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1 Introduction

The one-dimensional mathematical model of unsteady flows in an open canal was given by

de Saint-Venant [14]. In [4], the authors gave a corresponding model of Saint-Venant system

for a network of open canals, in which the interface conditions at any given joint point of open

canals are given.

In recent years, based on the result on the semi-global classical solution in [9], the exact

boundary controllability for general first order quasilinear hyperbolic systems has been estab-

lished (see [10, 11]). Then this result has been applied to get the exact boundary controllability

of unsteady subcritical flows in a network of open canals (see [5, 6, 12, 13]). On the other

hand, with the interface conditions given in [3], the exact boundary controllability of unsteady

supercritical flows in a tree-like network of open canals has been established (see [1]).

Moreover, the exact boundary observability for first order quasilinear hyperbolic systems has

been studied in [7, 8], in which an implicit duality between the exact boundary controllability

and the exact boundary observability is also given. Based on this result, the exact boundary

observability of unsteady subcritical flows in a tree-like network of open canals has been obtained

(see [2]).

In this paper, under the assumption that the observed value is accurate, i.e., there is no

measuring error in the observation, we will establish the exact boundary observability of super-

critical unsteady flows in a tree-like network of open canals with general topology, in which the

observed values are physically meaningful and practically handleable. Moreover, we will also

show an implicit duality between the exact boundary controllability and the exact boundary

observability for unsteady supercritical flows.
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This paper is organized as follows. We recall the known results on the exact boundary

observability for first order quasilinear hyperbolic systems in Section 2, then the corresponding

exact boundary observability of unsteady supercritical flows in a single open canal and in a star-

like network of open canals will be presented in Sections 3 and 4. Finally the exact boundary

observability of unsteady flows in a tree-like network of open canals will be given in Section 5.

2 Exact Boundary Observability for a Kind of Quasilinear

Hyperbolic System

For the purpose of this paper, in this section we recall the result given in [7, 8] only for the

following quasilinear hyperbolic system of diagonal form

∂ui

∂t
+ λi(u)

∂ui

∂x
= Fi(u), i = 1, · · · , n, (2.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), λi(u) and Fi(u) (i = 1, · · · , n)

are C1 functions of u,

Fi(0) = 0, i = 1, · · · , n (2.2)

and on the domain under consideration

λi(u) < 0, i = 1, · · · , n

(resp. λi(u) > 0, i = 1, · · · , n). (2.3)

The boundary conditions are given as follows:

x = L : ui = hi(t), i = 1, · · · , n

(resp. x = 0 : ui = hi(t), i = 1, · · · , n), (2.4)

where hi (i = 1, · · · , n) are C1 functions of t.

By means of [7, 8], we have the following theorem.

Theorem 2.1 Let

T > max
i=1,··· ,n

L

|λi(0)|
. (2.5)

For any given initial condition

t = 0 : u = ϕ(x), 0 ≤ x ≤ L, (2.6)

such that ‖ϕ‖C1[0,L] is suitably small and the conditions of C1 compatibility for the mixed

initial-boundary value problem (2.1), (2.6) and (2.4) are satisfied at the point (t, x) = (0, L)

(resp. (0, 0)), if we have the observed values ui = ui(t) (i = 1, · · · , n) at x = 0 (resp. ui =

ui(t) (i = 1, · · · , n) at x = L) on the interval [0, T ], then the initial data ϕ(x) can be uniquely

determined and the following observability inequality holds:

‖ϕ‖C1[0,L] ≤ C

n∑

i=1

‖ui‖C1[0,T ]

(
resp. ‖ϕ‖C1[0,L] ≤ C

n∑

i=1

‖ui‖C1[0,T ]

)
. (2.7)
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Here and hereafter, C denotes a positive constant.

Proof We give the proof under the assumption that all eigenvalues λi(u) (i = 1, · · · , n) are

negative (see (2.3)).

