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Abstract A dynamic model of schistosoma japonicum transmission is presented that
incorporates effects of the prepatent periods of the different stages of schistosoma into
Barbour’s model. The model consists of four delay differential equations. Stability of the
disease free equilibrium and the existence of an endemic equilibrium for this model are
stated in terms of a key threshold parameter. The study of dynamics for the model shows
that the endemic equilibrium is globally stable in an open region if it exists and there is no
delays, and for some nonzero delays the endemic equilibrium undergoes Hopf bifurcation
and a periodic orbit emerges. Some numerical results are provided to support the theoretic
results in this paper. These results suggest that prepatent periods in infection affect the
prevalence of schistosomiasis, and it is an effective strategy on schistosomiasis control to
lengthen in prepatent period on infected definitive hosts by drug treatment (or lengthen
in prepatent period on infected intermediate snails by lower water temperature).
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1 Introduction

Schistosoma japonicum causes schistosomiasis which is one of the most prevalent parasitic

diseases in the tropical and subtropical regions of the developing nations. In China, an estimated

843 011 people were infected with Schistosoma japonicum in 2003 (see [16]), and schistosomiasis

still remains a major public health problem despite the remarkable achievements in schistoso-

miasis control over the past five decades. Thus, controlling schistosomiasis is a long-term task

in the tropical and subtropical regions of the developing nations, and mathematical modeling of

Schistosoma japonicum transmission can aid in the development of new strategies for control.

The first mathematical models for schistosomiasis were those developed by Macdonald in

[11] and Hairston in [8]. Since then, a number of mathematical models have been developed

by a variety of approaches, which made contributions to the understanding of the interplay of

biology, transmission dynamics and control of Schistosomiasis (see e.g. [1–3, 5, 6, 10, 12, 14,

15], etc.). In these classic publications, there was a mathematical model given by Barbour in [3].

The model tracks dynamics of infected human population and infected snails in a community.
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For simplicity, he assumed that the total populations of both human and snails are constants

without recruitment and death, and let Ih(t) and Is(t) denote the numbers of infected humans

and snails at time t, respectively. Barbour modeled the schistosomiasis transmission in the

community by two ordinary differential equations as follows

dIh

dt
= αIs(1 − Ih) − rIh,

dIs

dt
= βIh(1 − Is) − dsIs,

(1.1)

where α (β) is the per capita rate of infection of human (snail, respectively) by one infected snail

(man, respectively), r is the per capita rate of recovery in human and ds is the per capita death

rate of infected snails. This model played an important role in epidemiology for evaluating

possible control strategies. However, it is known that there are incubations of schistosoma.

The aim of this paper is to incorporate effects of the prepatent periods of the different stages

of schistosoma into Barbour’s model, and estimate the impact of prepatent periods on the

schistosomiasis transmission in the community.

Note that an infected snail can not infect susceptible man (or an animal) directly and vice

versa. Schistosomiasis are transmitted indirectly between the definitive hosts and intermediate

snails in the sense that free-swimming stages (cercariae and miracidia) are interposed. Cercariae

emerging from the infected snail are capable of infecting susceptible definitive hosts (human

or animals) and miracidia hatching from parasite eggs in feces of infected definitive hosts are

capable of infecting susceptible snails. Figure 1 gives a schematic description of the transmission

of schistosome japonicum in definitive host (such as human, bovines) and intermediate snail.

The parasite eggs hatch into free-swimming larva called miracidia in water, the miracidium

then penetrate an appropriate snail within one or two days at suitable temperature. In the

infected snail, the miracidium undergoes asexual multiplication through a series of stages called

sporocysts, then produces in large number of free-swimming larvae called cercariae. There

is data which shows that the shortest incubation of cercarial production in snail was 17–19

days at temperature 30, 31 and 32 Celsius degrees and cercarial development required at least

