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Abstract The authors establish a general monotonicity formula for the following elliptic
system

Δui + fi(x, u1, · · · , um) = 0 in Ω,

where Ω ⊂⊂ R
n is a regular domain, (fi(x, u1, · · · , um)) = ∇�uF (x, �u), F (x, �u) is a given

smooth function of x ∈ R
n and �u = (u1, · · · , um) ∈ R

m. The system comes from under-
standing the stationary case of Ginzburg-Landau model. A new monotonicity formula is
also set up for the following parabolic system

∂tui − Δui − fi(x, u1, · · · , um) = 0 in (t1, t2) × R
n,

where t1 < t2 are two constants, (fi(x, �u)) is given as above. The new monotonicity
formulae are focused more attention on the monotonicity of nonlinear terms. The new point
of the results is that an index β is introduced to measure the monotonicity of the nonlinear
terms in the problems. The index β in the study of monotonicity formulae is useful in
understanding the behavior of blow-up sequences of solutions. Another new feature is that
the previous monotonicity formulae are extended to nonhomogeneous nonlinearities. As
applications, the Ginzburg-Landau model and some different generalizations to the free
boundary problems are studied.
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1 Introduction

In this paper, we will establish a general monotonicity formula for the following elliptic
system:

Δui + fi(x, u1, · · · , um) = 0 in Ω, (1.1)

where Ω ⊂ Rn is a regular domain, (fi(x, u1, · · · , um)) = ∇�uF (x, �u), F (x, �u) is a given smooth
function of x ∈ Rn and �u = (u1, · · · , um) (the precise smoothness will be given in theorems).
Here we assume that the solution �u ∈ H1

loc(Ω) satisfies (1.1) in the variational sense to be defined
in Section 2. We remark that smooth solutions to (1.1) satisfy (1.1) in the variational sense
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naturally. Our motivation for studying the system (1.1) comes from understanding the station-
ary case of Ginzburg-Landau model (see [3, 20, 21]). We shall also establish a monotonicity
formula for regular solutions of the following parabolic system:

∂tui −Δui − fi(x, u1, · · · , um) = 0 in (t1, t2)× R
n, (1.2)

where t1 < t2 are two constants, (fi(x, �u)) is given as above. One new point in our monotonicity
formula is that we introduce an index β, which measures the monotonicity of the nonlinear
term �f = (f1, · · · , fm). This index β also gives us the rate of scaled sequence of the blow-up
process for implied solutions. Another new feature is that we extend the previous monotonicity
formulae to nonhomogeneous nonlinearities. Our main results are Theorems 2.1, 2.2, 3.1 and
3.2 below. As applications of our new monotonicity formulae, we study the Ginzburg-Landau
model and some different generalizations to the free boundary problems. The applications are
in Propositions 4.1–4.5 below. Our work is motivated from the monotonicity formulae given by
G. S. Weiss [29–32] and the monotonicity formula given by Alt, Caffarelli and Friedman [2] for
free boundary problems. For more background related to our work, one may see the appendix
in Section 5.

Before we state the monotonicity formulae, we introduce some notations and concepts. As
in [32], we denote by x ·y the Euclidean inner product in R

n×R
n, by |x| the Euclidean norm in

Rn, by Br(x0) = {x ∈ Rn | |x−x0| < r} the ball of center x0 and radius r, by Qr(x0, t0) = (t0−
r2, t0 + r2)×Br(x0) the cylinder of radius r and height 2r2, by T−

r (t0) = (t0−4r2, t0− r2)×Rn

the horizontal layer from t0 − 4r2 to t0 − r2, and by T+
r (t0) = (t0 + r2, t0 + 4r2) × Rn the

horizontal layer from t0 + r2 to t0 + 4r2. We write T−
r (T ) and T+

r (T ) as T−
r and T+

r for
notation convenience. We use

G(t0,x0)(t, x) = 4π(t0 − t)|4π(t0 − t)|−n
2 −1 exp

(
− |x− x0|2

4(t0 − t)
)

to denote the backward heat kernel, defined in ((−∞, t0) ∪ (t0,+∞)) × Rn. Furthermore, by
ν we will always refer to the outer unit normal on a given surface. We mean by H1

loc(Ω) and
H1(QT ) the usual local Sobolev space and parabolic Sobolev spaces respectively as defined in
[18].

Roughly speaking, our new monotonicity formulae for (1.1) and (1.2) are as follows. We
will show that for the variational solution �u to (1.1), the function

Φx0(r) := r−n−2β+2

∫
Br(x0)

(|∇�u|2 − 2F (x, �u))− βr−n−2β+1

∫
∂Br(x0)

�u2

is increasing in r ∈ (0, δ) if ∀ r ∈ (0, δ),∫
Br(x0)

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0)) ≥ 0, (1.3)

and for the variational solution �u to (1.2), the functions

Ψ−(r) := r−2β

∫
T−

r

(|∇�u|2 − 2F (x, �u))G(T,x0) − β

2
r−2β

∫
T−

r

1
T − t�u

2G(T,x0)

and
Ψ+(r) := r−2β

∫
T+

r

(|∇�u|2 − 2F (x, �u))G(T,x0) − β

2
r−2β

∫
T+

r

1
T − t�u

2G(T,x0)
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are increasing in r ∈ (0, δ) provided for the index β ∈ R and the radial variable ∀ r ∈ (0, δ)
there hold ∫

T−
r

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0))G(T,x0) ≥ 0 (1.4)

and ∫
T+

r

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x − x0))G(T,x0) ≥ 0. (1.5)

We remark that the conditions (1.3)–(1.5) are automatically true if the weaker point-wise con-
dition is satisfied:

2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x − x0) ≥ 0, ∀x ∈ Ω. (1.6)

We will give illustration by examples in Section 4. From the expression (1.6) above, it is clear
that the number β measures the monotonicity of the nonlinear terms, and our new monotonicity
formulae are focused more attention on the monotonicity of nonlinear nonhomogeneous terms.
Our method can also be used to study elliptic and parabolic systems with variable coefficients.

The remaining part of the paper is organized as follows. In Section 2, we establish the
monotonicity formula for (1.1) and characterize the scaled blow-up sequences. In Section 3, we
establish the monotonicity formula for (1.2) and characterize the scaled blow-up sequences. In
Section 4, we state the interesting applications of our results in Section 2 and Section 3 to the
Ginzburg-Landau model and various extensions of the free-boundary problems considered by
other authors (see, for examples, [29, 32]).

2 Monotonicity Formula for the Elliptic System

Consider the elliptic system

Δui + fi(x, u1, · · · , um) = 0, i = 1, · · · ,m, in Ω, (2.1)

where Ω ⊂⊂ Rn and (fi(x, �u)) is the gradient with respect to the �u = (u1, · · · , um) variables of
a given smooth function F (x, �u). In order to define the variational solution of (2.1), we need
some notations. We denote

Dφ =

⎛
⎜⎝
∂1φ1 · · · ∂nφ1

...
...

∂1φn · · · ∂nφn

⎞
⎟⎠

for φ = (φ1, · · · , φn) ∈ H1
loc(R

n; Rn). Denote �u2 =
m∑

i=1

u2
i , �u�f(�u) =

m∑
i=1

uifi(�u), |∇�u|2 =
m∑

i=1

|∇ui|2, ∇�u · x = (∇u1 · x, · · · ,∇um ·x), (∇�u · v)2 =
m∑

i=1

(∇ui · v)2, �u∇�u · v =
m∑

i=1

ui∇ui · v for

any vector v, and ∇�uDφ∇�u =
m∑

i=1

∇uiDφ∇ui. We say that �u ∈ H1
loc(Ω) if every component

ui ∈ H1
loc(Ω), i = 1, · · · ,m.