Since there is no zero eigenvalue, we may change the status of t and x and solve a rightward

Cauchy problem for system (2.1) with the initial condition

x = 0 : u = u(t), 0 ≤ t ≤ T, (2.8)

where u(t) = (u1(t), · · · , un(t))T with small C1 norm. By the theory of semi-global C1 solution

for quasilinear hyperbolic systems (see [9]), there exists a unique C1 solution u = ũ(t, x) on the

whole maximum determinate domain and

‖ũ‖C1 ≤ C

n∑

i=1

‖ui‖C1[0,T ]. (2.9)

Obviously, u = ũ(t, x) is the restriction of the solution u = u(t, x) to the original mixed problem

on the corresponding domain.

By (2.5), the maximum determinate domain must intersect x = L and contains the interval

0 ≤ x ≤ L on the x-axis. Thus the initial data can be uniquely determined and the observability

inequality (2.7) holds.

3 Exact Boundary Observability of Unsteady Supercritical Flows

in a Single Open Canal

Now we apply the theory on the exact boundary observability to unsteady supercritical

flows. In this section we first consider the case of a single open canal. Let L be the length of

the canal. Taking the x-axis along the inverse direction of flow, this canal can be parameterized

lengthwise by x ∈ [0, L]. Suppose that there is no friction and the canal is horizontal and

cylindrical. The corresponding Saint-Venant system can be written as (see. [4, 6, 14])





∂A

∂t
+

∂(AV )

∂x
= 0,

∂V

∂t
+

∂S

∂x
= 0,

t ≥ 0, 0 ≤ x ≤ L, (3.1)

where A = A(t, x) stands for the area of the cross section at x occupied by the water at time

t, V = V (t, x) is the average velocity over the cross section and

S =
1

2
V 2 + gh(A) + gYb, (3.2)

where g is the gravity constant, constant Yb denotes the altitude of the bed of canal and

h = h(A) (3.3)

is the depth of the water, h(A) being a suitably smooth function of A such that

h′(A) > 0. (3.4)
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Consider an equilibrium state (A, V ) = (A0, V0) of system (3.1) with A0 > 0, which belongs

to the supercritical case, i.e.,

|V0| >
√

gA0h′(A0) . (3.5)

Without loss of generality, we suppose that

V0 < −
√

gA0h′(A0) . (3.6)

The boundary condition is then given as follows:

x = L : Q
def
= AV = q(t), V = v(t). (3.7)

By Theorem 2.1, we have the following theorem on the exact boundary observability.

Theorem 3.1 Under assumption (3.6), let

T >
L

|λ̃2|
= max

( L

|λ̃1|
,

L

|λ̃2|

)
, (3.8)

where

λ̃1
def
= V0 −

√
gA0h′(A0) < λ̃2

def
= V0 +

√
gA0h′(A0) < 0. (3.9)

For any given initial condition

t = 0 : (A, V ) = (A0(x), V0(x)), 0 ≤ x ≤ L, (3.10)

such that the norm ‖(A0(x) − A0, V0(x) − V0)‖C1[0,L] is suitably small and the conditions of

C1 compatibility with (3.1) and (3.7) are satisfied at the point (t, x) = (0, L), if we have the

observed values A = a(t) and V = v(t) at x = 0 on the interval [0, T ], then the initial data

(A0(x), V0(x)) can be uniquely determined and the following observability inequality holds:

‖(A0(x) − A0, V0(x) − V0)‖C1[0,L] ≤ C(‖a(t) − A0‖C1[0,T ] + ‖v(t) − V0‖C1[0,T ]). (3.11)

Proof In a neighbourhood of the supercritical equilibrium state (A0, V0), (3.1) is a strictly

hyperbolic system with two distinct real eigenvalues

λ1
def
= V −

√
gAh′(A) < λ2

def
= V +

√
gAh′(A) < 0. (3.12)

Introducing the Riemann invariants r and s as follows:

{
2r = V − V0 − G(A),

2s = V − V0 + G(A),
(3.13)

where

G(A) =

∫ A

A0

√
gh′(A)