106–113 days at temperature 18 Celsius degrees (see [13]). Cercariae are shed from the snail

and penetrate the skin of a definitive host (such as human) in water within approximately two

days. After penetration, the schistosome worm migrates through the hosts circulatory system

to the liver where they mate and start laying eggs within 23 to 35 days. The eggs infiltrate

through the tissues and are passed in the feces. That finishes schistosomiasis life cycle. From

the life cycle, we can see that the developmental times (or prepatent periods) of the different

stages of schistosoma is very important for Schistosome japonicum transmission. In this paper,

we incorporate effects of the developmental times of the different stages of schistosoma into

the model (1.1) and propose a generalized Barbour’s model which is a system of four delay

differential equations. we study dynamics of the system and obtain the basic reproductive

number. When the basic reproductive number is greater than one, the system has an endemic

equilibrium. Some conditions are given for global stability or local stability of the endemic

equilibrium. And it is shown that the system can undergo Hopf bifurcation and a periodic

orbit emerge in the small neighborhood of the endemic equilibrium if the delays take some

values, and the basic reproductive number decreases if the prepatent periods on infected hosts

or snails are prolonged. This implies that the dynamics of the system depends on the delays,
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which is different from the conclusions in [14].

Figure 1 A transmission diagram of Schistosome japonicum

This paper is organized as follows. In Section 2, after stating some assumptions we formulate

a mathematical model of the transmission dynamics of Schistosome japonicum with prepatent

periods. The qualitative analysis and numerical simulations of the model are presented in

Section 3. The paper ends with a brief discussion.

2 Model Formulation

In this section, we incorporate the effect of the developmental times (or prepatent periods) of

the different stages of schistosoma into model (1.1), and consider that the numbers of definitive

hosts and the intermediate snails are not constants in a community. This approach leads to a

system of four delay differential equations.

Consider a relatively isolated community where there are not immigration or emigration,

each group of definitive hosts (human or animals) may be infected by Schistosome japonicum

in stationary environmental conditions. As we know, a real-world environment is clearly non-

stationary, and would include seasonal and weather variations in snail population and contact

patterns. Hence, “stationary environmental conditions” implies that we have made the as-

sumption that snail populations and infection rates in the community are independence of

environmental factor for simplifying model.

Adapting Barbour’s idea, we divide the definitive hosts population (e.g. human) and the

intermediate snails population in the community into two disjoint classes: susceptible (H ,

S) and infected (Ih, Is), respectively. Suppose that the infection in the definitive host or

intermediate snail does not result death or isolation directly and all newborns are susceptible.

For the transmission of the pathogen, it is assumed that a susceptible host can receive the

infection only by contacting with water in which there exist cercariae from infected snails, and

a susceptible snail can receive the infection only from miracidia hatching from parasite eggs in

feces of infected hosts. Assume that the transit time from cercaria in water to schistosomule

in host is τ1 and the transit time from parasite eggs to miracidia to infect snail is τ3. It is

known that the transit times are very short, i.e., τ1 and τ3 are very small. On the other hand,

a susceptible host becomes infection for some time and then excretes faeces with parasite eggs,
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and a susceptible snail becomes infection for some time and then release cercariae. Assume that

the prepatent period in host and snail has duration τ2 and τ4, respectively. It is possible that

some hosts (or snail) die due to natural death during this incubation period, respectively. Thus,

of those hosts (snails) after τ2 (τ4, respectively) unit times, only H(t−τ2)e
−dhτ2 (S(t−τ4)e

−dsτ4 ,

respectively) is left at the present time t, where dh (ds) is the per capita natural death rate

of the definitive hosts (intermediate snail, respectively). Then the dynamics of the definitive

hosts population and the intermediate snails population in the community is formulated by the

following system:

dH

dt
= λh − dhH + rIh − αIs(t − τ1)H(t − τ2)e

−dhτ2 ,

dIh

dt
= αIs(t − τ1)H(t − τ2)e

−dhτ2 − (dh + r)Ih,

dS

dt
= λs − dsS − βIh(t − τ3)S(t − τ4)e

−dsτ4 ,

dIs

dt
= βIh(t − τ3)S(t − τ4)e

−dsτ4 − dsIs,

(2.1)

where H(t) (S(t)) is the numbers of susceptible hosts (snails, respectively) and Ih(t) (Is(t))

is the numbers of infected hosts (snails, respectively) at time t in the community. λh (λs) is

the recruitment rate of hosts (snails, respectively), dh (ds) is the per capita natural death rate

of the definitive hosts (intermediate snail, respectively), r is the per capita rate of recovery in

hosts, α is the per capita rate of infection of hosts by cercaria released by a infected snail, β

is the per capita rate of infection of snails by miracidia from the parasite eggs from a infected

host, and τi (i = 1, 2, 3, 4) are transit times or prepatent periods described as above.

