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Abstract The purpose of this paper is to study relations among equivariant operations
on 3-dimensional small covers. The author gets three formulas for these operations. As an
application, the Nishimura’s theorem on the construction of oriented 3-dimensional small
covers and the Lü-Yu’s theorem on the construction of all 3-dimensional small covers are
improved. Moreover, for a construction of 3-dimensional 2-torus manifolds, it is shown
that all operations can be obtained by using the equivariant surgeries.
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1 Introduction

Small covers were introduced by Davis and Januszkiewicz as a real version of quasitoric
manifolds in 1991. In their paper [2], it was shown that there are strong links between a small
cover M with the orbit projection map π : M → P and a combinatorial structure of its orbit
polytope P . For example, some topological invariants (e.g., equivariant cohomologies or Z2-
Betti numbers) of small covers π : M → P are decided by the combinatorial invariants of their
orbit polytopes P (e.g., Stanley-Reisner rings or h-vectors).

Not only topological invariants but also topological operations on M (e.g., equivariant con-
nected sums or equivariant surgeries) correspond with combinatorial operations on the orbit
polytope P (see Section 3). Making use of this correspondence, constructions of 3-dimensional
small covers M3 from basic small covers have been studied by Izmestiev, Nishimura, Lü and
Yu. In [3], Izmestiev studied the class of small covers M3 called a linear model, i.e., small
covers over 3-colored polytopes. He proved that 3-dimensional linear models are constructed
from one basic small cover (the 3-dimensional torus T 3) by using two operations � and � (see
Section 3 and Theorem 4.1). In [11], Nishimura generalized Izmestiev’s result to oriented small
covers M3, i.e., small covers over 3 or 4-colored polytopes. He proved that 3-dimensional ori-
ented small covers are constructed from two basic small covers (T 3 and the real projective space
RP (3)) by using three operations �, � and � (see Section 3 and Theorem 4.2). In [7], Lü and
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Yu proved that all 3-dimensional small covers are constructed from five basic small covers by
using six operations �, �e, �eve, �, �Δ and �C (see Section 3 and Theorem 4.3).

The operation � appearing in Theorem 4.2 is not used in Theorem 4.3. On the other hand,
the operations �e, �eve, �Δ and �C appearing in Theorem 4.3 are not used in Theorem 4.2. So
we can naturally ask what relations exist between Theorem 4.2 and Theorem 4.3. Motivated
by this question, in this paper, we prove the following theorem.

Theorem 1.1 The operations �, �e, �eve can be obtained by using �, � as follows:

(1) � = � ◦ (�Δ3);

(2) �e = � ◦ (�P 3(3));

(3) �eve = �2 ◦ (�P 3
−(3)),

where �2 denotes two times Dehn surgery � ◦ �.

Using Theorems 1.1 and 4.2, we have the following corollary.

Corollary 1.1 Each 3-dimensional oriented small cover can be (equivariantly) constructed
from the real projective space RP (3) and the 3-dimensional torus T 3 by using finite times the
following two operations: the equivariant connected sum �, and the equivariant Dehn surgery �.

Moreover, we prove the following corollary by making use of Theorem 1.1 and Theorem 4.3.

Corollary 1.2 Each 3-dimensional small cover can be (equivariantly) constructed from
RP (3), M(P 3(3), λ2) and M(P 3(3), λ3) (up to weakly Z

3
2-equivariant diffeomorphism) by using

finite times the following four operations: the equivariant connected sum �, the equivariant
Dehn surgery �, the operation �Δ and the coloring change �C, where (M(P 3(3)), λi) denotes
S1 × RP (2) with the Z

3
2-action induced by λi for i = 2, 3.

For 2-torus manifolds, the following theorem holds.

Theorem 1.2 The operations �Δ, �C can be obtained by using �, �0 and � as follows:

(1) �Δ = �0 ◦ � ◦ �;

(2) �CP 3(l) = �0 ◦ �l−2 ◦ (�P 3(l)),

where P 3(l) is the l-sided prism, l ≥ 3 and �l−2 denotes (l − 2)-times � ◦ · · · ◦ �.

The organization of this paper is as follows. In Section 2, we recall the basic facts for small
covers. In Section 3, we introduce the seven operations on 3-dimensional small covers. In
Section 4, we prove the main theorem (i.e. Theorem 1.1). As an application of Theorem 1.1,
we also prove Corollaries 1.1 and 1.2 which improve Theorems 4.2 and 4.3. In Section 5, we
remark a relation between Theorems 4.2 and 4.3. In Section 6, we introduce a new operation
and prove Theorem 1.2 for 2-torus manifolds.

2 Basics of Small Covers

In this section, we recall some basic facts for small covers (see [2] for details). We describe
the quotient additive group Z/2Z as Z2 throughout this paper.
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2.1 Definition of a small cover

First, we shall recall the terminology: 2-torus manifolds in [5, 6]. A 2-torus manifold Mn is
an n-dimensional, closed smooth manifold with a non-free effective smooth Z

n
2 -action.