A
dA, (3.14)
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we have
{

V = r + s + V0,

A = H(s − r) > 0,
(3.15)

where H is the inverse function of G(A) with

H(0) = A0, (3.16)

H ′(0) =

√
A0

gh′(A0)
> 0. (3.17)

Taking (r, s) as new unknown variables, the equilibrium state (A, V ) = (A0, V0) corresponds

to (r, s) = (0, 0) and system (3.1) reduces to the following system of diagonal form:






∂r

∂t
+ λ1(r, s)

∂r

∂x
= 0,

∂s

∂t
+ λ2(r, s)

∂s

∂x
= 0,

(3.18)

where
{

λ1(r, s) = r + s + V0 −
√

gH(s − r)h′(H(s − r)) < 0,

λ2(r, s) = r + s + V0 +
√

gH(s − r)h′(H(s − r)) < 0.
(3.19)

The boundary condition (3.7) now becomes

x = L : P1(t, r, s)
def
= (r + s + V0)H(s − r) − q(t) = 0, (3.20)

P2(t, r, s)
def
= (r + s + V0) − v(t) = 0 (3.21)

and the corresponding observed values become

x = 0 : H(s − r) = a(t), 0 ≤ t ≤ T, (3.22)

r + s + V0 = v(t), 0 ≤ t ≤ T. (3.23)

Moreover, the initial condition (3.10) can be written as

t = 0 : (r, s) = (r0(x), s0(x)), (3.24)

where

r0(x) =
1

2
(V0(x) − V0 − G(A0(x))), s0(x) =

1

2
(V0(x) − V0 + G(A0(x))). (3.25)

When (r, s) = (0, 0), noting (3.6), we have

det
∣∣∣
∂(P1, P2)

∂(r, s)

∣∣∣ = −2V0

√
A0

gh′(A0)
> 0. (3.26)

By the implicit function theorem, in a neighbourhood of (r, s) = (0, 0), (3.20), (3.21) can be

equivalently rewritten as

x = L : r = α(t), s = β(t), (3.27)
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where α and β are C1 functions of t. Moreover, noting (3.14), by (3.22) and (3.23), at x = 0

we have




r = r(t)
def
=

1

2

(
v(t) − V0 −

∫ a(t)

A0

√
gh′(A)

A
dA

)
,

s = s(t)
def
=

1

2

(
v(t) − V0 +

∫ a(t)

A0

√
gh′(A)

A
dA

)
,

0 ≤ t ≤ T (3.28)

and

‖(r, s)‖C1[0,T ] ≤ C(‖a(t) − A0‖C1[0,T ] + ‖v(t) − V0‖C1[0,T ]). (3.29)

Thus, noting (3.8), by Theorem 2.1 (r0(x), s0(x)) can be uniquely determined by the ob-

served values r(t) and s(t) (0 ≤ t ≤ T ) at x = 0 and

‖(r0(x), s0(x))‖C1[0,L] ≤ C(‖a(t) − A0‖C1[0,T ] + ‖v(t) − V0‖C1[0,T ]). (3.30)

Then, noting (3.25), it is easy to see that (A0(x), V0(x)) can be uniquely determined and (3.11)

holds. This proves Theorem 3.1.

The procedure of resolution given by Theorem 3.1 can be illustrated by Figure 1, in which

the point E (x = 0) is the end point of the water flow and “→” stands for the direction of

the water flow. Moreover, we need only two observed values taken at E (marked by •), but no

observation at another end (marked by ◦).

Figure 1 The procedure of resolution given by Theorem 3.1.

4 Exact Boundary Observability of Unsteady Supercritical Flows

in a Star-Like Network of Open Canals

Now, we consider the exact boundary observability of unsteady supercritical flows in a star-

like network composed of N open canals c1, · · · , cN . Let the multiple node be the point O.

Suppose that the single node of canal c1 is the end point E and the water flows from other

single nodes (through O) to the point E (see Figure 2, in which “→” stands for the direction

of the water flow).