From biological view, we assume that system (2.1) holds for the time t > 0 with given

nonnegative initial conditions:

H(t) ≥ 0, on [−τ2, 0]; S(t) ≥ 0, on [−τ4, 0];

Ih(t) ≥ 0, on [−τ3, 0]; Is(t) ≥ 0, on [−τ1, 0].
(2.2)

By qualitative analysis and standard results of functional differential equations in [9], we can see

that solutions to system (2.1) with initial conditions (2.2) exist and are unique, and H(t) ≥ 0,

S(t) ≥ 0, Ih(t) ≥ 0 and Is(t) ≥ 0 for all t ≥ 0. In the following, we focus on dynamics of system

(2.1) in a nonnegative cone

D = {(H(t), Ih(t), S(t), Is(t)) : H(t) ≥ 0, Ih(t) ≥ 0, S(t) ≥ 0, Is(t) ≥ 0 for t ≥ 0}.

3 Dynamics of the Model

In this section, we study the dynamics of system (2.1) with conditions (2.2) in the nonnega-

tive cone D for three cases: without all delays, without prepatent period from infected host and

without prepatent period from infected snail, discuss the existence and stability of nonnegative

equilibria and periodic orbits, and give the basic reproductive number which is an important

parameter in the transmission of infectious diseases.

When the infective hosts and the infective snails do not exist, i.e., Ih = Is = 0, then H = λh

dh

and S = λs

ds
. This is the infection free equilibrium E0 =

(

λh

dh

, 0, λs

ds
, 0

)

for schistosomiasis. The
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following theorem determines linear stability of E0 and existence of endemic equilibrium in

terms of a threshold parameter

R0 =
αβλhλs

(r + dh)dhd2
se

dhτ2+dsτ4

.

Theorem 3.1 If R0 ≤ 1, then system (2.1) has a unique equilibrium E0 =
(

λh

dh

, 0, λs

ds

, 0
)

,

and E0 is linear stable if R0 < 1. If R0 > 1, then system (2.1) has an endemic equilibrium

E1 = (H∗, I∗h, S∗, I∗s ) except the disease free equilibrium E0, where

H∗ =
λh

dh

− αβλhλs − (r + dh)dhd2
se

dhτ2+dsτ4

βdh[αλs + (r + dh)dsedhτ2 ]
,

I∗h =
αβλhλs − (r + dh)dhd2

se
dhτ2+dsτ4

βdh[αλs + (r + dh)dsedhτ2 ]
,

S∗ =
αλsdh + (r + dh)dhdse

dhτ2

α(βλhe−dsτ4 + dhds)
,

I∗s =
αβλsλhe−dsτ4 − (r + dh)dhd2

se
dhτ2

αds(βλhe−dsτ4 + dhds)
.

(3.1)

Proof Computing the nonnegative solutions of the following equations:

λh − dhH + rIh − αIsHe−dhτ2 = 0,

αIsHe−dhτ2 − (dh + r)Ih = 0,

λs − dsS − βIhSe−dsτ4 = 0,

βIhSe−dsτ4 − dsIs = 0,

(3.2)

we can easily obtain the existence of two equilibria E0 and E1.

The standard approach to studying linear stability of an equilibrium for (2.1) is to compute

the linearized operator of (2.1) at the equilibrium and to study the eigenvalues of the operator.

The equilibrium is linear stable if all eigenvalues of the operator have negative real parts.

We now calculate the associated characteristic equation of operator of system (2.1) at E0

and obtain

(λ + dh)(λ + ds)[λ
2 + δ1λ + δ2 + δ3e

−λτ ] = 0, (3.3)

where τ = τ1 + τ3, δ1 = dh + r+ds, δ2 = (dh + r)ds and δ3 = −αβλhλs

dhds
e−dhτ2−dsτ4 . It is obvious

that λ1 = −dh and λ2 = −ds are two negative characteristic roots of (3.3). Hence, we only

need to discuss the roots of the following equation:

λ2 + δ1λ + δ2 + δ3e
−λτ = 0. (3.4)

Let

F (λ, τ) = λ2 + δ1λ + δ2 + δ3e
−λτ .

