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1 Introduction

Let Rn be the n-dimensional Euclidean space. The Cauchy integral operator is defined by

CAf(x) = p.v.

∫

R1

1

x − y + i(A(x) − A(y))
f(y)dy, (1.1)

where A(x) is a real valued function. This operator is very important in real and complex

analysis, and has attracted many mathematicians to investigate it (see, for example, [2–4, 11]).

It is well-known that CA is bounded on Lp(R1), but few results are known on the Hardy

space Hp(R1). Recently, Komori [14] showed that CA is bounded from Hp(R1) to hp(R1) (the

local Hardy space). In this paper, we consider the weighted version of Hardy space and show

that CA is bounded from Hp
w(R1) to hp

w(R1). To prove the theorem, we introduce a kind of

generalized atoms and consider a variant of weighted “Tb theorem”.

2 Definitions and Notations

Throughout this paper, we always use the letter C to denote positive constants that may

vary at each occurrence, but is independent of the essential variables. And we assume that,

unless otherwise stated, all given functions are complex valued.

We denote the Euclidean ball with center x of radius r by B(x, r), and the Lebesgue measure

of a measurable set E by |E|.
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Let ϕ be a fixed real valued Schwartz function in S(Rn) such that supp(ϕ) ⊂ B(0, 1) and∫
ϕ(x)dx = 1. We denote

f++(x) = sup
t>0

|ϕt ∗ f(x)|, f+(x) = sup
0<t<1

|ϕt ∗ f(x)|,

where ϕt(x) = 1
tn ϕ(x

t
).

Definition 2.1 Let 0 < p ≤ 1, the Hardy space Hp(Rn) (see [6]) and the local Hardy space

hp(Rn) (see [9]) are defined respectively by

Hp(Rn) = {f ∈ S′(Rn) : ‖f‖Hp = ‖f++‖Lp < ∞}

and

hp(Rn) = {f ∈ S′(Rn) : ‖f‖hp = ‖f+‖Lp < ∞}.

We remark that Hp(Rn) ⊂ hp(Rn), h1(Rn) ⊂ L1(Rn) and all the inclusions are proper.

Definition 2.2 For 0 < α ≤ 1, the Lipschitz space Λα(Rn) and the local Lipschitz space

Λα
loc(R

n) are the sets of all functions f satisfying the following conditions respectively

‖f‖Λα = sup
0<|x−y|

|f(x) − f(y)|

|x − y|
< ∞,

‖f‖Λα
loc

= sup
0<|x−y|<2

|f(x) − f(y)|

|x − y|
< ∞.

It is easy to see that Λ1(Rn) = Λ1
loc(R

n) and Λα(Rn) ⊂ Λα
loc(R

n) (0 < α < 1), where the

inclusion is proper. Furthermore, we know that the dual space of Hp(Rn) is Λn( 1

p
−1)(Rn), i.e.

(Hp(Rn))∗ = Λn( 1

p
−1)(Rn), where n

n+1 < p < 1 (see [6]).

Definition 2.3 A locally integrable function f is in BMO if

sup
B

1

|B|

∫

B

|f − mBf |dx < ∞,

where mBf = 1
|B|

∫
B

f(x)dx and the supremum is taken over all balls B. We denote the

supremum by ‖f‖BMO.

A weight is a nonnegative, locally integrable function. We consider weights satisfying the

following conditions.

Definition 2.4 Let 1 < q < ∞. We say that a weight w satisfies the Aq condition if there

exists a positive constant C such that for all balls B,

( 1

|B|

∫

B

w(x)dx
)( 1

|B|

∫

B

w(x)−
1

q−1 dx
)q−1

≤ C.

We also say that a weight w satisfies the A1 condition if there is a constant C > 0 such that

for all balls B,
1

|B|

∫

B

w(x)dx ≤ C essinf
x∈B

w(x).

Finally, we define A∞ =
⋃

q≥1

Aq.
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Observe that Ap ⊂ Aq if 1 ≤ p < q.

Definition 2.5 (see [17]) Let w ∈ A∞ and 0 < p ≤ 1. We define the weighted Hardy space

Hp
w(Rn) and the weighted local Hardy space hp

w(Rn) as follows:

Hp
w(Rn) = {f ∈ S′(Rn) : ‖f‖H

p
w

= ‖f++‖L
p
w

< ∞}

and

hp
w(Rn) = {f ∈ S′(Rn) : ‖f‖h

p
w

= ‖f+‖L
p
w

< ∞}.

Next we define Calderón-Zygmund operators. One may refere to [10, 16]. But since we are

interested in the Cauchy integral operator, our definitions will be presented as follows (see [14]).

Definition 2.6 Let 0 < δ ≤ 1. A locally integrable function K(x, y) defined on {(x, y) ∈

Rn × Rn : x 6= y} is called a Calderón-Zygmund kernel if it satisfies the following conditions:

|K(x, y)| ≤
C

|x − y|n
, (2.1)

|K(x, y) − K(x, z)| + |K(y, x) − K(z, x)| ≤ C
|y − z|δ

|x − z|n+δ
, 2|y − z| < |x − z|. (2.2)

Definition 2.7 We say that an operator T is a δ-Calderón-Zygmund operator associated

with a Calderón-Zygmund kernel K(x, y) if for every f ∈ L2(Rn),

Tf(x) = lim
ǫ→0

∫

|x−y|>ǫ

K(x, y)f(y)dy

exists almost everywhere in Rn and T is bounded on L2(Rn), i.e. ‖Tf‖L2 ≤ C‖f‖L2.