Let Li be the length of the i-th canal (i = 1, · · · , N). For i = 1, · · · , N , by taking the joint

point O as x = 0, the i-th canal can be parameterized lengthwise by x ∈ [0, Li] and all the

quantities associated with the i-th canal are indexed by i.

Suppose that there is no friction and all the canals are horizontal and cylindrical. The

corresponding Saint-Venant system is (see [4, 6])





∂Ai

∂t
+

∂(AiVi)

∂x
= 0,

∂Vi

∂t
+

∂Si

∂x
= 0,

t ≥ 0, 0 ≤ x ≤ Li, i = 1, · · · , N, (4.1)
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Figure 2 The single node of canal c1 is the end point E and the water
flows from other single nodes (through O) to the point E.

where

Si =
1

2
V 2

i + ghi(Ai) + gYbi, i = 1, · · · , N, (4.2)

Ybi (i = 1, · · · , N) being constants and

h′

i(Ai) > 0, i = 1, · · · , N. (4.3)

The interface conditions at the joint point O are given by the total energy interface condition

N∑

i=1

AiViSi = 0 (4.4)

and the total flux interface condition

N∑

i=1

AiVi = 0 (4.5)

(see [1, 3]), while, at another end of each canal except E we have the boundary conditions

x = Li : Qi
def
= AiVi = qi1(t), Vi = vi1(t), i = 2, · · · , N. (4.6)

Consider an equilibrium state (Ai, Vi) = (Ai0, Vi0) of system (4.1) with Ai0 > 0 (i =

1, · · · , N), which belongs to a supercritical case, i.e.,

Vi0 < −
√

gAi0h
′

i(Ai0) , i = 1, · · · , N, (4.7)

and, corresponding to (4.4), (4.5), satisfies

N∑

i=1

Ai0Vi0Si0 = 0, (4.8)

N∑

i=1

Ai0Vi0 = 0, (4.9)
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where

Si0 =
1

2
V 2

i0 + ghi(Ai0) + gYbi, i = 1, · · · , N. (4.10)

Theorem 4.1 Let

T >
1

|λ̃12|
+ max

i=2,··· ,N

1

|λ̃i2|
, (4.11)

where

λ̃i1
def
=

1

Li

(
Vi0−

√
gAi0h

′

i(Ai0)
)

<λ̃i2
def
=

1

Li

(
Vi0+

√
gAi0h

′

i(Ai0)
)

<0, i = 1, · · · , N. (4.12)

For any given initial condition

t = 0 : (Ai, Vi) = (Ai0(x), Vi0(x)), 0 ≤ x ≤ Li, i = 1, · · · , N, (4.13)

satisfying that
N∑

i=1

‖(Ai0(x) − Ai0, Vi0(x) − Vi0)‖C1[0,Li] is suitably small and the conditions of

piecewise C1 compatibility with (4.1) and (4.4)–(4.6) are satisfied at the joint point O and all

other ends except E, if we have the observed values A1 = a1(t), V1 = v1(t) at point E and

Ai = ai(t), Vi = vi(t) (i = 2, · · · , N − 1) at point O on the interval [0, T ] (the number of

observed values is equal to 2(N − 1)), then the initial data (Ai0(x), Vi0(x)) (i = 1, · · · , N) can

be uniquely determined and the following observability inequality holds:

N∑

i=1

‖(Ai0(x) − Ai0, Vi0(x) − Vi0)‖C1[0,Li]

≤ C
( N−1∑

i=1

‖ai(t) − Ai0‖C1[0,T ] +

N−1∑

i=1

‖vi(t) − Vi0‖C1[0,T ]

)
. (4.14)

Proof In a neighbourhood of the supercritical equilibrium state (Ai0, Vi0) (i = 1, · · · , N),

(4.1) is a hyperbolic system with real eigenvalues

λi1
def
= Vi −

√
gAih

′

i(Ai) < λi2
def
= Vi +

√
gAih

′

i(Ai) < 0, i = 1, · · · , N. (4.15)