Definition 2.1 �u is called a solution to (2.1) in the sense of variations, or simply a varia-
tional solution, if the following three conditions are satisfied simultaneously:

(1) ui ∈ H1
loc(Ω), uifi(x, �u), F (x, �u),∇xF (x, �u) ∈ L1

loc(Ω);
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(2) �u satisfies (2.1) in the sense of distributions;
(3) the first variation with respect to domain variables of the functional

G(�v) =
∫

Ω

(|∇�v|2 − 2F (x,�v))

vanishes at �v = �u, i.e.,

0 = − d
dε
G(�u(x+ εφ(x)))

∣∣∣
ε=0

=
∫

Ω

((|∇�u|2 − 2F (x, �u)) div φ− 2∇�uDφ∇�u − 2∇xF (x, �u) · φ)

for any φ ∈ C1
0 (Ω; Rn).

The main result in this section reads as follows.

Theorem 2.1 (Monotonicity Formula) Assume that Bδ(x0) ⊂⊂ Ω and �u is a solution to
(2.1) in the sense of variations. If there exists a real number β ∈ R such that ∀ r ∈ (0, δ),

∫
Br(x0)

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0)) ≥ 0,

then the function

Φx0(r) := r−n−2β+2

∫
Br(x0)

(|∇�u|2 − 2F (x, �u))− βr−n−2β+1

∫
∂Br(x0)

�u2,

defined in (0, δ), satisfies the monotonicity formula

Φx0(σ) − Φx0(ρ) = 2
∫ σ

ρ

r−n−2β+1

∫
Br(x0)

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x − x0))

+ 2
∫ σ

ρ

r−n−2β+2

∫
∂Br(x0)

(
∇�u · ν − β�u

r

)2

≥ 0

for all 0 < ρ < σ < δ, where

(
∇�u · ν − β�u

r

)2

=
m∑

i=1

(
∇ui · ν − βui

r

)2

.

Remark 2.1 The condition involving the integral term that
∫

Br(x0)

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0)) ≥ 0, ∀ r ∈ (0, δ)

is not convenient to verify sometimes. We therefore prefer to state a stronger point-wise condi-
tion

2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0) ≥ 0, ∀x ∈ Bδ(x0).

Proof of Theorem 2.1 We may assume that x0 = 0 by a translation. We take after
approximation φε(x) = ηε(x)x as test function in Definition 2.1(3) for small positive ε with
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ηε(x)=max(0,min(1, r−|x|
ε )), and obtain

0 =
∫

(n(|∇�u|2 − 2F (x, �u))ηε − 2|∇�u|2ηε − 2∇xF (x, �u) · ηε(x)x)

+
∫

((|∇�u|2 − 2F (x, �u))∇ηε · x− 2∇�u · x∇�u · ∇ηε)

→
∫

Br(0)

(n(|∇�u|2 − 2F (x, �u))− 2|∇�u|2 − 2∇xF (x, �u) · x)

− r
∫

∂Br(0)

(|∇�u|2 − 2F (x, �u)− 2(∇�u · ν)2)

for a.e. r ∈ (0, δ) as ε→ 0, i.e.,

0 = (n− 2)
∫

Br(0)

(|∇�u|2 − 2F (x, �u))− 4
∫

Br(0)

F (x, �u)

− 2
∫

Br(0)

∇xF (x, �u) · x− r
∫

∂Br(0)

(|∇�u|2 − 2F (x, �u)− 2(∇�u · ν)2). (2.2)

By Definition 2.1(2), we can apply mollifier ui,ρ to (2.1) for every ui (i = 1, · · · ,m), where
ρ > 0, and get

−Δui,ρ = (fi(x, u1, · · · , um))ρ.

Multiplying this equation by ui and integrating over Br(0), then sending ρ→ 0+, we can easily
derive the identity ∫

Br(0)

|∇�u|2 =
∫

∂Br(0)

�u∇�u · ν +
∫

Br(0)

�u�f(x, �u) (2.3)

for a.e. r ∈ (0, δ). Next, multiplying (2.2) by −r−n−2β+1 and using (2.3), we obtain

0 = −(n− 2)r−n−2β+1

∫
Br(0)

(|∇�u|2 − 2F (x, �u)) + 4r−n−2β+1

∫
Br(0)

F (x, �u)

+ 2r−n−2β+1

∫
Br(0)

∇xF (x, �u) · x+ r−n−2β+2

∫
∂Br(0)

(|∇�u|2 − 2F (x, �u)− 2(∇�u · ν)2)

= (−n− 2β + 2)r−n−2β+1

∫
Br(0)

(|∇�u|2 − 2F (x, �u))− 4(β − 1)r−n−2β+1

∫
Br(0)

F (x, �u)

+ 2r−n−2β+1

∫
Br(0)

∇xF (x, �u) · x+ 2βr−n−2β+1
(∫

∂Br(0)

�u∇�u · ν +
∫

Br(0)

�u�f(x, �u)
)

+ r−n−2β+2

∫
∂Br(0)

(|∇�u|2 − 2F (x, �u))− 2r−n−2β+2

∫
∂Br(0)

(∇�u · ν)2.

That is,

(−n− 2β + 2)r−n−2β+1

∫
Br(0)

(|∇�u|2 − 2F (x, �u)) + r−n−2β+2

∫
∂Br(0)

(|∇�u|2 − 2F (x, �u))

=
(
2r−n−2β+2

∫
∂Br(0)

(∇�u · ν)2 − 2βr−n−2β+1

∫
∂Br(0)

�u∇�u · ν
)

+ 2r−n−2β+1

∫
Br(0)

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · x)

:= I1 + I2. (2.4)
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We point out that I1 in the right-hand side of the above equality is just equal to

∂

∂r

(
βr−n−2β+1

∫
∂Br(0)

�u2
)

+ 2r−n−2β+2

∫
∂Br(0)

(
∇�u · ν − β�u

r

)2

. (2.5)

This can be easily seen from the next computation

∂

∂r

(
βr−n−2β+1

∫
∂Br(0)

�u2
)

=
∂

∂r

(
βr−2β

∫
∂B1(0)

�u2(ry)
)

= −2β2r−2β−1

∫
∂B1(0)

�u2(ry) + 2βr−2β

∫
∂B1(0)

�u(ry)∇�u(ry) · y

= −2β2r−n−2β

∫
∂Br(0)

�u2 + 2βr−n−2β+1

∫
∂Br(0)

�u∇�u · ν.

Inserting (2.5) into (2.4), we then achieve

(−n− 2β + 2)r−n−2β+1

∫
Br(0)

(|∇�u|2 − 2F (x, �u))

+ r−n−2β+2

∫
∂Br(0)

(|∇�u|2 − 2F (x, �u))− ∂

∂r

(
βr−n−2β+1

∫
∂Br(0)

�u2
)

= 2r−n−2β+2

∫
∂Br(0)

(
∇�u · ν − β�u

r

)2

+ 2r−n−2β+1

∫
Br(0)

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · x),

namely,

d
dr

Φ0(r) = 2r−n−2β+2

∫
∂Br(0)

(
∇�u · ν − β�u

r

)2

+ 2r−n−2β+1

∫
Br(0)

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · x)

≥ 0 (2.6)

for a.e. r ∈ (0, δ). Integrating (2.6) from ρ to σ, we can establish the monotonicity formula in
the theorem.

We now consider the blow-up analysis for variational solutions to (2.1). Let �u be a function
in Bδ(x0). For a given sequence 0 < ρk → 0, we define the scaled sequence as

�uk(x) := ρ−β
k �u(x0 + ρkx).

We want to acquire some information on the limit’s behavior when �u is a variational solution
to the nonlinear elliptic system (2.1). In fact, we have the following theorem.

Theorem 2.2 (Blow-up) Suppose that 0 < ρk → 0 as k → ∞, and �u is a variational
solution to (2.1) defined in Bδ(x0) such that the conclusions in Theorem 2.1 hold true. Suppose
in addition that �u satisfies at x0 the growth estimate

sup
r∈(0,δ)

max
{
βr−n−2β+1

∫
∂Br(x0)

�u2, r−n−2β+2

∫
Br(x0)

F (x, �u)
}
< +∞.
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Then for any open domain D ⊂⊂ Rn and k ≥ k(D), the scaled sequence

�uk(x) = ρ−β
k �u(x0 + ρkx)

is bounded in H1(D) and any weak H1-limit with respect to a subsequence k → ∞ is homoge-
neous of degree β.