Then F (0, τ) = δ2 + δ3 = (dh + r)ds(1 − R0) ≥ 0 and

∂F (λ, τ)

∂λ
= 2λ + dh + r + ds + (τ1 + τ3)

αβλhλs

dhds

e−dhτ2−dsτ4e−λ(τ1+τ3) > 0

for τ ≥ 0 and λ ≥ 0. Thus, (3.4) has no positive root for all positive τ .
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Note that all characteristic roots of (3.4) are negative if τ = 0 and R0 < 1. We further

claim that any root of (3.4) must have negative real part for all τ > 0 as R0 < 1. Assume that

there exists a τ0 > 0 such that (3.4) has pure imaginary roots λ = ±iω (ω > 0). Then we have

from (3.4) that
{

δ3 cosωτ0 = ω2 − δ2,

δ3 sin ωτ0 = δ1ω.

Adding up the squares of both equations, we obtain

ω4 + (δ2
1 − 2δ2)ω

2 + δ2
2 − δ2

3 = 0. (3.5)

By calculation, we have

δ2
1 − 2δ2 = (dh + r)2 + d2

s > 0

and

δ2 − δ3 = (dh + r)ds +
αβλhλs

dhds

e−dhτ2−dsτ4 > 0.

Thus, δ2
2 − δ2

3 ≥ 0, which implies that (3.5) has no positive roots, i.e., τ0 does not exist. This

yields that all roots of (3.4) have negative real parts if R0 < 1. We complete the proof.

According to definition of the basic reproductive number in [7], we can see that R0 is a

basic reproductive number of system (2.1). From Theorem 3.1, we can see that the dynamics of

system (2.1) is interesting if R0 > 1. Adding the first two equations of system (2.1), we obtain

d(H + Ih)

dt
= λh − dh(H + Ih).

We conclude that H + Ih = λh

dh

is an invariant attracting manifold of system (2.1) for all t ≥ 0.

Similarly, S + Is = λs

ds
is also an invariant attracting manifold of system (2.1) for all t ≥ 0 by

adding the last two equations of system (2.1). Therefore, system (2.1) can be reduced to

dIh

dt
= αIs(t − τ1)

(λh

dh

− Ih(t − τ2)
)

e−dhτ2 − (dh + r)Ih,

dIs

dt
= βIh(t − τ3)

(λs

ds

− Is(t − τ4)
)

e−dsτ4 − dsIs.

(3.6)

We are interested in what the simplified two dimensional system (3.6) in

D = {(Ih(t), Is(t)) : Ih(t) ≥ 0, Is(t) ≥ 0 for t ≥ 0}

predicts as the long-term dynamics. It is clear that system (3.6) has two equilibria E0 =

(0, 0) and E1 = (I∗h, I∗s ) if R0 > 1. To study the stability of E1, we calculate the associated

characteristic equation of linear operator of system (3.6) at E1 = (I∗h , I∗s ) and obtain

λ2 + (dh + r + ds)λ + (dh + r)ds + βI∗he−dsτ4(λ + dh + r)e−λτ4

+ αI∗s e−dhτ2(λ + ds)e
−λτ2 + αβI∗hI∗s e−dhτ2−dsτ4e−λ(τ2+τ4)

− αβ
(λh

dh

− I∗h

)(λs

ds

− I∗s

)

e−dhτ2−dsτ4e−λ(τ1+τ3) = 0. (3.7)

It is a challenge to compute the roots of (3.7) for all τi (i = 1, 2, 3, 4). We now study equation

(3.7) and the dynamics of system (3.6) in three cases.
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3.1 Dynamics of system (3.6) without delays

When τi = 0 (i = 1, 2, 3, 4) equation (3.7) becomes

λ2 + (dh + r + ds)λ + (dh + r)ds + βI∗h(λ + dh + r) + αI∗s (λ + ds)

+ αβI∗hI∗s − αβ
(λh

dh

− I∗h

)(λs

ds

− I∗s

)

= 0. (3.8)

By a tedious calculation, we can see that two roots of (3.8) have negative real parts if R0 > 1.