For i = 1, · · · , N , introducing the Riemann invariants ri and si as follows:

{
2ri = Vi − Vi0 − Gi(Ai),

2si = Vi − Vi0 + Gi(Ai),
(4.16)

where

Gi(Ai) =

∫ Ai

Ai0

√
gh′

i(Ai)

Ai

dAi, (4.17)

we have
{

Vi = ri + si + Vi0,

Ai = Hi(si − ri) > 0,
(4.18)
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where Hi is the inverse function of Gi(Ai), and

Hi(0) = Ai0, (4.19)

H ′

i(0) =

√
Ai0

gh′

i(Ai0)
> 0. (4.20)

Thus, system (4.1) can be equivalently rewritten as





∂ri

∂t
+ λi1(ri, si)

∂ri

∂x
= 0,

∂si

∂t
+ λi2(ri, si)

∂si

∂x
= 0,

t ≥ 0, 0 ≤ x ≤ Li, i = 1, · · · , N, (4.21)

where

λi1(ri, si)
def
= ri + si + Vi0 −

√
gHi(si − ri)h′

i(Hi(si − ri))

< λi2(ri, si)
def
= ri + si + Vi0 +

√
gHi(si − ri)h′

i(Hi(si − ri)) < 0, i = 1, · · · , N. (4.22)

Moreover, the initial condition (4.13) becomes

t = 0 : (ri, si) = (ri0(x), si0(x)), 0 ≤ x ≤ Li, i = 1, · · · , N, (4.23)

where





ri0(x) =
1

2
(Vi0(x) − Vi0 − Gi(Ai0(x))),

si0(x) =
1

2
(Vi0(x) − Vi0 − Gi(Ai0(x))),

i = 1, · · · , N. (4.24)

As in the proof of Theorem 3.1, (r1, s1) at x = L1 and (ri, si) (i = 2, · · · , N−1) at x = 0 can

be uniquely determined by the observed values ai(t) and vi(t) (i = 1, · · · , N − 1), respectively,

as follows:





ri =
1

2

(
vi(t) − Vi0 −

∫ ai(t)

Ai0

√
gh′

i(Ai)

Ai

dAi

)
,

si =
1

2

(
vi(t) − Vi0 +

∫ ai(t)

Ai0

√
gh′

i(Ai)

Ai

dAi

)
,

i = 1, · · · , N − 1 (4.25)

and

‖(ri, si)‖C1[0,T ] ≤ C(‖ai(t) − Ai0‖C1[0,T ] + ‖vi(t) − Vi0‖C1[0,T ]), i = 1, · · · , N − 1. (4.26)

Now, for i = 1, changing the status of t and x in (4.21) and using (4.25) as the initial data

on x = L1, we can solve a leftward Cauchy problem on canal c1. As in the proof of Theorem

2.1, noting (4.11), we get that (r10(x), s10(x)) can be uniquely determined by a1(t) and v1(t)

and

‖(r10(x), s10(x))‖C1[0,L1] ≤ C(‖a1(t) − A10‖C1[0,T ] + ‖v1(t) − V10‖C1[0,T ]); (4.27)
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moreover, there exists T1,

T1 > max
i=2,··· ,N

1

|λ̃i2|
, (4.28)

such that at x = 0, on the interval [0, T1], (r1, s1) can be also uniquely determined by a1(t) and

v1(t) and

‖(r1, s1)‖C1[0,T1] ≤ C(‖a1(t) − A10‖C1[0,T ] + ‖v1(t) − V10‖C1[0,T ]). (4.29)

At x = 0, the interface conditions (4.4) and (4.5) now become

P1
def
=

N∑

i=1

(ri + si + Vi0)Hi(si − ri)
(1

2
(ri + si + Vi0)

2 + ghi(Hi(si − ri)) + gYi

)
= 0 (4.30)

and

P2
def
=

N∑

i=1

(ri + si + Vi0)Hi(si − ri) = 0. (4.31)