Proof First, we can get for 0 < R <∞ that

Φx0(ρkR) = (ρkR)−n−2β+2

∫
BρkR(x0)

|∇�u|2 − 2(ρkR)−n−2β+2

∫
BρkR(x0)

F (x, �u)

− β(ρkR)−n−2β+1

∫
∂BρkR(x0)

�u2

= R−n−2β+2

∫
BR(0)

|∇�uk|2 − 2(ρkR)−n−2β+2

∫
BρkR(x0)

F (x, �u)

− β(ρkR)−n−2β+1

∫
∂BρkR(x0)

�u2,

and we know that �uk is bounded in H1(D) for k ≥ k(D) by the monotonicity formula and the
assumed growth estimate.

Then by the results of Theorem 2.1, we know that Φ is nondecreasing and bounded in (0, δ),
which means that Φ has a right limit at 0, and for 0 < R < S,

0← Φx0(ρkS)− Φx0(ρkR)

= 2
∫ ρkS

ρkR

r−n−2β+1

∫
Br(x0)

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0))

+ 2
∫ S

R

r−n−2β+2

∫
∂Br(0)

(
∇ �uk · ν − β �uk

r

)2

≥ 0,

namely,

0← Φx0(ρkS)− Φx0(ρkR)

≥ 2
∫ S

R

r−n−2β+2

∫
∂Br(0)

(
∇ �uk · ν − β �uk

r

)2

= 2
∫

BS(0)\BR(0)

|x|−n−2β(∇ �uk(x) · x− β �uk(x))2, as k →∞.

For any subsequence k → ∞ such that �uk ⇀ �u0 weakly in H1
loc(R

n), using the lower semi-
continuity of the L2-norm with respect to weak convergence, we obtain

∇�u0(x) · x− β�u0(x) = 0

a.e. in R
n, which implies easily that �u0 is homogeneous of degree β.

Remark 2.2 One new point is that the index β may be arbitrarily chosen adapted to
different situations. In the previous papers [29–32], the sequence studied in Theorem 2.2 with
β > 0 is called the blow-up sequence. Another extension to the former work in Theorem 2.2
is that the nonlinearity F (x, �u) could be nonhomogeneous, which could also lead to a blow-up
limit which is homogeneous of β.
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3 Monotonicity Formula for a Parabolic System

Parallel to Section 2, we consider the parabolic system

∂ui

∂t
−Δui = fi(x, u1, · · · , um), i = 1, · · · ,m, in (t1, t2)× R

n, (3.1)

where t1, t2 are two constants. For convenience, we need some notations (see [32]). Con-
sidering vector functions �u ∈ H1

loc((0, T ) × Rn; Rm) and ψ ∈ H1
loc((0, T ) × Rn; Rn+1), we

denote by ∂t�u = ∂0�u the time derivative, by ∇�u = (∂1�u, · · · , ∂n�u) the space gradient, by

∇t,x�u = (∂0�u, ∂1�u, · · · , ∂n�u) the time-space gradient, by divt,xψ =
n∑

k=0

∂kψk the time-space

divergence, and by

Dψ =

⎛
⎜⎜⎜⎝
∂1ψ0 · · · ∂nψ0

∂1ψ1 · · · ∂nψ1

...
...

∂1ψn · · · ∂nψn

⎞
⎟⎟⎟⎠

the space Jacobian. Moreover, �u∂t�u =
m∑

i=1

ui∂tui, (∇�u ·x+2t∂t�u−β�u)2 =
m∑

i=1

(∇ui ·x+2t∂tui−
βui)2. We give the definition of a variational solution to (3.1).

Definition 3.1 We call �u a variational solution to (3.1) if �u satisfies:
(1) �u ∈ H1

loc((t1, t2) × Rn), and uifi(x, �u), F (x, �u),∇xF (x, �u) ∈ L1
loc((t1, t2) × Rn) for

i = 1, · · · ,m;
(2) �u satisfied (3.1) in the sense of distributions;
(3) the first variation with respect to the time-space domain variations of the following

functional

G(�u,�v) =
∫ t2−δ

t1+δ

∫
Rn

(|∇�v|2 − 2F (�v)) + 2
∫ t2−δ

t1+δ

∫
Rn

�v∂t�u

vanishes at �v = �u, i.e.,

0 = − d
dε

G(�u, �u((t, x) + εψ(t, x)))
∣∣∣
ε=0

=
∫ t2−δ

t1+δ

∫
Rn

((|∇�u|2 − 2F (x, �u)) divt,xψ − 2∇t,x�uDψ∇�u− 2∂t�u∇t,x�u · ψ

− 2∇xF (x, �u) · (ψ1, · · · , ψn))−
[ ∫

Rn

(|∇�u|2 − 2F (�u))ψ0

]∣∣∣t=t2−δ

t=t1+δ

for almost every small and positive δ and any ψ = (ψ0, ψ1, · · · , ψn) ∈ C1((0, T ) × Rn; Rn+1)
such that

suppψ(t) ⊂⊂ R
n, ∀ t ∈ (t1, t2).

We now state the monotonicity formulae for variational solutions to (3.1). Recall that
T−

r = (T − 4r2, T − r2)× Rn and T+
r = (T + r2, T + 4r2)× Rn.

Theorem 3.1 (Monotonicity Formulae) Let x0 ∈ Rn and �u be a variational solution to
(3.1) in ((t1, T ) ∪ (T, t2)) × Rn, where t1 ≤ T ≤ t2. If there exists a real number β ∈ R such
that ∀ r ∈ (0, δ), there hold∫

T−
r

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u)(x− x0))G(T,x0) ≥ 0
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and ∫
T+

r

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u)(x − x0))G(T,x0) ≥ 0,

respectively, then the functions

Ψ−(r) := r−2β

∫
T−

r

(|∇�u|2 − 2F (x, �u))G(T,x0) − β

2
r−2β

∫
T−

r

1
T − t�u

2G(T,x0)

and

Ψ+(r) := r−2β

∫
T+

r

(|∇�u|2 − 2F (x, �u))G(T,x0) − β

2
r−2β

∫
T+

r

1
T − t�u

2G(T,x0)

are well-defined in the interval (0,
√

T−t1
2 ) and (0,

√
t2−T
2 ), and for any 0 < ρ < σ <

√
T−t1
2 and

0 < ρ < σ <
√

t2−T
2 they satisfy the monotonicity formulae

Ψ−(σ)−Ψ−(ρ)

= 2
∫ σ

ρ

r−2β−1

∫
T−

r

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0))G(T,x0)

+
∫ σ

ρ

r−2β−1

∫
T−

r

1
T − t (∇�u · (x− x0)− 2(T − t)∂t�u− β�u)2G(T,x0)

≥ 0

and

Ψ+(σ)−Ψ+(ρ)

= 2
∫ σ

ρ

r−2β−1

∫
T+

r

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0))G(T,x0)

+
∫ σ

ρ

r−2β−1

∫
T+

r

1
T − t (∇�u · (x− x0)− 2(T − t)∂t�u− β�u)2G(T,x0)

≥ 0,

respectively.

Proof We only give a proof for the monotonicity of Ψ− because we can replace in what
follows the interval (−4r2,−r2) by (r2, 4r2) to obtain a proof for Ψ+. Without loss of generality,
we can assume that x0 = 0 and T = 0. We omit the index (0, 0) in G(0,0) and simply denote
it by G. We also denote T−

r (0) by T−
r . We will use frequently the facts that ∇G = xG

2t and
∂tG + ΔG = 0 in {t < 0} ∪ {t > 0} in the following calculations without explicitly mentioned
again.