Let Pn be a simple convex n-polytope, i.e., precisely n facets of Pn meet at each vertex. A
small cover is a 2-torus manifold Mn which satisfies the following two conditions:

(a) the Z
n
2 -action is locally standard, i.e., locally the same as the Z

n
2 -action on R

n;
(b) there is the orbit projection map π : Mn → Pn constant on Z

n
2 -orbits which maps every

rank k orbit (i.e., orbits which isomorphic to Z
k
2) to a point in the interior of k-dimensional

face of Pn, k = 0, · · · , n.
We can easily show that π sends Z

n
2 -fixed points in Mn to vertices of Pn by using the above

condition (b). We often call Pn an orbit polytope of M .

2.2 Characteristic function and constructions of small covers

On the other hand, for given Pn, small covers Mn with orbit projection π : Mn → Pn can
be reconstructed by using a characteristic function λ : F → Z

n
2 , where F is the set of facets

in P . In this subsection, we recall the characteristic function λ and the construction of small
covers by using P and λ.

Due to the definition of a small cover π : M → P , we have that π−1(intFn−1) consists of
(n−1)-rank orbits. In other words, the isotropy subgroup at x ∈ π−1(intFn−1) is K ⊂ Z

n
2 such

that K � Z2, where intFn−1 is an interior of a facet Fn−1. Hence, the isotropy subgroup at x

is determined by a primitive vector v ∈ Z
n
2 generating a subgroup K. In this way, we obtain a

function λ from the set of facets of P , denoted by F , to primitive vectors in Z
n
2 . We call such

λ : F → Z
n
2 a characteristic function or coloring on P . By the locally standard property, a

characteristic function satisfies the following property (called the property (�)):

if F1 ∩ · · · ∩ Fn 	= ∅ for Fi ∈ F (i = 1, · · · , n), then {λ(F1), · · · , λ(Fn)} spans Z
n
2 . (�)

Next, we mention the construction of small covers by using Pn and λ. Let Pn be a simple
convex polytope. Suppose that the characteristic function λ : F → Z

n
2 which satisfies the above

property (�) is defined on Pn. Small covers can be constructed from P and λ as follows:

Z
n
2 × P/ ∼,

where (t, x) ∼ (t′, y) is defined as x = y ∈ P and

t = t′, if x ∈ intP ;

t−1t′ ∈ 〈λ(F1), · · · , λ(Fl)〉 � Z
l
2, if x ∈ int(F1 ∩ · · · ∩ Fl),

where 〈λ(F1), · · · , λ(Fl)〉 ⊂ Z
n
2 denotes the subgroup generated by λ(Fi) for i = 1, · · · , l. We

describe such small cover as M(P, λ).
Before we show examples of small covers, we define the equivalence relation on small cov-

ers. Let (M1, Z
n
2 ) and (M2, Z

n
2 ) be small covers. We denote their Z

n
2 -actions as ϕ1 and ϕ2,

respectively. We call that (M1, Z
n
2 ) and (M2, Z

n
2 ) are weakly equivariantly homeomorphic, if

there is a homeomorphism f : M1 → M2 such that f(ϕ1(t, x)) = ϕ2(g(t), f(x)), where t ∈ Z
n
2 ,

x ∈ M1 and g : Z
n
2 → Z

n
2 is an isomorphism. If g is the identity map, we call that (M1, Z

n
2 )

and (M2, Z
n
2 ) are equivariantly homeomorphic.
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2.3 Examples

Let {e1, · · · , en} be the standard basis in Z
n
2 . We call a pair of a polytope and its charac-

teristic function (Pn, λ) a polytope with m-coloring or an m-coloring polytope, if the image of
λ is a set of m-independent vectors in Z

n
2 , i.e., λ(F) = {f1, · · · , fm}, where fj (j = 1, · · · , m)

is a linear combination of e1, · · · , en and f1, · · · , fm are linearly independent. Now Figure 1
shows two examples of characteristic functions on polytopes. The polytope of the left example
is the 3-simplex Δ3 with 4-coloring, i.e., λ0(F) = {e1, e2, e3, e1 + e2 + e3}. The polytope of the
right example is the 3-cube I3 with 3-coloring, i.e., λI

0(F) = {e1, e2, e3}.

Figure 1 The left figure is (Δ3, λ0) and the right figure is (I3, λI
0), where the bottom

e1 + e2 + e3 and e1 are the colors of facets on the back. We see that M(Δ3, λ0) = RP (3)
and M(I3, λI

0) = T 3, where RP (3) and T 3 have the standard Z
3
2-actions.

We can easily show that Δ3 has the unique characteristic function λ0 up to GL(3, Z2), i.e.,
for all characteristic function λ on Δ3, there is an element σ ∈ GL(3, Z2) such that σ ◦ λ = λ0.
In other words, small covers over Δ3 are unique up to weakly equivariant diffeomorphisms. We
can assume that there is at least one vertex v = F1 ∩ · · · ∩ Fn in P such that λ(Fi) = ei for all
i = 1, · · · , n up to GL(3, Z2) because of the property (�).

A small cover over Pn with n-coloring, i.e., λ(F) = {e1, · · · , en} (up to GL(n, Z2)) is called
a linear model. So the right example in Figure 1 is a linear model. Nakayama and Nishimura
show that a 3-dimensional small cover is orientable if and only if the characteristic function on
the orbit polytope P 3 is 3 or 4 colored in [10]. Therefore, small covers which are constructed
from the two examples in Figure 1 are orientable.

2.4 Z
3
2-invariant normal bundle over an invariant S1

Let π : M → P be a 3-dimensional small cover. In this subsection, we study the equivariant
normal bundle of the inverse of edges in P .

