never studied this problem, his method essentially gives

B(x) =
∑

N(a)≤x

λ(a) � x1− 2
n+1+ε.

In [6], Chandraseknaran and Narasimhan were able to remove the factor xε of the above result,
i.e.,

B(x) � x1− 2
n+1 . (1.4)

In this paper, we will improve Chandraseknaran and Narasimhan’s result when n is large.
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Theorem 1.2 For any number field of degree n over Q, we have

B(x) � x1− 3
n+6+ε.

Remark 1.2 Our result is better than the result of Chandraseknaran and Narasimhan
when n is greater than 9.

2 Preliminaries

To prove our results, we need the following lemmas.

Lemma 2.1 (cf. [7]) Let h(x) be the function given by

h(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x > 1,
1
2
, if x = 1,

0, if x < 1.

Then
1

2πi

∫ c+iT

c−iT

xs ds

s
= h(x) + O

( xc

T | logx|
)

for any x > 0, x �= 1, T > 0 and 0 < c ≤ 2, with an absolute implied constant. If x = 1, the
factor | log x| is omitted.

Lemma 2.2 (cf. [8]) Let K be an algebraic number field of degree n and ζK(s) the Dedekind
zeta-function. Then

ζK

(1
2

+ it
)
� t

n
6 +ε, t ≥ 1

for any fixed ε > 0.

Lemma 2.3 (cf. [9]) Let K be an algebraic number field of degree n and f an integral ideal.
Let ζK(1

2 + it, λ) be the Hecke zeta-function with Grössencharacter λ mod f (see Section 4 for
detailed definition). Then we have that for any fixed ε > 0,

ζK

(1
2

+ it, λ
)
� t

n
6 +ε, t ≥ 1.

Lemma 2.4 (cf. [7]) Let f be a function holomorphic on an open neighborhood of a strip
a ≤ σ ≤ b, for some real numbers a < b, such that |f(s)| � exp(|s|A) for some A ≥ 0 and
a ≤ σ ≤ b.

Assume that for t ∈ R,

|f(a + it)| ≤ Ma(1 + |t|)α, |f(b + it)| ≤ Mb(1 + |t|)β .

Then

|f(σ + it)| ≤ {Ma(1 + |t|)α} b−σ
b−a {Mb(1 + |t|)β} σ−a

b−a .
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3 Proof of Theorem 1.1

Let K be an algebraic number field of finite degree n over Q and C an ideal class of K. We
define the Dedekind zeta-function of class C by the relation

ζK(s, C) =
∑
a∈C

1
N(a)s

,

where the sum is taken over the non-zero integral ideals in C. Recall that the Dedekind zeta-
function is defined by

ζK(s) =
∑

a

1
N(a)s

,

where a runs over all non-zero integral ideals of K. Then clearly

ζK(s) =
∑

C

ζK(s, C).

It was already known to Hecke [2] that ζK(s, C) is a meromorphic function, with a simple pole
at s = 1, with the residue

c′ =
2r1+r2πr2R

ω
√|Δ| .

It also satisfies the functional equation

ξ(s, C) = ξ(1 − s, C̃),

where

ξ(s, C) = BsΓr1

(s

2

)
Γr2(s)ζK(s, C), B = 2−r2π−n

2
√
|Δ|.

Then the Dedekind zeta-function ζK(s) has a simple pole at s = 1 with residue hc′, where
h is the class number of K, and satisfies a similar functional equation. This shows that the
Dedekind zeta-function is a meromorphic function on C of order 1. We can also write the
Dedekind zeta-function as

ζK(s) =
∞∑

k=1

( ∑
N(a)=k

1
)
k−s :=

∞∑
k=1

akk−s. (3.1)

Chandraseknaran and Good [10] proved that ak is a multiplicative function, and satisfies

ak ≤ d(k)n, (3.2)

where d(k) is the divisor function, and n is the degree of K/Q.
By (3.1) and Lemma 2.1, we have