Since when (ri, si) = (0, 0) (i = 1, · · · , N),

det

∣∣∣∣
∂(P1, P2)

∂(rN , sN )

∣∣∣∣ = 2AN0VN0

√
Ai0

gh′

i(Ai0)
(V 2

N0 − gAN0h
′

N(AN0)) < 0, (4.32)

by the implicit function theorem, in a neighbourhood of (ri, si) = (0, 0) (i = 1, · · · , N), (4.30),

(4.31) can be equivalently rewritten as
{

rN = gN1(r1, s1, · · · , rN−1, sN−1),

sN = gN2(r1, s1, · · · , rN−1, sN−1),
(4.33)

where gN1 and gN2 are C1 functions with respect to their arguments with

gN1(0, · · · , 0) = gN2(0, · · · , 0) = 0. (4.34)

So at x = 0, on the interval [0, T1], (rN , sN ) can be uniquely determined by ai(t) and vi(t) (i =

1, · · · , N − 1) and

‖(rN , sN )‖C1[0,T1] ≤ C
( N−1∑

i=1

‖ai(t) − Ai0‖C1[0,T ] +
N−1∑

i=1

‖vi(t) − Vi0‖C1[0,T ]

)
. (4.35)

Now, for i = 2, · · · , N , changing the status of t and x in (4.21) and using (4.25) and (4.33)

as the initial data on x = 0, we can solve the rightward Cauchy problem on each canal ci

respectively. Noting (4.28), as in the proof of Theorem 2.1, we get that (ri0(x), si0(x)) (i =

2, · · · , N) can be uniquely determined and

‖(ri0(x), si0(x))‖C1[0,Li]

≤ C
( N−1∑

i=1

‖ai(t) − Ai0‖C1[0,T ] +

N−1∑

i=1

‖vi(t) − Vi0‖C1[0,T ]

)
, i = 2, · · · , N. (4.36)

Note (4.24). The combination of (4.27) and (4.36) yields the desired conclusion.

The procedure of resolution given by Theorem 4.1 can be illustrated by Figure 3, in which

at the node marked by •, all related values should be observed; at the node marked by ⊙, a part

of related values should be observed; and at the node marked by ◦, no observation is needed.
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Figure 3 The procedure of resolution given by Theorem 4.1.

5 Exact Boundary Observability of Unsteady Supercritical Flows

in a Tree-Like Network of Open Canals

We now consider the exact boundary observability of unsteady flows in a tree-like network

composed by N open canals c1, · · · , cN . Suppose that a single node is the end point E and the

water flows from other single nodes to the point E (see Figure 4, in which “→” stands for the

direction of the water flow).

Figure 4 A single node is the end point E and the water
flows from other single nodes to the point E.

For i = 1, · · · , N , let di0 and di1 be the x-coordinates of two ends of the i-canal Ci, di0 < di1

and Li = di1 − di0 be its length. Suppose that the water in the i-canal flows from di1 to

di0 (i = 1, · · · , N). Under the assumption that there is no friction and all the canals are

horizontal and cylindrical, the corresponding Saint-Venant system can be written as





∂Ai

∂t
+

∂(AiVi)

∂x
= 0,

∂Vi

∂t
+

∂Si

∂x
= 0,

t ≥ 0, di0 ≤ x ≤ di1, i = 1, · · · , N, (5.1)

where Si (i = 1, · · · , N) are given by (4.2).
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When di1 is a simple node, we have the flux boundary condition

x = di1 : Qi
def
= AiVi = qi1(t), Vi = vi1(t). (5.2)

While, when di1 is a multiple node, at di1 we have the total energy interface condition

∑

j∈Ji1
j 6=i

AjVjSj = AiViSi (5.3)

and the total flux interface condition

∑

j∈Ji1
j 6=i

AjVj = AiVi, (5.4)

where Ji1 denotes the set of indices corresponding to all the canals jointed at di1.

Based on Theorem 4.1, we choose a group of observed values as follows:

( i ) For simple nodes, we take the observation only on the end point E. Suppose that E is

the simple node of canal ci. We observe Ai and Vi on it.