Fix {e1, e2, e3} as a basis (not necessary standard) of Z
3
2. We can easily show, by using

the property (�), that the characteristic functions on neighboring facets around one edge in a
3-dimensional polytope have only the following four cases in Figure 2.

Figure 2 The characteristic functions around edges
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The small cover over a 1-simplex Δ1(= I1) is identified with RP (1)(= S1). Hence, for the
small cover π : M → P , the inverse π−1(I1) of any edge I1 in P is an invariant submanifold
diffeomorphic to S1. Moreover, we know an equivariant normal bundle of π−1(I1) from a
characteristic function around I1. Let (t1, t2, t3) ∈ Z

3
2 act on ((x1, x2), (y1, y2)) ∈ S1 × D2 by

((x1, x2), (y1, y2)) �→ ((t1x1, x2), (t2y1, t3y2)). We can easily show the following proposition by
computing a characteristic function of S1 ×Z2 D2’s and using Figure 2 and the construction of
small covers in Subsection 2.2.

Proposition 2.1 Let I be an edge in P and N be a small neighborhood of I. For an in-
variant submanifold S1 = π−1(I) in the 3-dimensional small cover, the normal bundles π−1(N)
are weakly Z

3
2-equivariantly isomorphic to one of the following four disk bundles:

(1) if N satisfies (1) in Figure 2, then π−1(N) � S1 ×Z2 D(R ⊕ R);
(2) if N satisfies (2) in Figure 2, then π−1(N) � S1 ×Z2 D(R ⊕ R);
(3) if N satisfies (3) in Figure 2, then π−1(N) � S1 ×Z2 D(R ⊕ R);
(4) if N satisfies (4) in Figure 2, then π−1(N) � S1 ×Z2 D(R ⊕ R),

where the non-trivial element in Z2 acts on S1 by the antipodal involution, D(V ⊕ V ′) = D2

denotes a closed disk in V ⊕ V ′ (V and V ′ are 1-dimensional real vector spaces), and Z2 acts
on R canonically and on R trivially.

Remark 2.1 In the above Proposition 2.1, we have that S1 ×Z2 (R ⊕ R) ∼= ε1 ⊕ ε1, S1 ×Z2

(R⊕R) ∼= γ1
1 ⊕γ1

1 , S1×Z2 (R⊕R) ∼= γ1
1 ⊕ ε1 and S1×Z2 (R⊕R) ∼= ε1⊕γ1

1 , where ε1 is the trivial
bundle and γ1

1 is the canonical bundle over RP (1)(= S1). Hence, we have that the bundle (1)
(resp. (3)) is isomorphic to the bundle (2) (resp. (4)) in Proposition 2.1, by making use of the
basic facts of the vector bundle over RP (1) (see [9]). However, these four bundles are different
as the Z

3
2-equivariant bundle because their characteristic functions are different (see Figure 2).

We also remark that, up to weakly Z
3
2-equivariant diffeomorphism, (3) and (4) are the same.

3 Operations for 3-Dimensional Small Covers

Henceforth, we assume that M(P, λ) is a 3-dimensional small cover over a 3-dimensional
simple convex polytope with coloring (P, λ), and {e1, e2, e3} is a basis (not necessary standard)
of Z

3
2. In this section, we introduce operations on small covers and orbit polytopes (see also

[3, 7, 11]). From this section, we often call the set of colorings included in {f1, f2, f1 + f2} a
2-independent coloring, where fi (i = 1, 2) is a linear combination of {e1, e2, e3}.

3.1 The equivariant connected sum �

The operation in Figure 3 is called the equivariant connected sum � (from left to right) and
its inverse �−1 (from right to left). The left figure shows two neighborhoods of two same colored
vertices in (P1, λ1) and (P2, λ2). We can do the connected sum of the two polytopes at these
vertices (see [3, Definition 3]). Then we get a new polytope with coloring (P1�P2, λ), and vice
versa. Remark that P1�P2 is a combinatorial simple convex polytope by using the Steinitz’s
theorem: the graph Γ is a graph of the 3-dimensional polytope P if and only if Γ is 3-connected
and planer (see [13, Chapter 4]).

From the geometric point of view, this operation � corresponds with the equivariant con-
nected sum M(P1, λ1)�M(P2, λ2) for two fixed points in M(P1, λ1) and M(P2, λ2). We can
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easily check that M(P1, λ1)�M(P2, λ2) is a small cover and its orbit polytope with coloring is
(P1�P2, λ), i.e., M(P1, λ1)�M(P2, λ2) = M(P1�P2, λ) (see also [3, Lemma 2]).

Figure 3 The equivariant connected sum � (from left to right) and its inverse �−1 (from
right to left). Here, e3 is the coloring of the facet on the back.

3.2 The cutting edge operation �e

Before we mention the cutting edge operation, we introduce the connected sum along edges.
Let P1 and P2 be 3-dimensional, simple, convex polytopes. Suppose that the edges I1 ⊂ P1

and I2 ⊂ P2 are chosen, and a one-to-one correspondence Fi �→ F ′
i (i = 1, · · · , 4) is established,

where this correspondence is from the facets {F1, F2, F3, F4} containing I1 as I1 = F2 ∩ F3 to
the facets {F ′

1, F
′
2, F

′
3, F

′
4} containing I2 as I2 = F ′

2 ∩ F ′
3. The connected sum along edges with

respect to these data is a polytope combinatorially equivalent to the result of the gluing P1 and
P2 with small neighborhoods of I1 and I2 removed. The corresponding facets must be glued
together. The operation in Figure 4 is the special case of this operation.