Thus, equilibrium E1 is locally stable if R0 > 1.

On the other hand, the solutions of system (3.6) are ultimately bounded in the nonnegative

quadrate D if τi = 0 (i = 1, 2, 3, 4). By qualitative analysis, we can see that 0 ≤ Ih(t) ≤ λh

dh

and 0 ≤ Is(t) ≤ λs

ds

as t ≥ t0 for some nonnegative t0.

Theorem 3.2 Assume τi = 0 (i = 1, 2, 3, 4). Then the equilibrium E0 of system (3.6) is

globally stable in D if R0 < 1, and the equilibrium E1 of system (3.6) is globally stable in the

interior of D if R0 > 1 (see Figure 2).

Proof The first assertion follows from the fact that the solutions of system (3.6) are

ultimately bounded in D and Theorem 3.1.

It is easy to check that equilibrium E0 of system (3.6) is a saddle if R0 > 1. By analysis

above, we know that equilibrium E1 is locally stable if R0 > 1 and all solutions of system (3.6)

are ultimately bounded in D. To prove the second assertion, we only prove that system (3.6)

has not periodic orbits in the interior of D if R0 > 1. Since the divergence of (3.6) in the

interior of D is

−(dh + r + ds + αIs(t) + βIh(t)) ≤ 0,

which leads to the nonexistence of periodic orbits in the interior of D for system (3.6) by

Bendixson theorem, therefore, the proof is completed.

−

Figure 2 Global stability of E1 for system (3.6) as λh = 6, dh = 0.03, r = 0.02, α = 0.008,
λs = 2, ds = 0.05, β = 0.01 and τi = 0 (i = 1, 2, 3, 4).
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3.2 Dynamics of system (3.6) without prepatent period on infected snail

Assume that infected snail has no prepatent period. Then τ4 = 0. We further assume that

τ1 + τ3 = τ2 = τ . Hence, equation (3.7) becomes

P (λ, τ) + Q(λ, τ)e−λτ = 0, (3.9)

where
P (λ, τ) = λ2 + A1λ + A2,

Q(λ, τ) = A3e
−dhτλ + A4e

−dhτ .

Here A1 = dh + r + ds + βI∗h, A2 = (dh + r)(ds + βI∗h), A3 = αI∗s and A4 = αdsI
∗

s +
αβλhI∗

s

dh

+
αβλsI∗

h

ds
− αβλhλs

dhds
.

When τ = 0, equation (3.9) becomes equation (3.8). All roots of equation (3.9) have negative

real parts if R0 > 1 by Theorem 3.2. Note that zero is not a root of (3.8) for all positive τ . In

the following, we study whether there exists a pair of purely imaginary roots λ = ±iω(ω > 0)

of (3.9) for some positive τ . Following a geometrical criterion in [4], to warrant the existence

of purely imaginary roots, we need to check some conditions as follows:

( i ) F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2 has at most a finite number of real zeros on ω;

(ii) Each positive root ω(τ) of F (ω, τ) = 0 is continuous and differentiable in τ whenever

it exists.

By calculation, we have

F (ω, τ) = ω4 + a1(τ)ω2 + a2(τ),

where a1(τ) = A2
1−2A2−(A3e

−dhτ )2 and a2(τ) = A2
2−(A4e

−dhτ )2. It is obvious that condition

(i) holds, and condition (ii) also holds by continuous differentiability of F (ω, τ) and Implicit

Function Theorem.

Suppose that λ = iω (ω > 0) is a root of (3.9). Substituting it into (3.9) and separating the

real and imaginary parts yield

{

A4e
−dhτ cosωτ + A3e

−dhτω sin ωτ = ω2 − A2,

A3e
−dhτω cosωτ − A4e

−dhτ sin ωτ = −A1ω.
(3.10)

From (3.10), it follows that

sin ωτ =
ω(A3e

−dhτω2 + A1A4e
−dhτ − A2A3e

−dhτ )

A2
3e

−2dhτω2 + A2
4e

−2dhτ
,

cosωτ =
(A4e

−dhτ − A1A3e
−dhτ )ω2 − A2A4e

−dhτ

A2
3e

−2dhτω2 + A2
4e

−2dhτ
.