We take after approximation ψ(t, x) = (2t, x)G(t, x)ηε(x) as test function in Definition 3.1(3)
with ηε ∈ H1,∞

0 (Rn) to be chosen later. We first have to calculate div t,xψ, ∇t,x�uDψ∇�u, and
∂t�u∇t,x�u · ψ. In fact,

divt,xψ = (2G+ 2t∂tG+ div(xG))ηε +∇ηε · xG
= 2Gηε +∇ηε · xG, (3.2)
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∇t,x�uDψ∇�u =
n∑

j=1

n∑
k=1

∂j�u∂jψk∂k�u+
n∑

j=1

∂j�u∂jψ0∂t�u

=
n∑

j=1

n∑
k=1

∂j�u(δjkGηε + xk∂jGηε + xkG∂jηε)∂k�u

+
n∑

j=1

∂j�u(2t∂jGηε + 2tG∂jηε)∂t�u

= Gηε|∇�u|2 +
Gηε

2t
(∇�u · x)2 +G(∇�u · x)(∇�u · ∇ηε)

+ (Gηε∇�u · x+ 2tG∇�u · ∇ηε)∂t�u (3.3)

and

∂t�u∇t,x�u · ψ = ∂t�u
n∑

k=0

∂k�uψk = 2t(∂t�u)2Gηε +Gηε∂t�u∇�u · x. (3.4)

Taking t1 = −4r2, t2 = −r2, and inserting (3.2), (3.3) and (3.4) into Definition 3.1(3), we
obtain for a.e. r ∈ (0,

√
T−t1
2 ) that

0 =
∫ −r2

−4r2

∫
Rn

((|∇�u|2 − 2F (x, �u)) divt,xψ − 2∇t,x�uDψ∇�u− 2∂t�u∇t,x�u · ψ

− 2∇xF (x, �u) · (ψ1, · · · , ψn))−
[ ∫

Rn

(|∇�u|2 − 2F (x, �u))ψ0

]∣∣∣t=−r2

t=−4r2

=
∫

T−
r

(
(|∇�u|2 − 2F (x, �u))(2Gηε +∇ηε · xG) − 2Gηε|∇�u|2 − Gηε

t
(∇�u · x)2

− 2G(∇�u · x)(∇�u · ∇ηε)− 2Gηε∂t�u∇�u · x− 4tG∂t�u∇�u · ∇ηε − 4t(∂t�u)2Gηε

− 2Gηε∂t�u∇�u · x− 2∇xF (x, �u) · (ψ1, · · · , ψn)
)
−

[ ∫
Rn

(|∇�u|2 − 2F (�u))ψ0

]∣∣∣t=−r2

t=−4r2
.

We combine all the terms containing Gηε together and all the terms containing ∇ηε together
to rewrite the above identity as

0 =
∫

T−
r

Gηε

(
− 4F (x, �u)− 1

t
(∇�u · x+ 2t∂t�u)2 − 2∇xF (x, �u) · x

)

−
[ ∫

Rn

(|∇�u|2 − 2F (x, �u))ψ0

]∣∣∣t=−r2

t=−4r2

−
∫

T−
r

((|∇�u|2 − 2F (x, �u))∇ηε · xG− 2G(∇�u · x)(∇�u · ∇ηε)− 4tG∂t�u∇�u · ∇ηε)

:= I1 − I2 − I3. (3.5)

As in the proof of (2.3), we have

∫
T−

r

|∇�u|2Gηε = −
∫

T−
r

(�uηε∇�u · ∇G+Gηε�u(∂t�u− �f(x, �u)) + �uG∇�u · ∇ηε)

= −
∫

T−
r

(
Gηε

( 1
2t
�u∇�u · x+ �u(∂t�u− �f(x, �u))

)
+ �uG∇�u · ∇ηε

)
. (3.6)
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Inserting (3.6) into (3.5) we get

I1 :=
∫

T−
r

Gηε

(
− 4F (x, �u)− 2∇xF (x, �u) · x− 1

t
(∇�u · x+ 2t∂t�u)2

)

=
∫

T−
r

Gηε

(
2β(|∇�u|2 − 2F (x, �u)) + 4(β − 1)F (x, �u)− 2∇xF (x, �u) · x

− 1
t
(∇�u · x+ 2t∂t�u)2 − 2β|∇�u|2

)

=
∫

T−
r

(
Gηε

(
2β(|∇�u|2 − 2F (x, �u)) + 4(β − 1)F (x, �u)− 2∇xF (x, �u) · x

− 1
t
(∇�u · x+ 2t∂t�u)2

)

+Gηε

(β�u
t
∇�u · x+ 2β�u(∂t�u− �f(x, �u))

)
+ 2β�uG∇�u · ∇ηε

)

=
∫

T−
r

(
Gηε

(
2β(|∇�u|2 − 2F (x, �u)) + 4(β − 1)F (x, �u)− 2∇xF (x, �u) · x

− 1
t
(∇�u · x+ 2t∂t�u− β�u)2

)

−Gηε

(β�u
t

(∇�u · x+ 2t∂t�u)− β2�u2

t
+ 2β�u�f(x, �u)

)
+ 2β�uG∇�u · ∇ηε

)
.

From the above identity we can write I1 − I2 as

I1 − I2 =
(
2β

∫
T−

r

Gηε(|∇�u|2 − 2F (x, �u))−
[ ∫

Rn

(|∇�u|2 − 2F (x, �u))ψ0

]∣∣∣t=−r2

t=−4r2

)

−
∫

T−
r

Gηε

(β�u
t

(∇�u · x+ 2t∂t�u)− β2�u2

t

)

+
∫

T−
r

Gηε

(
2(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · x)

− 1
t
(∇�u · x+ 2t∂t�u− β�u)2

)

+ 2β
∫

T−
r

�uG∇ηε · ∇�u

:= J1 − J2 + J3 + J4. (3.7)

Then it follows from (3.5) and (3.7) that

0 = J1 − J2 + J3 + J4 − I3. (3.8)

Notice that

d
dr

(
r−2β

∫
T−

r

Gηε(|∇�u|2 − 2F (x, �u))
)

= −2βr−2β−1

∫
T−

r

Gηε(|∇�u|2 − 2F (x, �u)) + r−2β d
dr

(∫
T−

r

Gηε(|∇�u|2 − 2F (x, �u))
)

= −2βr−2β−1

∫
T−

r

Gηε(|∇�u|2 − 2F (x, �u)) + 2r−2β−1
[
t

∫
Rn

Gηε(|∇�u|2 − 2F (x, �u))
]∣∣∣t=−r2

t=−4r2
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and

d
dr

(β
2
r−2β

∫
T−

r

G(t, x)
t

ηε(x)�u2(t, x)
)

=
d
dr

(β
2

∫
T−
1

G(t, x)
t

ηε(rx)
�u2(r2t, rx)

r2β

)

=
β

2

∫
T−
1

G(t, x)
t

ηε(rx)∂r

(�u2(r2t, rx)
r2β

)
+
β

2

∫
T−
1

G(t, x)
t

�u2(r2t, rx)
r2β

∂r(ηε(rx))

= r−2β−1

∫
T−

r

Gηε

(β
t
�u∇�u · x+ 2β�u∂t�u− β2

t
�u2

)
+
β

2
r−2β−1

∫
T−

r

G(t, x)
t

�u2(t, x)∇ηε(x) · x,

that is,

r−2β−1 J1 = − d
dr

(
r−2β

∫
T−

r

Gηε(|∇�u|2 − 2F (x, �u))
)
,

r−2β−1 J2 =
d
dr

(β
2
r−2β

∫
T−

r

1
t
Gηε�u

2
)
− β

2
r−2β−1

∫
T−

r

1
t
�u2G∇ηε · x.

Using these two facts, we can rewrite (3.8) as

0 = − d
dr

(
r−2β

∫
T−

r

Gηε(|∇�u|2 − 2F (x, �u))
)
− d

dr

(β
2
r−2β

∫
T−

r

1
t
Gηε�u

2
)

+ r−2β−1 J3

+
β

2
r−2β−1

∫
T−

r

1
t
�u2G∇ηε · x+ r−2β−1 J4 − r−2β−1 I3. (3.9)

Choosing ηε(x) = min(1,max(0, 2− ε|x|)) for small ε > 0, we have

β

2
r−2β−1

∫
T−

r

1
t
�u2G∇ηε · x+ r−2β−1 J4 − r−2β−1 I3 = O(ε).