The operation in Figure 4 is called the cutting edge operation �e (from left to right) and its
inverse (�e)−1 (from right to left). The left figure shows two neighborhoods of two edges whose
neighboring facets have a same coloring in (P1, λ1) and (P2, λ2), where P2 is the 3-sided prism,
i.e., P2 = P 3(3) = I1 × Δ2. We can do the connected sum along these edges, then we get a
new polytope (remark that this is combinatorially equivalent to a simple polytope because of
the Steinitz’ theorem) with coloring (P1�

eP2, λ), and vice versa (see also [7, Section 2]).

Figure 4 The cutting edge operation �e (from left to right) and its inverse (�e)−1 (from
right to left). Here, e3 is the coloring of the facet on the back, and w is an element in Z

3
2

such that the property (�) holds around vertices (see Figure 2).

From the geometric point of view, the operation �e corresponds with the following operation.
Let πi : Mi → Pi be a small cover and Ii an edge in Pi for i = 1, 2. Suppose that P2 = P 3(3)
and colorings of facets around I1 and I2 are the same as in Figure 4. Then we see that a
closed invariant tubular neighborhood N1 of π−1

1 (I1) is equivariantly isomorphic to a closed
invariant tubular neighborhood N2 of π−1

2 (I2) (see Subsection 2.4). Therefore, two boundaries
of M(P1, λ1)\intN1 and M(P2, λ2)\intN2 are equivariantly diffeomorphic, where intNi is the
interior of Ni for i = 1, 2. Hence, we can glue equivariantly these two boundaries, and get the
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Z
3
2-manifold M(P1, λ1)\intN1∪∂ M(P2, λ2)\intN2; we denote it by M(P1, λ1)�eM(P2, λ2). We

can easily show that M(P1, λ1)�eM(P2, λ2) is small cover and its orbit polytope with coloring
is (P1�

eP2, λ) (see also [7, Section 5.2]).

3.3 The cutting edge-vertex-edge operation �eve

In this paper, the operation in Figure 5 is called the cutting e-v-e operation �eve (from left to
right) and its inverse (�eve)−1 (from right to left), where e-v-e means edge-vertex-edge. Let 2-
edges in a simple polytope P be a union of two different edges with the common vertex. The left
figure shows two neighborhoods of two same colored 2-edges in (P1, λ1) and (P2, λ2), where P2 is
the truncated prism, i.e., P2 is the polytope constructed by the connected sum of the 3-simplex
Δ3 and the 3-sided prism P 3

3 : P2 = P 3
−(3) = P 3(3)�Δ3. We denote the 2-edges in (P1, λ1)

as I1 ∨ I2 and that in (P2, λ2) as I ′1 ∨ I ′2. Then we can establish a one-to-one correspondence
Fi �→ F ′

i (i = 1, · · · , 5), from the facets {F1, · · · , F5} containing I1 ∨ I2 as I1 = F2 ∩ F5 and
I2 = F3 ∩ F5 to the facets {F ′

1, · · · , F ′
5} containing I ′1 ∨ I ′2 as I ′1 = F ′

2 ∩ F ′
5 and I ′2 = F ′

3 ∩ F ′
5,

such that λ1(Fi) = λ2(F ′
i ). The cutting e-v-e operation with respect to these data is a polytope

combinatorially equivalent to the result of the gluing P1 and P2 with small neighborhoods of
I1 ∨ I2 and I ′1 ∨ I ′2 removed. The corresponding facets must be glued together. Remark that
the cutting e-v-e operation of P1 and combinatorially equivalent to a simple polytope because
of the Steinitz’s theorem. Therefore, we have the new polytope with coloring (P1�

eveP2, λ) (see
also [7, Section 2]).

Figure 5 The cutting e-v-e operation �eve (from left to right) and its inverse (�eve)−1 (from
right to left). Here, e3 is the coloring of the facet on the back, and w1, w2 are elements in
Z

3
2 such that the property (�) holds around vertices.

From the geometric point of view, this operation �eve corresponds with the following op-
eration. Let πi : Mi → Pi be a small cover and Ii an edge in Pi for i = 1, 2. Assume that
P2 = P 3

−(3) and colorings of facets around I1 ∨ I2 in P1 and I ′1 ∨ I ′2 in P2 are the same as in
Figure 5. Now we see that π−1

1 (I1 ∨ I2) ∼= S1 ∨ S1 and π−1
2 (I ′1 ∨ I ′2) ∼= S1 ∨ S1. Here, S1 ∨ S1

is the Z
3
2-invariant bouquet of two S1’s on the fixed points, i.e., S1 ∨ S1 = (S1 � S1)/v1 ∼ v2,

where S1 � S1 is a disjoint union of two S1’s and vi is a Z3
2 -fixed point in the i-th S1

for i = 1, 2. Moreover, by our assumption, there are Z
3
2-invariant closed neighborhoods

N1 and N2 of π−1
1 (I1 ∨ I2) and π−1

2 (I ′1 ∨ I ′2), respectively, and they are equivariantly dif-
feomorphic. Therefore, with a method similar to that demonstrated in Subsection 3.3, we
have the manifold M(P1, λ1)\intN1 ∪∂ M(P2, λ2)\intN2 with a Z