(3.11)

We rewrite (3.11) into

sin ωτ = Im
(P (iω, τ)

Q(iω, τ)

)

and cosωτ = −Re
(P (iω, τ)

Q(iω, τ)

)

.

Hence, if ω satisfies (3.10), then ω(τ) must be a solution to

|P (iω, τ)|2 − |Q(iω, τ)|2 = ω4 + a1(τ)ω2 + a2(τ) = 0, (3.12)
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which is given by

ω2
+(τ) =

−a1(τ)+
√

a2

1
(τ)−4a2(τ)

2 ,

ω2
−

(τ) =
−a1(τ)−

√
a2

1
(τ)−4a2(τ)

2 .

(3.13)

By calculation, we obtain that a1(τ) > 0 and a2(τ) > 0 if dh + r > αλs

ds
. Hence, equation (3.12)

has no positive solution if dh + r > αλs

ds

, which leads to the fact that (3.9) has not any pure

imaginary roots for all τ > 0. Therefore, E1 is asymptotic stability.

−

Figure 3 Asymptotic stability of E1 for system (3.6) as λh = 6, dh = 0.03, r = 0.02,
α = 0.001, λs = 2, ds = 0.05, β = 0.01, τ1 = 6, τ2 = 15, τ3 = 9 and τ4 = 0.

On the other hand, if a2(τ) < 0, then (3.12) has a unique positive solution. If a2
1(τ) −

4a2(τ) ≥ 0 and a1(τ) < 0, then (3.12) has at least one positive root.

Suppose that I ⊆ R0+ is the set such that ω(τ) is a positive solution of (3.11) for τ ∈ I.

For any τ ∈ I, we define the angle θ(τ) ∈ [0, 2π] such that sin θ(τ) and cos θ(τ) are given by

the right-hand sides of (3.11), respectively. And the relation between the argument θ(τ) and

ω(τ)τ for τ ∈ I must be

ω(τ)τ = θ(τ) + 2nπ, n ∈ N.

Hence we can define the maps τn : I → R0+ given by

τn(τ) =
θ(τ) + 2nπ

ω(τ)
, n ∈ N, τ ∈ I,

where ω(τ) is a positive solution of (3.12). Let us introduce the functions Sn(τ) : I → R,

Sn(τ) = τ − τn(τ), n ∈ N, τ ∈ I,

which is continuous and differentiable in τ .

Following the theorem in [4], we have the lemma below.

Lemma 3.1 Assume that ω(τ) is a positive solution to (3.12) defined on τ ∈ I, I ⊆ R0+,

and there exists some τ∗ ∈ I such that Sn(τ∗) = 0 for some n ∈ N. Then equation (3.9) has a
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pair of conjugate pure imaginary roots λ = ±iω(τ∗) at τ = τ∗, and equation (3.9) has a complex

solution ω(τ) with positive (negative) real part as τ > τ∗ if δ(τ∗) > 0 (δ(τ∗) < 0, respectively),

where

δ(τ∗) = sign{F ′

ω(ω(τ∗), τ∗)}sign
{dSn(τ)

dτ

∣

∣

∣

τ=τ∗

}

.

Figure 4 Asymptotic stability of E1 for system (3.6) as λh = 6, dh = 0.03, r = 0.02,
α = 0.008, λs = 2, ds = 0.05, β = 0.01, τ1 = 4.2, τ2 = 7.2, τ3 = 3 and τ4 = 0, here
τ∗ = 7.301.

Figure 5 System (3.6) undergoes Hopf bifurcation and a stable periodic orbit emerges as
λh = 6, dh = 0.03, r = 0.02, α = 0.008, λs = 2, ds = 0.05, β = 0.01, τ1 = 3, τ2 = 7.5,
τ3 = 4.5 and τ4 = 0, here τ∗ = 7.301.