A(x) =
∑

N(a)≤x

1 =
∑
k≤x

ak =
1

2πi

∫ b+iT

b−iT

ζK(s)
xs

s
ds + O

(x1+ε

T

)
, (3.3)

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later. Here we have used (3.2).
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Next we move the integration to the parallel segment with Res = 1
2 +ε. By Cauchy’s residue

theorem, we have

A(x) =
1

2πi

{∫ 1
2+ε+iT

1
2+ε−iT

+
∫ b+iT

1
2+ε+iT

+
∫ 1

2+ε−iT

b−iT

}
ζK(s)

xs

s
ds

+ Ress=1ζK(s)x + O
(x1+ε

T

)
(3.4)

:= cx + J1 + J2 + J3 + O
(x1+ε

T

)
,

where

c = h
2r1+r2πr2R

ω
√|Δ| .

For J1, we have

J1 � x
1
2 +ε + x

1
2+ε

∫ T

1

∣∣∣ζK

(1
2

+ ε + it
)∣∣∣t−1dt.

Then by Lemma 2.2, we have

J1 � x
1
2+ε + x

1
2+ε log T max

T1≤T

{
T−1

1

∫ T1

T1
2

∣∣∣ζK

(1
2

+ ε + it
)∣∣∣dt

}
� x

1
2+ε + x

1
2+ε log T max

T1≤T

{
T−1

1

∫ T1

T1
2

t
n
6 +εdt

}
(3.5)

� x
1
2+ε + x

1
2+εT

n
6 +ε.

For σ > 1, we have

ζK(σ + it) � 1.

Then by Lemmas 2.2 and 2.4, we have, for 1
2 ≤ σ ≤ 1,

ζK(σ + it) � (1 + |t|)
n
6 × 1−σ

1− 1
2

+ε � (1 + |t|)n
3 (1−σ)+ε. (3.6)

Therefore for the integrals over the horizontal segments, we have

J2 + J3 �
∫ b

1
2+ε

xσ|ζK(σ + iT )|T−1dσ

� max
1
2 +ε≤σ≤b

xσT
n
3 (1−σ)+εT−1

= max
1
2+ε≤σ≤b

( x

T
n
3

)σ

T
n
3 −1+ε

� x1+ε

T
+ x

1
2+εT

n
6 −1+ε. (3.7)

From (3.4), (3.5) and (3.7), we have

A(x) = cx + O(x1+εT−1+ε) + O(x
1
2+εT

n
6 +ε). (3.8)

Taking T = x
3

n+6 in (3.8), we have

A(x) = cx + O(x1− 3
n+6+ε).

This completes the proof of Theorem 1.1.
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4 Proof of Theorem 1.2

Let K be an algebraic number field of finite degree n over Q, and α be any element in K.
For the conjugates of α, let

α(q) ∈ R (1 ≤ q ≤ r1), α(q+r2) = α(q) (r1 + 1 ≤ q ≤ r1 + r2 = r + 1).

Then a Grössencharacter for numbers to the modulus f, f an integral ideal of K, is given by

μ(α) :=
r1∏

q=1

|α(q)|−ibq

r+1∏
q=r1+1

( α(q)

|α(q)|
)2aq |α(q)|−2ibq ,

where the exponents 2aq ∈ Z (r1 + 1 ≤ q ≤ r + 1) and bq ∈ R (1 ≤ q ≤ r + 1) satisfy some
relations, which ensure μ(η) = 1 for any unit η ≡ 1 (mod f) with η(q) > 0 (1 ≤ q ≤ r1).

A totally multiplicative function λ defined on the semigroup of ideals of K is called Grössen-
character for ideals modulo f belonging to μ, if its value on principal ideals can be expressed in
the form

λ(α) = χ(α)v(α)μ(α),

where χ is a multiplicative character to the modulus f, and v is a sign character, i.e., a function
defined by

v(α) =
r1∏

q=1

( α(q)

|α(q)|
)aq

for some aq ∈ {0, 1}.