3
2-action; we denote it by

M(P1, λ1)�eveM(P2, λ2). We can easily show that M(P1, λ1)�eveM(P2, λ2) is a small cover and
its orbit polytope with coloring is (P1�

eveP2, λ) (see [7, Section 5.3] for detail).
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3.4 The equivariant Dehn surgery �

The operation described in Figure 6 is called the equivariant Dehn surgery � (from left
to right) and its inverse �−1 (from right to left). If a coloring around an edge is 3-coloring
(i.e., from geometric point of view, an equivariant normal bundle which is weakly equivariantly
isomorphic to S1 ×Z2 D(R⊕R) by Proposition 2.1), then we can do this operation � for (P, λ).
Remark that the obtained object by � might not be a convex polytope (see also [3]); however,
we get the coloring on this object which satisfies the property (�) around a vertex. We denote
the object obtained by the operation � as �(P, λ).

Figure 6 The equivariant Dehn surgery � (from left to right) and its inverse �−1 (from
right to left)

From the geometric point of view, this operation � corresponds with the following operation.
Let Z

3
2 act on the last three coordinates in S3 ⊂ R⊕R

3, naturally. Then there is the Z
3
2-invariant

submanifold S1 ⊂ R
2 ⊕{0}⊕ {0} (remark that there are two fixed points in this submanifold),

and we can take its tubular neighborhood S1 × D2 ∼= S1 ×Z2 D(R ⊕ R). We next consider
S3 = S1 × D2 ∪ D2 × S1, and prepare the Z

3
2-invariant part S3\S1 × D2 = D2 × S1 (remark

that there is no fixed points in this manifold). Then we remove the invariant neighborhood
S1×D2(� S1×Z2D(R⊕R)) around S1 from M(P, λ), i.e., we take M(P, λ)\S1×D2. Finally, we
glue these two invariant manifold M(P, λ)\S1×D2∪∂ S3\S1×D2. This operation is identically
the equivariant Dehn surgery of three dimensional manifold (see also [3, Definition 5] or [7,
Section 5.4]). We denote the manifold obtained by this equivariant surgery as �(M(P, λ)). If
�(P, λ) is a convex polytope, then �(M(P, λ)) = M(�(P, λ)).

3.5 The equivariant Dehn surgery �

The operation described in Figure 7 is called the equivariant Dehn surgery � (from left to
right) and its inverse �−1 (from right to left). This move is also called the bistellar 1-move
(see [1, Chapter 2]. Remark that the operation in Figure 7 corresponds with the dual of the
bistellar 1-move in [1]). If a coloring around an edge is 4-coloring as that in Figure 7 (i.e., from
geometric point of view, an equivariant normal bundle which is weakly equivariantly isomorphic
to S1×Z2 D(R⊕R) by Proposition 2.1), then we can do this operation �. We describe the object
with coloring obtained by this operation as �(P, λ). Remark that if the polytope P is prime,
i.e, P is not decomposed into connected sum of two different polytopes, then this operation �

does not destroy the convex property (see [11]). We also remark that this move is the same as
the connected sum along edges between (P, λ) and (Δ3, σ ◦ λ0) for some σ ∈ GL(3; Z2).

Now we may explain what happens from the geometric point of view. We can regard RP (3)
as S3/Z2 by the antipodal involution Z2. Then we can consider RP (3) = S1×Z2 D2∪D2×Z2 S1,
where S1×Z2 D2 � S1×Z2 D(R⊕R). We first prepare the Z

3
2-invariant part RP (3)\S1×Z2 D2 =

D2 ×Z2 S1 (remark that there are two fixed points in this manifold). Next, we remove the
invariant neighborhood S1 ×Z2 D2 around S1 from M(P, λ), i.e., we take M(P, λ)\S1 ×Z2 D2.
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Finally, we glue these two invariant manifold M(P, λ)\S1 ×Z2 D2 ∪∂ RP (3)\S1 ×Z2 D2. We
denote the manifold obtained by this operation as �(M(P, λ)). If �(P, λ) is a convex polytope,
then �(M(P, λ)) = M(�(P, λ)).

Figure 7 The equivariant surgery � (from left to right) and its inverse �−1 (from right to left)

3.6 The operation �Δ

The operation described in Figure 8 is called the operation �Δ (from left to right) and its
inverse (�Δ)−1 (from right to left). If a coloring around a triangle facet is 2-independent coloring
(i.e., their colorings can be chosen from one of {e1, e2, e1 + e2}), then we can do this operation
�Δ. Using the Steinitz’s theorem, P1�

ΔP2 is a convex, simple polytope (see also [7, Section
2.2]).

Figure 8 The operation �Δ (from left to right) and its inverse (�Δ)−1 (from right to left)

From the geometric point of view, a neighborhood of a triangle facet whose neighboring
facets are 2-independent coloring corresponds with an invariant normal bundle which is weakly
equivariantly isomorphic to RP (2) × I1 with the standard Z

3
2-action (i.e., the first Z

2
2 acts on

RP (2) and the last Z2 acts on I1 = [−1, 1] ⊂ R naturally), by computing its characteristic
function. Therefore, we have that the operation �Δ corresponds with the following opera-
tion. We first remove an open invariant neighborhood RP (2) × int I1 from M(Pi, λi), i.e.,
M(Pi, λi)\RP (2)× int I1 for i = 1, 2. Next we glue these two manifolds along boundaries, i.e.,
M(P1, λ1)\RP (2)× intI1 ∪∂ M(P2, λ2)\RP (2)× intI1; we denote it by M(P1, λ1)�ΔM(P2, λ2).
We can easily show that M(P1, λ1)�ΔM(P2, λ2) is a small cover and its orbit polytope with
coloring is (P1�

ΔP2, λ) (see also [7, Section 5.5]).