Summarizing above discussion, we have the following conclusion by Lemma 3.1 and Hopf

bifurcation theorem in [9].
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Theorem 3.3 Assume that R0 > 1, τ4 = 0 and τ1 + τ3 = τ2. Then

( i ) the endemic equilibrium E1 of system (3.6) is asymptotically stable for all τ ≥ 0 if

dh + r > αλs

ds

; the numerical simulation is provided in Figure 3;

(ii) there exists a τ∗ such that the endemic equilibrium E1 of system (3.6) is asymptotically

stable for 0 ≤ τ < τ∗, and when τ > τ∗ system (3.6) undergoes Hopf bifurcation and a stable

periodic orbit emerges in the small neighborhood of E1 if either a2(τ) < 0 or a2
1(τ)−4a2(τ) ≥ 0

and a1(τ) < 0; the numerical simulations are provided in Figure 4 and Figure 5.

3.3 Dynamics of system (3.6) without prepatent period on infected host

Assume that infected host has no prepatent period. Then τ2 = 0. We further assume

τ1 + τ3 = τ4 = τ . Hence, equation (3.7) becomes

P1(λ, τ) + Q1(λ, τ)e−λτ = 0, (3.14)

where

P1(λ, τ) = λ2 + B1λ + B2,

Q1(λ, τ) = B3e
−dsτλ + B4e

−dsτ ,

where B1 = dh + r + ds + αI∗s , B2 = ds(dh + r + αI∗s ), B3 = βI∗h and B4 = βI∗h(dh + r) +
αβλhI∗

s

dh

+
αβλsI∗

h

ds
− αβλhλs

dhds
.

Similarly to the analysis in Subsection 3.2, we can see that when τ = 0, equation (3.14)

becomes equation (3.8). All roots of equation (3.14) have negative real parts if R0 > 1 by

Theorem 3.2. Note that zero is not a root of (3.8) for all positive τ .

Let

F (ω, τ) = |P1(iω, τ)|2 − |Q1(iω, τ)|2.

Then, by calculation, we have

F (ω, τ) = ω4 + a1(τ)ω2 + a2(τ),

where a1(τ) = B2
1 − 2B2 − (B3e

−dsτ )2 and a2(τ) = B2
2 − (B4e

−dsτ )2.

Suppose that λ = iω (ω > 0) is a solution to (3.14), then we have

{

B4e
−dsτ cosωτ + B3e

−dsτω sin ωτ = ω2 − B2,

B3e
−dsτω cosωτ − B4e

−dsτ sin ωτ = −B1ω.
(3.15)

From (3.15), it follows that

sin ωτ =
ω(B3e

−dsτω2 + B1B4e
−dsτ − B2B3e

−dsτ )

B2
3e−2dsτω2 + B2

4e−2dsτ
,

cosωτ =
(B4e

−dsτ − B1B3e
−dsτ )ω2 − B2B4e

−dsτ

B2
3e−2dsτω2 + B2

4e−2dsτ
.

(3.16)

Thus,

sin ωτ = Im
( P1(iω, τ)

Q1(iω, τ)

)

and cosωτ = −Re
( P1(iω, τ)

Q1(iω, τ)

)

.



444 Y. Yang and D. M. Xiao

Suppose that ω(τ) is a solution to (3.15), then ω(τ) must satisfy

|P1(iω, τ)|2 − |Q1(iω, τ)|2 = ω4 + a1(τ)ω2 + a2(τ) = 0. (3.17)

The solutions of (3.17) are given by

ω2
+(τ) =

−a1(τ) +
√

a2
1(τ) − 4a2(τ)

2
,

ω2
−

(τ) =
−a1(τ) −

√

a2
1(τ) − 4a2(τ)

2
.

(3.18)

Using the similar arguments in Subsection 3.2, we obtain the following theorem.

Figure 6 Asymptotic stability of E1 for system (3.6) as λh = 3, dh = 0.03, r = 0.02,
α = 0.005, λs = 2, ds = 0.05, β = 0.006, τ1 = 1.8, τ2 = 0, τ3 = 2.7 and τ4 = 4.5, here
τ∗ = 4.7578.