For any 0 < ρ < σ <
√

T−t1
2 , integrating (3.9) from ρ to σ and then letting ε→ 0, we conclude

that

Ψ−(σ)−Ψ−(ρ) = 2
∫ σ

ρ

r−2β−1

∫
T−

r

(2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · x)G(T,x0)

+
∫ σ

ρ

r−2β−1

∫
T−

r

1
T − t (∇�u · (x− x0) + 2(T − t)∂t�u− β�u)2G(T,x0)

≥ 0. (3.10)

The proof of the theorem is completed.

We now study the blow-up of scaled solutions. For a given point (T, x0) and a given sequence
0 > ρk → 0, we define the scaled sequence as

�uk(t, x) := ρ−β
k �u(T + ρ2

kt, x0 + ρkx),

and want to obtain more information on the solution’s behavior. In fact, we have the following
result.

Theorem 3.2 (Blow-up) Let �u ∈ H1
loc(((t1, T ) ∪ (T, t2)) × Rn) be a variational solution

to (3.1) such that the conclusions in Theorem 3.1 hold true, where t1 ≤ T ≤ t2. Suppose that
x0 ∈ Rn and the growth estimates

sup
r∈(0,

√
T−t1
4 )

max
{
βr−2β

∫
T−

r

1
T − t�u

2G(T,x0), r
−2β

∫
T−

r

F (x, �u)G(T,x0)

}
< +∞
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and
sup

r∈(0,

√
t2−T

4 )

max
{
βr−2β

∫
T+

r

1
T − t�u

2G(T,x0), r
−2β

∫
T+

r

F (x, �u)G(T,x0)

}
< +∞

are satisfied. Then for any open set D ⊂⊂ ((−√T − t1 , 0)∪ (0,
√
t2 − T ))×Rn and k ≥ k(D)

the sequence
�uk(t, x) = ρ−β

k �u(T + ρ2
kt, x0 + ρkx)

is bounded in H1(D) and any weak H1-limit �u0 with respect to a subsequence is a function
homogeneous of degree β on paths θ → (θ2t, θx) for θ > 0 and (t, x) ∈ ((−√T − t1 , 0) ∪
(0,
√
t2 − T ))× Rn, i.e.,

�u0(λ2t, λx) = λβ�u0(t, x)

for any λ > 0 and for any (t, x) ∈ ((−√T − t1 , 0) ∪ (0,
√
t2 − T ))× Rn.

Proof We give the proof only for the case t2 = T to avoid clumsy notation. As in the proof
of Theorem 3.1, we assume that x0 = 0 and T = 0. Using the notations introduced there, we
calculate for 0 < R <∞ that

Ψ−(ρkR) = (ρkR)−2β

∫
T−

ρkR

|∇�u|2G− 2(ρkR)−2β

∫
T−

ρkR

F (x, �u)G− β

2
(ρkR)−2β

∫
T−

ρkR

1
(−t)�u

2G

= R−2β

∫
T−

R

|∇�uk|2G− 2(ρkR)−2β

∫
T−

ρkR

F (x, �u)G− β

2
R−2β

∫
T−

R

1
(−t)�u

2
kG.

We see that the sequence �uk and ∇�uk are bounded in L2(D) for k ≥ k(D) by the assumed
growth estimate and the monotonicity formula Theorem 3.1. Thus for k ≥ k(D) the sequence
�uk is bounded in H1(D).

In view of Theorem 3.1, we know that Ψ− is nondecreasing and bounded in (0, δ), which
means that Ψ− has a real right limit at 0 and for 0 < R < S <∞,

0← Ψ−(ρkS)−Ψ−(ρkR)

= 2
∫ ρkS

ρkR

r−2β−1

∫
T−

r

(2(β − 1)F (x, �u)− β�u�f(x, �u))G

+
∫ S

R

r−2β−1

∫
T−

r

1
(−t) (∇�uk · x+ 2t∂t�uk − β�uk)2G.

Consequently,

∫ S

R

r−2β−1

∫
T−

r

1
(−t) (∇�uk · x+ 2t∂t�uk − β�uk)2G→ 0, as k →∞.

We take a subsequence k →∞ such that �uk ⇀ �u0 weakly in H1
loc((−∞, 0)×Rn). By the lower

semi-continuity of the L2-norm with respect to weak convergence, we can obtain

∇�u0(t, x) · x+ 2t∂t�u0(t, x) − β�u0(t, x) = 0

a.e. in (−∞, 0) × Rn, which implies easily that �u0 is homogeneous of degree β on paths
θ → (θ2t, θx) for θ > 0 and (t, x) ∈ (−∞, 0)× Rn.
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4 Some Applications to the Ginzburg-Landau Model
and Free Boundary Problems

This section is devoted to various applications of our previous results to different physical
interesting models. Since our conditions on the nonlinearities are very general, we can invoke
these theorems in different situations to achieve some partial results.

4.1 On the Ginzburg-Landau model

We consider the famous Ginzburg-Landau model

Δ�u +
1
ε2
�u(1− �u2) = 0 in Ω.

Set F (�u) = − 1
4ε2 (1− �u2)2. We derive

2(β − 1)F (�u)− β�uf(�u) =
1

2ε2
(�u2 − 1)((β + 1)�u2 + (β − 1)) ≥ 0,

provided ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�u2 ≤ 1− β
1 + β

or �u2 ≥ 1, if β > 0,

�u2 ≤ 1 or �u2 ≥ 1− β
1 + β

, if − 1 < β ≤ 0,

�u2 ≤ 1, if β ≤ −1.

(4.1)

It then follows from Theorem 2.1 directly that the function

Φx0(r) = r−n−2β+2

∫
Br(x0)

(
|∇�u|2 +

1
2ε2

(1− �u2)2
)
− βr−n−2β+1

∫
∂Br(x0)

�u2

is nondecreasing in r under the assumption (4.1). For (4.1) to be satisfied, �u2 has to be bounded
away from 1 in the case β > 0, which seems somewhat unrealistic. Nevertheless, a noteworthy
fact occurs at β = 0, in which case no matter what the value of �u2 ranges, we always have
2(β − 1)F (�u)− β�uf(�u) ≥ 0. This observation leads us to the next proposition.

Proposition 4.1 Let �u ∈ H1
loc(Ω)∩L4

loc(Ω) be a variational solution to the Ginzburg-Landau
model

Δ�u+
1
ε2
�u(1− �u2) = 0 in Ω.

Then for any ball Bδ(x0) ⊂⊂ Ω, the function

Φx0(r) = r−n+2

∫
Br(x0)

(
|∇�u|2 +

1
2ε2

(1 − �u2)2
)

is nondecreasing in r ∈ (0, δ) and satisfies the monotonicity formula

d
dr

Φx0(r) = r−n+1

∫
Br(x0)

1
ε2

(�u2 − 1)2 + 2r−n+2

∫
∂Br(x0)

(∇�u · ν)2 ≥ 0.

Notice that we have chosen β = 0, resulting in no boundary term in the monotonicity
formula. To apply Theorem 2.2, we only have to check

sup
r∈(0,δ)

r−n+2

∫
Br(x0)

F (�u) < +∞

with F (�u) = − 1
4ε2 (1−�u2)2, which holds true trivially. We then obtain the following proposition.
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Proposition 4.2 Let �u ∈ H1
loc(Ω)∩L4

loc(Ω) be a variational solution to the Ginzburg-Landau
model

Δ�u+
1
ε2
�u(1− �u2) = 0 in Ω.

For any open domain D ⊂⊂ Rn and k ≥ k(D), the scaled sequence �uk(x) = �u(x0 + ρkx) is
bounded in H1(D) and any weak H1-limit with respect to a subsequence k →∞ is homogeneous
of degree 0.

For the Ginzburg-Landau equation of parabolic type

∂�u

∂t
−Δ�u− 1

ε2
�u(1− �u2) = 0 in (t1, t2)× R

n,

similar results can be obtained by using Theorems 3.1 and 3.2.