3.7 The coloring change �C

We explain the operation in Figure 9. Let F be an l-gon facet whose neighboring facets
are 2-independent coloring in (P, λ) (see the left bottom polytope in Figure 9). Then we can
construct an l-sided prism P 3(l) = F × I1 (see the left above polytope in Figure 9), which
naturally admits a coloring such that the coloring of the neighboring facets around the bottom
facet (or top facet) is the same as that of F in (P, λ). Next, we glue these two polytopes along
the facet F , and we have the new polytope; we denote this new polytope by P�CP 3(l). Remark
that two polytopes P and P�CP 3(l) are combinatorially equivalent. However, the colorings of
the l-gon facet F in P and P�CP 3(l) are different (see also [7, Section 2.3]).
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From the geometric point of view, this operation corresponds with a (geometric) operation
similar to that described in Subsection 3.6 (see [7, Section 5.6] for detail).

Figure 9 The coloring change �C (from left to right) and its inverse (�C)−1 (from right to
left), where w = e1 or e1 + e2 and the left e3 means the coloring of the bottom of prism
and the top of polytope. We also have x = e1 + e3, e2 + e3 or e1 + e2 + e3.

4 Main Theorem and Corollaries

In this section, we prove the main theorem of this paper.

4.1 Proof of the main theorem

Proof of Theorem 1.1 The relations (1)–(3) are shown by the Figures 10–12, respectively.

Figure 10 � = � ◦ (�Δ)

In these figures, the upper map from left to right means the connected sum � on two black
vertices with Δ, P 3(3) and P 3

−(3), respectively, and the right map from top to bottom means
the equivariant Dehn surgery � along the black edge. Remark that in Figure 12, we do the
operation � two times along two black edges. As the result, we get the formulas (1)–(3) in the
statement.
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Figure 11 �e = � ◦ (�P 3(3))

Figure 12 �eve = �2 ◦ (�P 3
−(3))

4.2 Constructions of oriented small covers

In this and next Subsections, we apply our main theorem (i.e., Theorem 1.1) to constructions
of the 3-dimensional small covers. First, we recall the following Izmestiev’s theorem (see [3,
Theorem 3]).

Theorem 4.1 (Izmestiev) Suppose that the characteristic function λ of a 3-dimensional
small cover M(P, λ) satisfies that λ(F) = {e1, e2, e3}, i.e., M(P, λ) is a 3-dimensional lin-
ear model. Then M(P, λ) can be (equivariantly) constructed from the 3-dimensional torus T 3

by using finite times the following two operations: the equivariant connected sum �, and the
equivariant Dehn surgery �.

Nishimura generalizes the above theorem to the following theorem (see [11, Theorem 1.10]).

Theorem 4.2 (Nishimura) Suppose that the characteristic function λ of a 3-dimensional
small cover M(P, λ) satisfies that λ(F) ⊂ {e1, e2, e3, e1 + e2 + e3}, i.e., M(P, λ) is an oriented
small cover. Then M(P, λ) can be (equivariantly) constructed from T 3 and the 3-dimensional
real projective space RP (3) by using finite times the following three operations: the equivariant
connected sum �, and the equivariant Dehn surgeries � and �.

By Subsection 2.3, we see that the small cover over Δ3 is RP (3). Therefore Corollary 1.1
can be proved by applying Theorem 1.1(1) to the above Nishimura’s theorem.
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4.3 Constructions of all small covers

For all 3-dimensional small covers, the following Lü-Yu’s theorem are known (see [7, Theo-
rems 1.1 and 1.2]).

Theorem 4.3 (Lü-Yu) Each 3-dimensional small cover can be (equivariantly) constructed
from RP (3) and S1×RP (2) with certain four type Z

3
2-actions (up to weakly equivariant diffeomor-

phism) by using the following six operations: �, �e, �eve, �, �Δ and �C.

Remark 4.1 In this paper, we abuse the notations of the operations on small covers and
on polytopes.

We shall explain the four types Z
3
2-actions on S1 × RP (2) in Theorem 4.3 (see [7, Lemmas

4.2 and 4.3] for detail). The manifold S1 ×RP (2) is the small cover over the three sided prism
P 3(3) = I1 × Δ2. The four types Z

3
2-actions are defined by using the coloring in Figure 13.

We call them (from left-hand side) M(P 3(3), λ1), M(P 3(3), λ2), M(P 3(3), λ3), M(P 3(3), λ4),
respectively.

Figure 13 Basic four Z
3
2-actions on S1×RP (2) in Theorem 4.3; M(P 3(3), λ1), M(P 3(3), λ2),

M(P 3(3), λ3), M(P 3(3), λ4). Here, e2 + e3 is the coloring of facets on the back.