−

Figure 7 System (3.6) undergoes Hopf bifurcation and a periodic orbit emerges as λh = 3,
dh = 0.03, r = 0.02, α = 0.005, λs = 2, ds = 0.05, β = 0.006, τ1 = 3, τ2 = 0, τ3 = 2.1 and
τ4 = 5.1, here τ∗ = 4.7578.

Theorem 3.4 Assume that R0 > 1, τ2 = 0 and τ1 + τ3 = τ4. Then
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( i ) the endemic equilibrium E1 of system (3.6) is asymptotically stable for all τ ≥ 0 if

a1(τ) > 0 and a2(τ) > 0;

(ii) there exists a positive τ∗ such that the endemic equilibrium E1 of system (3.6) is

asymptotically stable for 0 ≤ τ < τ∗, and when τ > τ∗ system (3.6) undergoes Hopf bifurcation

and a stable periodic orbit emerges in the small neighborhood of E1 if either a2(τ) < 0 or

a2
1(τ) − 4a2(τ) ≥ 0 and a1(τ) < 0; the numerical simulations are provided in Figure 6 and

Figure 7.

4 Discussions

In this paper, we propose a system of delay differential equations as a generalized Barbour’s

model for schistosomiasis japonicum transmission. The model takes into account the prepatent

periods for the transmission of infection between the definitive hosts and the intermediate snails.

It is shown that the system has only the infection free equilibrium which is stable if the basic

reproductive number R0 is less than one, and the system has an endemic equilibrium if the

basic reproductive number R0 is greater than one. Some sufficient conditions are given for the

asymptotical stable of the endemic equilibrium. Bifurcation analysis indicates that the system

can undergo Hopf bifurcation and a periodic orbit emerges in the small neighborhood of the

endemic equilibrium if the delays take some values, and the basic reproductive number decreases

if the prepatent periods on infected hosts or snails are prolonged. This implies that delays affect

the dynamics of the system, which is different to the conclusions in [14]. Our results suggest that

it is an effective strategy on schistosomiasis control to lengthen in prepatent period on infected

definitive hosts by drug treatment (or lengthen in prepatent period on infected intermediate

snails by lower water temperature).

References

[1] Anderson, R. and May, R., Helminth infections of humans: mathematical models, population dynamics,
and control, Adv. Para., 24, 1985, 1–101.

[2] Anderson, R. and May, R., Infectious Diseases of Humans: Dynamics and Control, Oxford University
Press, Oxford, New York, 1991.

[3] Barbour, A., Modeling the transmission of schistosomiasis: an introductory view, Amer. J. Trop. Med.

Hyg., 55(Suppl.), 1996, 135–143.

[4] Beretta, E. and Kuang, Y., Geometric stability switch criteria in delay differential systems with delay
dependent parameters, SIAM. J. Math. Anal., 33, 2002, 1144–1165.

[5] Castillo-Chavez, C., Feng, Z. and Xu, D., A schistosomiasis model with mating structure and time delay,
Math. Biosci., 211, 2008, 333–341.

[6] Cooke, L., Stability analysis for a vector disease model, Rocky Mount, J. Math., 7, 1979, 253–263.

[7] Driessche, P. and Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for com-
partmental models of disease transmission, Math. Biosci., 180, 2002, 29–48.

[8] Hairston, G., An analysis of age-prevalence data by catalytic model, Bull. World Health Organ., 33, 1965,
163–175.

[9] Hale, J. and Verduyn Lunel, S. M., Introduction to Functional Differential Equations, Springer-Verlag,
New York, 1993.

[10] Liang, S., Maszle, D. and Spear, R., A quantitative framework for a multi-group model of Schistosomiasis
japonicum transmission dynamics and control in Sichuan, China, Acta Tropica, 82, 2002, 263–277.

[11] Macdonald, G., The dynamics of helminth infections, with special reference to dchistosomes, Trans. R.

Soc. Trop. Med. Hyg., 59, 1965, 489–506.



446 Y. Yang and D. M. Xiao

[12] Nasell, I. and Hirsch, W., The transmission dynamics of Schistosomiasis, Comm. Pure Appl. Math., 26,
1973, 395–453.
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