Proposition 4.3 Let �u ∈ H1
loc(((t1, T ) ∪ (T, t2))× Rn) ∩ L4

loc(((t1, T ) ∪ (T, t2))× Rn) be a
variational solution to

∂�u

∂t
−Δ�u− 1

ε2
�u(1− �u2) = 0 in (t1, t2)× R

n,

where t1 ≤ T ≤ t2. Then the functions

Ψ−(r) =
∫

T−
r

(
|∇�u|2 +

1
2ε2

(1 − �u2)2
)
G(T,x0)

and
Ψ+(r) =

∫
T+

r

(
|∇�u|2 +

1
2ε2

(1− �u2)2
)
G(T,x0)

are well-defined in the interval (0,
√

T−t1
2 ) and (0,

√
t2−T
2 ), and for any 0 < ρ < σ <

√
T−t1
2 and

0 < ρ < σ <
√

t2−T
2 they satisfy the monotonicity formulae

d
dr

Ψ−(r) = r−1

∫
T−

r

1
ε2

(�u2 − 1)2G(T,x0) + r−1

∫
T−

r

1
T − t (∇�u · (x− x0)− 2(T − t)∂t�u)2G(T,x0)

≥ 0

and

d
dr

Ψ+(r) = r−1

∫
T+

r

1
ε2

(�u2 − 1)2G(T,x0) + r−1

∫
T+

r

1
T − t (∇�u · (x− x0)− 2(T − t)∂t�u)2G(T,x0)

≥ 0,

respectively. Moreover, for any open set D ⊂⊂ ((−√T − t1 , 0) ∪ (0,
√
t2 − T )) × Rn and k ≥

k(D) the sequence �uk(t, x) = �u(T + ρ2
kt, x0 + ρkx) is bounded in H1(D) and any weak H1-limit

�u0 with respect to a subsequence is a function homogeneous of degree 0 on paths θ → (θ2t, θx)
for θ > 0 and (t, x) ∈ ((−√T − t1 0) ∪ (0,

√
t2 − T ))× Rn.

4.2 On the free-boundary problem

We now give an application of Theorems 2.1 and 2.2 to the following free-boundary problem
with nonhomogeneous nonlinearity:

2Δu = λ+(pup−1 + f(x))χ{u>0} − λ−(p(−u)p−1 + g(x))χ{u<0} (4.2)
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in a bounded domain Ω ⊂ Rn, where λ+ and λ− are real numbers, p < 2 and p �= 0. We point
out that when f(x) ≡ g(x) ≡ 0, (4.2) reduces to the equation

2Δu = λ+pu
p−1χ{u>0} − λ−p(−u)p−1χ{u<0} (4.3)

considered by Weiss and others (see [30]). For the single equation (4.2), the associated functional
F (x, u) is given by

F (x, u) = −λ+

2
(up + f(x)u)χ{u>0} − λ−

2
((−u)p + g(x)(−u))χ{u<0}.

Suppose that Bδ(x0) ⊂⊂ Ω and u is a variational solution to (4.2). We define for r ∈ (0, δ),

Φx0(r) = r−n−2β+2

∫
Br(x0)

(|∇u|2 + λ+u
pχ{u>0} + λ−(−u)pχ{u<0})

+ r−n−2β+2

∫
Br(x0)

(λ+f(x)uχ{u>0} + λ−g(x)(−u)χ{u<0})

− βr−n−2β+1

∫
∂Br(x0)

u2, (4.4)

and verify that

2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0)

= −(β − 1)(λ+(up + f(x)u)χ{u>0} + λ−((−u)p + g(x)(−u))χ{u<0})

+
β

2
(λ+(pup + f(x)u)χ{u>0} + λ−(p(−u)p + g(x)(−u))χ{u<0})

+
1
2
(λ+uχ{u>0}∇f(x) · (x− x0) + λ−(−u)χ{u<0}∇g(x) · (x− x0))

=
(
1 +

β

2
p− β

)
(λ+u

pχu>0 + λ−(−u)pχ{u<0})

+
(
1− β

2

)
(λ+f(x)uχ{u>0} + λ−g(x)(−u)χ{u<0})

+
1
2
(λ+uχ{u>0}∇f(x) · (x− x0) + λ−(−u)χ{u<0}∇g(x) · (x− x0)).

We assume that λ+ and λ− are nonnegative. To ensure that the last three terms in the
expression above are nonnegative point-wise, we need

β ≤ 2
2− p ,

β ≤ 2 if f(x), g(x) ≥ 0 or β ≥ 2 if f(x), g(x) ≤ 0,

∇f(x) · (x− x0) ≥ 0 and ∇g(x) · (x− x0) ≥ 0.

Two typical choices for f(x) and g(x) valid in our analysis are the potentials |x − x0|2 and
− 1

|x−x0| . Applying Theorems 2.1 and 2.2 to (4.2), we obtain the proposition below.

Proposition 4.4 Let u be a variational solution to the free boundary problem

2Δu = λ+(pup−1 + f(x))χ{u>0} − λ−(p(−u)p−1 + g(x))χ{u<0}

in a bounded domain Ω ⊂ Rn, where p < 2 and p �= 0. Assume that Bδ(x0) ⊂⊂ Ω, λ+, λ− ≥ 0,
∇f(x) · (x− x0) ≥ 0 and ∇g(x) · (x− x0) ≥ 0.
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(1) If f(x), g(x) ≥ 0, then for β ≤ min{ 2
2−p , 2}, the function Φx0(r) defined in (4.4) is

nondecreasing in r ∈ (0, δ). Furthermore, if

sup
r∈(0,δ)

βr−n−2β+1

∫
∂Br(x0)

�u2 < +∞,

then for any open domain D ⊂⊂ R
n and k ≥ k(D), the scaled sequence �uk(x) = ρ−β

k u(x0 +
ρkx) is bounded in H1(D) and any weak H1-limit with respect to a subsequence k → ∞ is
homogeneous of degree β.

(2) If f(x), g(x) ≤ 0 and 1 ≤ p < 2, then for 2 ≤ β ≤ 2
2−p , the function Φx0(r) defined in

(4.4) is nondecreasing in r ∈ (0, δ). Furthermore, if

sup
r∈(0,δ)

{
βr−n−2β+1

∫
∂Br(x0)

�u2, −λ+r
−n−2β+2

∫
Br(x0)

f(x)uχ{u>0},

− λ−r−n−2β+2

∫
Br(x0)

g(x)(−u)χ{u<0}
}
< +∞,

then for any open domain D ⊂⊂ Rn and k ≥ k(D), the scaled sequence �uk(x) = ρ−β
k u(x0 +

ρkx) is bounded in H1(D) and any weak H1-limit with respect to a subsequence k → ∞ is
homogeneous of degree β.

Another very interesting extension to the model (4.3) is to replace the classical operator Δ
by the Schrödinger operator Δ− |x|2, which appears in many branches of physics. Indeed, we
at first use the model modified a little from (4.2) that

2Δu = λ+(pup−1 + f(x)u)χ{u>0} − λ−(p(−u)p−1 − g(x)u)χ{u<0} (4.5)

in a bounded domain Ω ⊂ Rn, where p < 2 and p �= 0. Notice that in this case

F (x, u) = −λ+

2

(
up +

1
2
f(x)u2

)
χ{u>0} − λ−

2

(
(−u)p +

1
2
g(x)u2

)
χ{u<0},

uf(x, u) = −λ+

2
(pup + f(x)u2)χ{u>0} − λ−

2
(p(−u)p + g(x)u2)χ{u<0}

and

∇xF (x, u) · (x− x0) = −λ+

4
u2χ{u>0}∇f(x) · (x− x0)− λ−

4
u2χ{u<0}∇g(x) · (x− x0).