Remark that colorings of neighboring facets of triangle facets in Figure 13 are 2-independent.
Therefore, we can do �Δ (see Subsection 3.6) for these manifolds as Figure 14.

Figure 14 M(P, λ1) and M(P, σ ◦ λ4) can be constructed from M(P, λ2) and M(P, λ3) by
using �Δ. This figure shows that we do �Δ along black facets.
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In Figure 14, we remark that the middle two P 3(3)’s are equivariantly diffeomorphic to
M(P, λ2) because there is the combinatorially equivalent to the left-second figure (i.e., M(P 3(3),
λ2)) in Figure 13 which preserves the colorings (from the geometric point of view, this equiva-
lence on polytopes corresponds with the equivariant diffeomorphisms on small covers). We can
easily show that the coloring of the right bottom figure in Figure 14 is the same as the right
figure (i.e., M(P 3(3), λ4)) in Figure 13 up to GL(3, Z2)-equivariant isomorphism, by using the
following σ ∈ GL(3, Z2):

σ =

⎛
⎝

1 0 0
1 1 0
0 0 1

⎞
⎠ .

By the above argument, we have the following lemma.

Lemma 4.1 For the basic small covers in Theorem 4.3 (see Figure 13), the following rela-
tions hold:

(P 3(3), λ1) = (P 3(3), λ2)�Δ(P 3(3), λ2),

(P 3(3), σ ◦ λ4) = (P 3(3), λ2)�Δ(P 3(3), λ3).

Next we remark that the operation �e (resp. �eve) itself decomposed as the connected sum
of P 3(3) (resp. P 3

−(3)) with Dehn surgery. However, the 3-sided prism with coloring (P 3(3), λ)
which is not included in Figure 13 can be constructed as (Δ, λ0)�(Δ, λ0) by using the argument
in [7, Section 3]. Moreover, all truncated prisms with colorings (P 3−(3), λ) can be constructed
as (Δ, λ0)�(P 3(3), λ) by using the argument in [7, Section 3(a)]. Hence, we get Corollary 1.2
by applying Theorem 1.1(2), (3) and Lemma 4.1 to Theorem 4.3.

5 Relation between the Nishimura’s Theorem
and the Lü-Yu’s Theorem

In this section, we give the relations among the Izmestiev’s, Nishimura’s and Lü-Yu’s theo-
rems.

5.1 Relation of Corollary 1.1 to the operation �C

In this subsection, we apply the operation �C to Corollary 1.1 for oriented small covers.
The torus with standard Z

3
2-action T 3 = M(I3, λI

0) can be constructed from (Δ3, λ0) by
using �, � and �C as Figure 15.

In Figure 15, the first figure shows the connected sum on the black vertices, then we get
((Δ3, λ0))�(Δ3, λ0) = (P 3(3), λ). The second figure shows the connected sum along the black
edges: this operation is identical with �e = � ◦ (�P 3(3)), and we get (P 3(3), λ)�e(P 3(3), λ) =
(I3, λ′). In (I3, λ′) (the second right figure I3), the colorings around the square facets with
coloring w are 2-independent; therefore, we can do �C along this facets. The third figure
shows this coloring change, i.e., the coloring change along the black square facets and we get
(I3, λ′)�C(I3, λ′) = (I3, λI

0).
Therefore, we have the following proposition by applying the above argument to Corollary

1.1.
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Proposition 5.1 Each 3-dimensional oriented small cover can be (equivariantly) constructed
from RP (3) by using finite times the following three operations: the equivariant connected sum
�, the equivariant Dehn surgery �, and the coloring change �C.

Figure 15 (I3, λI
0) can be constructed from (Δ3, λ0) by using �, � and �C, where w =

e1 + e2 + e3.

5.2 Problem

The above Proposition 5.1 shows that Corollary 1.2 is not the (direct) generalization of
Corollary 1.1. Now we may give the relations among Theorem 4.1, Corollaries 1.1, 1.2 and
Proposition 5.1 as the following list.

Table 1 Relations among Theorem 4.1, Corollaries 1.1, 1.2 and Proposition 5.1

Linear model Oriented 3-dimensional small covers
Izmestiev (Theorem 4.1) Nishimura (Corollary 1.1) ?

Proposition 5.1 Lü-Yu (Corollary 1.2)

Here, the column in the list means the category of 3-dimensional small covers, and this
list means that Corollary 1.1 is the generalization of Theorem 4.1 and Corollary 1.2 is the
generalization of Proposition 5.1. So we can ask the following problem.

Problem 5.1 What is the generalization of Corollary 1.1 for 3-dimensional small covers?
In other wards, what are basic small covers which construct all 3-dimensional small covers by
using operations �, � (or �Δ)?

6 On 2-Torus Manifolds

In this final section, we shall give some remark for 2-torus manifolds. A 2-torus manifold
Mn is an n-dimensional, closed smooth manifold with a non-free effective smooth Z

n
2 -action
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(see Subsection 2.1). In this paper, we are interested in the n = 3 case. First we give some
basic facts for 2-torus manifolds (see [5, 6] for detail).