(ii) For any given multiple node, suppose that it is the joint point of k canals: ci1 , · · · , cik
,

which constitute a star-like subnetwork. Suppose that the end point for this star-like subnetwork

belongs to ci1 . We observe Ai2 , Vi2 , · · · , Aik−1
, Vik−1

on this multiple node: there are 2(k − 2)

observed values on it.

Using this principle, we can get the following theorems.

Theorem 5.1 Consider a supercritical equilibrium state (Ai, Vi) = (Ai0, Vi0) (i = 1, · · · , N)

of system (4.1) with Ai0 > 0 (i = 1, · · · , N), which satisfies

Vi0 < −
√

gAi0h
′

i(Ai0) , i = 1, · · · , N. (5.5)

Let

λ̃i1
def
= Vi0 −

√
gAi0h

′

i(Ai0) < λ̃i2
def
= Vi0 +

√
gAi0h

′

i(Ai0) < 0 (5.6)

and

T > max
di1∈K

∑

j∈Di

Lj

|λ̃j2|
, (5.7)

where K stands for the set of all simple nodes except point E, and Di the set of indices corre-

sponding to all the canals in the string-like subnetwork connecting the points E and di1.

For any given initial condition

t = 0 : (Ai, Vi) = (Ai0(x), Vi0(x)), i = 1, · · · , N, (5.8)

such that the conditions of piecewise C1 compatibility are satisfied and
N∑

i=1

‖(Ai0(x) − Ai0,

Vi0(x) − Vi0)‖C1[di0,di1] is suitably small, if we choose the observed values on the interval [0, T ]

according to the principle mentioned above, then the initial data can be uniquely determined

and we have the corresponding observability inequality.
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This theorem can be proved similarly to the proof of Theorem 4.1.

More precisely, we have the following theorem.

Theorem 5.2 For any given tree-like network of open canals, if there are l simple nodes,

then we need 2(l − 1) observed values.

Proof We prove this theorem by induction on the number m of the multiple nodes. If there

is only 1 multiple node in the network, then it is a star-like network and the conclusion comes

directly from Theorem 4.1.

Suppose that the conclusion is valid for any given network with m multiple nodes. Consider

a network with m + 1 multiple nodes and l simple nodes. Cutting the network at a multiple

node M such that this network can be regarded as a subnetwork with m multiple nodes plus k

canals, each of which has one original simple node (see Figure 5).

Figure 5 The network can be regarded as a subnetwork with m multiple
nodes plus k canals, each of which has one original simple node.

This subnetwork should have l − (k − 1) simple nodes. According to the assumption of

induction, we need 2[l − (k − 1) − 1] = 2(l − k) observed values for the subnetwork and there

is no observation at M . Moreover, the star-like network with M as its center node contains

k + 1 canals, then, by Theorem 5.1, for the original network, we need 2(k − 1) observed values

at M and there is no observation at all the original simple nodes in this star-like subnetwork.

Therefore, the total number of the observed values is equal to 2(l − k) + 2(k − 1) = 2(l − 1).

Thus, Theorem 5.2 is obtained by induction.

Remark 5.1 Comparing with the results given in [1], we can find an implicit duality

between the exact boundary controllability and the exact boundary observability of unsteady

supercritical flows in a tree-like network as follows:

(1) In a tree-like network, the number of the observed values is equal to the number of

the boundary controls. If the network contains l simple nodes, then both the number of the

observed values and the number of the boundary controls are equal to 2(l − 1).

(2) The observability time is equal to the controllability time. Both of them satisfy (5.7).

(3) The observed values are given on the ending simple node E and all the multiple nodes,

while the controls are acted only on the simple nodes except E (see Figure 6, in which the
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observations are taken on bold nodes “•”, while the boundary controls are acted on hollow

nodes “◦”).

Figure 6 The observations are taken on bold nodes “•”, while
the boundary controls are acted on hollow nodes “◦”.
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