Suppose that Bδ(x0) ⊂⊂ Ω and u is a variational solution to (4.5). We define for r ∈ (0, δ),

Φx0(r) = r−n−2β+2

∫
Br(x0)

(|∇u|2 + λ+u
pχ{u>0} + λ−(−u)pχ{u<0})

+ r−n−2β+2

∫
Br(x0)

(λ+

2
f(x)u2χ{u>0} +

λ−
2
g(x)u2χ{u<0}

)

− βr−n−2β+1

∫
∂Br(x0)

u2, (4.6)

and verify that

2(β − 1)F (x, �u)− β�u�f(x, �u)−∇xF (x, �u) · (x− x0)

=
(
1 +

β

2
p− β

)
(λ+u

pχ{u>0} + λ−(−u)pχ{u<0}) +
1
2
(λ+f(x)u2χ{u>0} + λ−g(x)u2χ{u<0})

+
λ+

4
u2χ{u>0}∇f(x) · (x− x0) +

λ−
4
u2χ{u<0}∇g(x) · (x− x0).
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We assume λ+, λ− > 0, and choose f(x) = 2
λ+
|x−x0|2, g(x) = 2

λ−
|x−x0|2. Then the expression

above is nonnegative provided β ≤ 2
2−p and we can apply the conclusions of Theorems 2.1 and

2.2.

Proposition 4.5 Let u be a variational solution to the free boundary problem

2(Δ− |x− x0|2)u = λ+pu
p−1χ{u>0} − λ−p(−u)p−1χ{u<0}

in a bounded domain Ω ⊂ Rn, where p < 2 and p �= 0. Assume that Bδ(x0) ⊂⊂ Ω, λ+, λ− >

0. Then for β ≤ 2
2−p , the function Φx0(r) defined in (4.6) is nondecreasing in r ∈ (0, δ).

Furthermore, if

sup
r∈(0,δ)

βr−n−2β+1

∫
∂Br(x0)

�u2 < +∞,

then for any open domain D ⊂⊂ Rn and k ≥ k(D), the scaled sequence �uk(x) = ρ−β
k u(x0 +

ρkx) is bounded in H1(D) and any weak H1-limit with respect to a subsequence k → ∞ is
homogeneous of degree β.

The analogies of Propositions 4.4 and 4.5 for the parabolic case (see [32]) can be obtained
exactly in the same way, and we leave the details to the interested reader.

5 Appendix

As a comparison of our new monotonicity inequalities to previous works, we now give a brief
review about the previous monotonicity formulae related. We point out that the monotonicity
formulae of Perelman [23] and Hamilton [16] on Ricci flow will not be included here. As we said
before, our work is motivated from the monotonicity formulae given by Weiss [29–32] and the
monotonicity formula given by Alt, Caffarelli and Friedman [2]. In [29–32], Weiss introduced
the “boundary-adjusted energy”, and obtained some monotonicity formulae. In [30], he studied
the critical points with respect to the energy

w �→ F (w) =
∫

Ω

(|∇w|2 + λ+χ{w>0}wp + λ−χ{w<0}(−w)p)

with p ∈ [0, 2) and found that: assuming that u is a solution and Bδ(x0) ⊂ Ω, then for β = 2
2−p

and for any 0 < ρ < σ < δ, the function

Φ(r) = r−n−2β+2

∫
Br(x0)

(|∇u|2 + λ+χ{u>0}up + λ−χ{u<0}(−u)p)− βr−n−2β+1

∫
∂Br(x0)

u2

defined in (0, δ) satisfies the monotonicity formula

Φ(σ) − Φ(ρ) = 2
∫ σ

ρ

r−n−2β+2
( ∫

∂Br(x0)

(
∇u · ν − β u

r

)2)
dr ≥ 0.

In [31], the monotonicity formula for Δu = χ{u>0} has the same form of Φ(r) with p = 1. In
[32], Weiss studied the gradient flow in L2(Rn) with respect to the energy

w �→ F (w) =
∫

Rn

(|∇w|2 + λ+χ{w>0}wp + λ−χ{w<0}(−w)p)
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with p ∈ [0, 2) and found that: assuming that t1 ≤ T ≤ t2, x0 ∈ Rn and u is a solution with
some smooth conditions, then for β = 2

2−p and for any 0 < ρ < σ < δ, the functions

Ψ−(r) = r−2β

∫
T−

r

(|∇u|2 +λ+χ{u>0}up +λ−χ{u<0}(−u)p)G(T,x0)− β2 r
−2β

∫
T−

r

1
T − tu

2G(T,x0)

and

Ψ+(r) = r−2β

∫
T+

r

(|∇u|2 +λ+χ{u>0}up +λ−χ{u<0}(−u)p)G(T,x0)− β2 r
−2β

∫
T+

r

1
T − tu

2G(T,x0)

are well-defined in the interval (0,
√

T−t1
2 ) and (0,

√
t2−T
2 ) respectively, and satisfy for any 0 <

ρ < σ <
√

T−t1
2 and 0 < ρ < σ <

√
t2−T
2 respectively, the monotonicity formulae

Ψ−(σ) −Ψ−(ρ) =
∫ σ

ρ

r−2β−1

∫
T−

r

1
T − t(∇u · (x − x0)− 2(T − t)∂tu− βu)2G(T,x0)

≥ 0

and

Ψ+(σ)−Ψ+(ρ) =
∫ σ

ρ

r−2β−1

∫
T+

r

1
T − t (∇u · (x − x0)− 2(T − t)∂tu− βu)2G(T,x0)

≥ 0.

In [2], Alt, Caffarelli and Friedman established a monotonicity formula for variational problems
with two phases and their free boundaries. The monotonicity formula of Alt-Caffarelli-Friedman
plays an important role as a fundamental and powerful tool in free boundary problems. Roughly
speaking, they found that

Φ(r) =
( 1
r2

∫
Br(x0)

|∇h1|2
|x− x0|N−2

)( 1
r2

∫
Br(x0)

|∇h2|2
|x− x0|N−2

)

is increasing in r (0 < r < R) for the sub-solutions h1, h2 to Δu = 0 in BR(x0) (R > 0) with
h1h2 = 0 and h1(x0) = h2(x0) = 0. We can consult also [7]. In [5], Caffarelli, Jerison and Kenig
found that there is a dimensional constant C such that

Φ(r) =
( 1
r2

∫
Br

|∇u+|2
|X |n−2

dX
)( 1
r2

∫
Br

|∇u−|2
|X |n−2

dX
)

≤ C
(
1 +

∫
B1

|∇u+(X)|2
|X |n−2

dX +
∫

B1

|∇u−(X)|2
|X |n−2

dX
)2

with 0 < r ≤ 1 for Δu± ≥ −1 in the sense of distributions, where u+ and u− satisfy
u+(X)u−(X) = 0 for all X ∈ B1. Various monotonicity formulae of other types have caught
many authors’ attentions in the past several years. Let us briefly review some progress in them.
The well-known monotonicity formula, for minimal hyper-surfaces in [27],

d
dr

(Hn(M ∩Br)
rn

)
=

d
dr

∫
M∩Br

|x⊥|2
|x|n+2

dHn,

where Hn is the n-dimensional Hausdorff measure on Rn+1, is a local statement in balls Br ⊂
Rn+1, which plays an important role in analyzing singularity set. There are many references
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about the topic. Fleming obtained the monotonicity formula for area minimizing currents
in [12]. Allard proved the monotonicity formula for stationary rectifiable n-varifolds in [1].
Schoen and Uhlenbeck established the monotonicity formula for harmonic maps in [26]. Price
proved the monotonicity for weakly stationary harmonic maps and Yang-Mills equations in
[24]. Giga and Kohn obtained in [14] the monotonicity formula for the solutions to semi-
linear heat equations ∂tu −Δu − |u|p−1u = 0 with blow-up analysis, where p > 1, and Pacard
established its localization for weakly stationary solutions to the corresponding elliptic equation
in [22]. Struwe derived the monotonicity formula involving the associated energy densities for
the equation ∂tu − Δu ∈ T⊥N in [28]. Riviere [25], Lin and Riviere [20], Bourgain, Brezis,
and Mironescu [3] set up some monotonicity formulae for Ginzburg-Landau model. The famous
monotonicity formula for mean curvature flow, which was found by Huisken [17], says that

d
dt

∫
Mt

Gdμt = −
∫

Mt

∣∣∣ �H − x⊥

2t

∣∣∣2Gdμt,

which involves the backward heat kernel function

G(x, t) =
1

(−4πt)
n
2

exp
( |x|2

4t

)

for t < 0 and x ∈ Rn+k. Monotonicity formulae for geometric evolution equations on more
general domains were also derived by Hamilton in [15]. In [10, 11], the local monotonicity
formula had been given by Ecker in the “heat-ball”

Eγ
r =

{
(x, t) ∈ R

n × R, t < 0, Φγ >
1

rn−γ

}
=

⋃
− r2

4π <t<0

BRγ
r (t) × {t},

where

Φγ(x, t) =
1

(−4πt)
n−γ

2

e
|x|2
4t , Rγ

r (t) =

√
2(n− γ) log

(−4πt
r2

)
.