6.1 Basics of 2-torus manifolds

Let π : M3 → M3/Z
3
2 be the orbit projection of the 2-torus manifold M . We see that

the orbit space M3/Z
3
2 is a 3-dimensional closed space. If Z

3
2-action is locally standard, then

the orbit space is a 3-dimensional manifold with corner. Moreover, we can define the cell
decomposition on ∂M3/Z

3
2 (we call it the orbit cell decomposition) induced from the information

of Z
3
2-orbits as follows. The information of fixed points as 0-cells (vertices), the information of

rank one-orbits (i.e., orbits Z
3
2/K � Z2) as 1-cells (edges), the information of rank two-orbits

(i.e., orbits Z
3
2/K � Z

2
2) as 2-cell (facets). We remark that the free orbits correspond with

the interior of M3/Z
3
2. With a method similar to that defines the characteristic function on

the small cover, we can define the characteristic function from facets in ∂M3/Z
3
2 to Z

3
2. For

example, Z
3
2 acts canonically on the last three coordinates of S3 ⊂ R⊕R

3. Then S3 is a 2-torus
manifold (not a small cover), and its orbit space with characteristic function is as that in Figure
16 by computing isotropy subgroups on rank two-orbits.

Figure 16 The orbit cell decomposition on S3/Z
3
2. We describe this orbit cell decomposition

with coloring as (D3, ρ).

Figure 16 shows that S3/Z
3
2 becomes the 3-disk D3, and its orbit cell decomposition is as

follows: two vertices, three edges, and three facets. We remark that, in Figure 16, e3 is the
coloring of the facet on the back.

We denote the orbit cell decomposition with coloring in Figure 16 as (D3, ρ).

6.2 The equivariant surgery �0

For the 2-torus manifold, we can define the new operation �0 introduced from the (geometric)
equivariant surgery. First, we explain this operation �0.

The equivariant surgery �0 is the operation described in Figure 17. As we see in Figure
16, generally in the orbit cell decomposition of 2-torus manifolds, there is the multi-edge (i.e.,
two vertices connected by more than two edges, also see the left figures in Figure 17). The left
figures in Figure 17 show the neighborhood around the multi-edge with coloring in the orbit
cell decomposition (Q, λ) and (D3, ρ). First we take two facets D1 ⊂ Q and D2 ⊂ D3 as the
facets surrounded by black edges in Figure 17. The equivariant surgery �0 is the gluing Q and
D3 with small neighborhoods of D1 and D2 removed. As a result, we get the new orbit cell
decomposition with coloring (Q′, λ′) as in the right figure in Figure 17, and vice versa. (Q′, λ′)
is denoted by �0(Q, λ).
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Figure 17 The equivariant surgery �0 (from left to right) and its inverse (�0)
−1 (from right

to left)

Let D be a facet in the orbit cell decomposition Q whose boundary consists of 2 vertices
and 2 edges, and π : M → Q be an orbit projection. We can easily show that this facet D

corresponds with the invariant submanifold diffeomorphic to S2 in M , that is, π−1(D) = S2.
So we can understand the geometric meaning of the operation �0 as follows. Because Z

3
2 acts

on the last three coordinates of S3 ⊂ R ⊕ R
3, there is the Z

3
2-invariant submanifold S2 ⊂

R
3 ⊕ {0} (remark that there are two fixed points in this submanifold). Then its invariant,

closed, tubular neighborhood is equivariantly isomorphic to S2 × D1 with the standard Z
3
2-

action, where D1 = I1. We next consider S3 = S2 × D1 ∪ D3 × S0, and prepare the Z
3
2-

invariant part S3\S2×D1 = D3 ×S0 (remark that there is no fixed points in this disconnected
manifold). Next we remove the invariant neighborhood S2 ×D1 around S2 = π−1(D) from the
2-torus manifold M , i.e., we take M\S2 × D1. Finally we glue these two invariant manifold
M\S2×D1∪∂ S3\S2×D1. This operation is identically the equivariant surgery of 3-dimensional
manifold which is different form the equivariant surgery explained in Subsection 3.4.

6.3 Remark on the operations �Δ and �C

Because we can easily regard the equivariant connected sum as the equivariant surgery,
the three type different operations �, � and �0 in this paper are introduced by the (geometric)
equivariant surgeries. Finally in this paper, we prove that �Δ and �C can be constructed by
these equivariant surgeries, i.e., we prove Theorem 1.2.

Proof of Theorem 1.2 These relations (1) and (2) are shown by Figures 18 and 19,
respectively.

Figure 18 �Δ = �0 ◦ � ◦ �

In Figure 18, the figure on the top from left to right means the connected sum � on two
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black vertices. Next we can do � along the black edge, then we have the 2-gon facet as in the left
bottom figure. Finally, we can do �0 for this 2-gon facet. As the result, we have the operation
�Δ = �0 ◦ � ◦ �.

Figure 19 �CP 3(l) = �0 ◦ �l−2 ◦ �

In Figure 19, we explain the l = 5 case only. However, we can easily apply the same
argument for all l ≥ 3. In Figure 19, the first map means the connected sum � on two black
vertices. Then we have the (2l − 2)-gon facet (in Figure 19, this facet is the 8-gon). Next we
can do � along the black edge as in the second figure, then, this facet becomes the (2l − 4)-gon
facet. Iterating this argument ((l − 2)-times), finally, we have the 2-gon facet. Then we can do
�0 along this 2-gon facet. As the result, we have the operation �CP 3(l) = �0 ◦ �l−2 ◦ �.
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[6] Lü, Z. and Masuda, M., Equivariant classification of 2-torus manifolds, Colloq. Math., 115, 2009, 171–188.
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