A Hecke zeta-function with Grössencharacter λ is given by analytic continuation of

ζK(s, λ) =
∑

a

λ(a)
N(a)s

, σ = Re s > 1,

where the sum is taken over all ideals of K.
If λ is not the principal character, then ξK(s, λ) = AsΓ(s, λ)ζK(s, λ) is an entire function

and obeys the functional equation

ξK(s, λ) = WξK(1 − s, λ)

with some complex number W of modulus 1, where

A = (|Δ|N(f)π−n2−2r2)
1
2 ,

Γ(s, λ) =
r+1∏
q=1

Γ
(eq

2
(s + |aq| + ibq)

)
,

with eq equaling 1 if 1 ≤ q ≤ r1, and 2 if r1 + 1 ≤ q ≤ r + 1.
We also write the Hecke zeta-function with Grössencharacter λ as

ζK(s, λ) =
∞∑

k=1

( ∑
N(a)=k

λ(a)
)
k−s :=

∞∑
k=1

ckk−s. (4.1)
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Chandraseknaran and Narasimhan [6] proved that ck are multiplicative, and satisfy

ck � kε (4.2)

for any ε > 0.
By (4.1) and Lemma 2.1, we have

B(x) =
∑

N(a)≤x

λ(a) =
∑
k≤x

ck =
1

2πi

∫ b+iT

b−iT

ζK(s, λ)
xs

s
ds + O

(x1+ε

T

)
, (4.3)

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later. Here we have used (4.2).
Next we move the integration to the parallel segment with Re s = 1

2 + ε. By Cauchy’s
residue theorem, we have

B(x) =
1

2πi

{∫ 1
2+ε+iT

1
2+ε−iT

+
∫ b+iT

1
2+ε+iT

+
∫ 1

2+ε−iT

b−iT

}
ζK(s, λ)

xs

s
ds + O

(x1+ε

T

)
:= J1 + J2 + J3 + O

(x1+ε

T

)
. (4.4)

Here we have used that ζK(s, λ) is an entire function.
For J1, we have

J1 � x
1
2+ε + x

1
2 +ε

∫ T

1

∣∣∣ζK

(1
2

+ ε + it, λ
)∣∣∣t−1dt.

Then by Lemma 2.3, we have

J1 � x
1
2+ε + x

1
2+ε log T max

T1≤T

{
T−1

1

∫ T1

T1
2

∣∣∣ζK

(1
2

+ ε + it, λ
)∣∣∣dt

}
� x

1
2+ε + x

1
2+ε log T max

T1≤T

{
T−1

1

∫ T1

T1
2

t
n
6 +εdt

}
� x

1
2+ε + x

1
2+εT

n
6 +ε. (4.5)

For σ > 1, we have

ζK(σ + it, λ) � 1.

By Lemmas 2.3 and 2.4, we have that for 1
2 ≤ σ ≤ 1,

ζK(σ + it, λ) � (1 + |t|)
n
6 × 1−σ

1− 1
2

+ε � (1 + |t|)n
3 (1−σ)+ε. (4.6)

For the integrals over the horizontal segments, we have

J2 + J3 �
∫ b

1
2+ε

xσ|ζK(σ + iT, l)|T−1dσ

� max
1
2+ε≤σ≤b

xσT
n
3 (1−σ)+εT−1

= max
1
2+ε≤σ≤b

( x

T
n
3

)σ

T
n
3 −1+ε

� x1+ε

T
+ x

1
2+εT

n
6 −1+ε. (4.7)
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From (4.4), (4.5) and (4.7), we have

B(x) � x1+εT−1+ε + x
1
2+εT

n
6 +ε. (4.8)

Taking T = x
3

n+6 in (4.8), we have

B(x) � x1− 3
n+6+ε.

This completes the proof of Theorem 1.2.
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