It can be written as follows:
d
dr

[ 1
Rn−γ

∫
Eγ

r

n− γ
−2t

(
e(u)− β

2t
u2

)
− x

2t
·Du

(∂u
∂t

+
x

2t
·Du+

β

t
u
)
dxdt

]

=
n− γ
rn−γ+1

∫
Eγ

r

(∂u
∂t

+
x

2t
·Du+

β

t
u
)2

dxdt,

where u is a solution to ut −Δu − |u|p−1u = 0, x ∈ Rn, t < 0 and p > 1. The monotonicity
formula also appears in the parabolic potential theory (see [9]). For a function v and any t > 0,
define

I(t; v) =
∫ 0

−t

∫
Rn

|∇v(s, x)|2G(−s, x) dxds.

In [4], Caffarelli found that

Φ(t) = Φ(t;h1, h2) =
1
t2
I(t;h1)I(t;h2)

is monotone nondecreasing in t (0 < t < 1) for nonnegative sub-caloric functions h1, h2 in the
strip [−1, 0]× Rn, h1(0, 0) = h2(0, 0) = 0 and h1 · h2 = 0 with a polynomial growth at infinity.
Its localization can be stated as follows: there exists a constant C = C(n, ψ) > 0 such that

Φ(t;w1, w2) ≤ C‖h1‖2L2(Q−
1 )
‖h2‖2L2(Q−

1 )
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for any 0 < t < 1
2 . Here ψ(x) ≥ 0 is a C∞ cut-off function with suppψ ⊂ B 3

4
and ψ|B 1

2
= 1 and

wi = hiψ (see [9]). In [6], this formula was generalized for parabolic equations with variable
coefficients, and was written as

1
t

∫ 0

−t

∫
Rn

|∇(u1ψ)|2G(x,−s) dxds · 1
t

∫ 0

−t

∫
Rn

|∇(u2ψ)|2G(x,−s) dxds

≤ C(‖u1‖4L2(Q2) + ‖u2‖4L2(Q2)
).

One may also see the recent works [19] of Fanghua Lin and [8] of Caffarelli and Lin for new
applications of monotonicity inequalities.

Acknowledgement The authors thank the unknown referees for their valuable comments
and suggestions.

References

[1] Allard, W. K., On the first variation of a varifold, Ann. of Math., 95, 1972, 417–491.

[2] Alt, H. W., Caffarelli, L. A. and Friedman, A., Variational problems with two phases and their free
boundaries, Trans. Amer. Math. Soc., 282, 1984, 431–462.

[3] Bourgain, J., Brezis, H. and Mironescu, P., H
1
2 maps with values into the circle: minimal connections,

lifting, and the Ginzburg-Landau equation, Publ. Math. Inst. Hautes Études Sci., 99, 2004, 1–115.

[4] Caffarelli, L. A., A monotonicity formula for heat functions in disjoint domains, Boundary Value Problems
for Partial Differential Equations and Applications, J. L. Lions and C. Baiocchi (eds.), Masson, Paris,
1993, 53–60.

[5] Caffarelli, L. A., Jerison, D. and Kenig, C. E., Some new monotonicity theorems with appliacations to free
boundary problems, Ann. of Math., 155, 2002, 369–402.

[6] Caffarelli, L. A. and Kenig, C. E., Gradient estimates for variable coefficient parabolic equations and
singular perturbation problems, Amer. J. Math., 120, 1998, 391–439.

[7] Caffarelli, L. A., Karp, L. and Shahgholian, H., Regularity of a free boundary with application to the
Pompeiu problem, Ann. of Math., 151, 2000, 269–292.

[8] Caffarelli, L. A. and Lin, F. H., Singularly perturbed elliptic systems and multi-valued harmonic functions
with free boundaries, J. Amer. Math. Soc., 21(3), 2008, 847–862.

[9] Caffarelli, L. A., Petrosyan, A. and Shahgholian, H., Regularity of a free boundary in parabolic potential
theory, J. Amer. Math. Soc., 17, 2004, 827–869.

[10] Ecker, K., A local monotonicity formula for mean curvature flow, Ann. of Math., 154, 2001, 503–523.

[11] Ecker, K., Local monotonicity formulas for some nonlinear diffusion equations, Calc. Var. Partial Differ-
ential Equations, 23(1), 2005, 67–81.

[12] Fleming, W. H., On the oriented Plateau problem, Rend. Circ. Mat. Palermo (2), 11, 1962, 69–90.

[13] Friedman, A., Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York, 1969.

[14] Giga, Y. and Kohn, R. V., Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure
Appl. Math., 38, 1985, 297–319.

[15] Hamilton, R. S., Monotonicity formulas for parabolic flows on manifolds, Comm. Anal. Geom., 1, 1993,
127–137.

[16] Hamilton, R. S., The formation of singularities in the Ricci flow, Survey of Differential Geometry, Vol. 2,
1995, 7–136.

[17] Huisken, G., Asymptotic behaviour for singularities of the mean curvature flow, J. Differential Geom., 31,
1990, 285–299.

[18] Ladyzenskaja, O. A., Solonnikov V. A. and Ural’ceva, N. N., Linear and quasi-linear equations of parabolic
type, Transl. Math. Monographs, Vol. 23, A. M. S., Providence, RI, 1988.

[19] Lin, F. H., On regularity and singularity of free boundaries in obstacle problems, Chin. Ann. Math.,
30B(5), 2009, 645–652.



432 L. Ma, X. F. Song and L. Zhao

[20] Lin, F. H. and Riviere, T., Complex Ginzburg-Landau equations in high dimensions and codimension two
area minimizing currents, J. Eur. Math. Soc., 1, 1999, 237-311; Erratum, 2, 2000, 87–91.

[21] Ma, L. and Su, N., Obstacle problem in scalar Ginzburg-Landau equation, J. Partial Differential Equations,
17, 2004, 49–56.

[22] Pacard, F., Partial regularity for weak solutions of a nonlinear elliptic equation, Manuscripta Math., 79,
1993, 161–172.

[23] Perelman, G., The entropy formula for the Ricci flow and its geometric applications.
arXiv:math.DG/0211159.

[24] Price, P., A monotonicity formula for Yang-Mills fields, Manuscripta Math., 43, 1983, 131–166.

[25] Riviere, T., Line vortices in the U(1)-Higgs model, ESAIM Control Optim. Calc. Var., 1, 1996, 77–167.

[26] Schoen, R. M., Analytic aspects of the harmonic map problem, Seminar on Nonlinear Partial Differential
Equations, S. S. Chern (ed.), Springer-Verlag, New York, 1984, 321–358.

[27] Simon, L. M., Lectures on Geometric Measure Theory, Proc. of the Centre for Math. Analysis, Vol. 3,
Australian National University, Canberra, 1983.

[28] Struwe, M., On the evolution of harmonic maps in higher dimensions, J. Differential Geom., 28, 1988,
485–502.

[29] Weiss, G. S., Partial regularity for a minimum problem with free boundary, J. Geom. Anal., 9(2), 1999,
317–326.

[30] Weiss, G. S., Partial regularity for weak solution of an elliptic free boundary problem, Comm. Part. Diff.
Eqs., 23, 1998, 439–455.

[31] Weiss, G. S., A homogeneity improvement approach to the obstacle problem, Invent. Math., 138, 1999,
23–50.

[32] Weiss, G. S., Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary
problems, SIAM J. Math. Anal., 30, 1999, 623–644.