Remark 2.1 If T is a δ-Calderón-Zygmund operator and w ∈ Aq, then T is bounded on

Lq
w(Rn), q > 1 (see [7], [11, p. 52] and [15]).

Definition 2.8 The transpose of an operator T is denoted by

tTf(x) = lim
ǫ→0

∫

|x−y|>ǫ

K(y, x)f(y)dy.

Definition 2.9 For a bounded function b, we define

t̃Tb(x) = lim
ǫ→0

∫

|x−y|>ǫ

{K(y, x) − K(y, 0)χ|y|≥1(y)}b(y)dy.

Note that if b ∈ L2(Rn) ∩ L∞(Rn), then t̃Tb(x) =t Tb(x) + Cb a.e., where Cb is a constant.

Definition 2.10 Let β > 0. A bounded function b is said to be β-accretive if Re b(x) ≥ β

for almost all x.

3 Theorems

First we recall some known results. The Lp boundedness of CA is well-known, and the

following theorem is the most essential (see [3] and [10, p. 647]).
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Theorem 3.1 If A′ ∈ L∞(R1), then the Cauchy integral operator CA defined by (1.1) is a

1-Calderón-Zygmund operator.

Recently, Komori [14] showed that CA is bounded from Hp(R1) to hp(R1), i.e., the following

theorem.

Theorem 3.2 Let 0 < α < 1 and 1
1+α

≤ p ≤ 1. If A′ ∈ L∞(R1) ∩ ∧α(R1), then CA is

bounded from Hp(R1) to hp(R1).

In order to prove Theorem 3.2, he considered a variant of “Tb theorem” as follows.

Theorem 3.3 Let 0 < α < 1, n
n+δ

< p ≤ 1, n
n+α

≤ p and T be a δ-Calderón-Zygmund

operator. If there exists a β-accretive function b such that b, t̃Tb ∈ ∧α(Rn), then T is a bounded

operator from Hp(Rn) to hp(Rn) and

‖Tf‖hp ≤ C‖f‖Hp .

As a corollary, he got Theorem 3.2 by Theorem 3.3.

Remark 3.1 In [14], the author obtained the hp(Rn) (0 < p < 1) estimate by (Hp(Rn))∗ =

Λn( 1

p
−1)(Rn) and the h1(Rn) estimate by interpolation. In this paper, we use a different method

to prove our theorems. The details are presented in Section 5.

Now we turn to the weighted Hardy space case. Our main results are the following.

Theorem 3.4 Let 0 < α ≤ 1 ≤ q, nq
n+δ

< p ≤ 1 and nq
n+α

≤ p < q. Assume that w ∈ Aq

and T is a δ-Calderón-Zygmund operator. If there exists a β-accretive function b such that b,
t̃Tb ∈ ∧α

loc(R
n), then T is a bounded operator from Hp

w(Rn) to hp
w(Rn) and

‖Tf‖h
p
w
≤ C‖f‖H

p
w
.

At the end point p = 1, if we strengthen the weight condition, we have

Theorem 3.5 If w ∈ A1 and T is a δ-Calderón-Zygmund operator, then T is a bounded

operator from H1
w(Rn) to h1

w(Rn) and

‖Tf‖h1
w
≤ C‖f‖H1

w
.

Remark 3.2 For a δ-Calderón-Zygmund operator T and w ∈ A1, it is easy to check that

‖Tf‖L1
w
≤ C‖f‖H1

w
by some standard argument. Furthermore, Quek and Yang [15] obtained

that ‖Tf‖H1
w

≤ C‖f‖H1
w

if t̃T1 = C and Komori [13] obtained that ‖Tf‖h1
w

≤ C‖f‖H1
w

if
t̃T1 ∈ ∧α(Rn). Since H1

w(Rn) ⊂ h1
w(Rn) ⊂ L1

w(Rn), Theorem 3.5 extends these results.

Especially, taking w = 1, our results are also new.

As a corollary of these theorems, we obtain the boundedness of the Cauchy integral operator.

Theorem 3.6 Let 0 < α ≤ 1 ≤ q, q
2 < p ≤ 1 and q

1+α
≤ p < q. If w ∈ Aq and

A′ ∈ L∞(R1) ∩ ∧α
loc(R

1), then CA is bounded from Hp
w(R1) to hp

w(R1).

Theorem 3.7 If A′ ∈ L∞(R1) and w ∈ A1, then CA is bounded from H1
w(R1) to h1

w(R1).
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4 Some Lemmas

First we present two elementary lemmas on weight functions without proof (see [8] or [19,

p. 226]).

Lemma 4.1 If w ∈ Aq, q ≥ 1, then there exists a positive constant C such that

w(B(x0, r))

w(B(x0 , s))
≤ C

( |B(x0, r)|

|B(x0, s)|

)q

for all r > s and x0 ∈ Rn. Especially

w(B(x0, 2
jr)) ≤ C2nqjw(B(x0, r)).

Lemma 4.2 Let f be a nonnegative locally integrable function. If w ∈ Aq, q ≥ 1, then

1

|B(x0, r)|

∫

B(x0,r)

f(x)dx ≤ C
( 1

w(B(x0, r))

∫

B(x0,r)

f(x)qw(x)dx
) 1

q

.

Next we define atoms and molecules in Hp
w(Rn) and hp

w(Rn) and obtain some properties of

Hardy spaces.

Definition 4.1 Let 1 ≤ q ≤ ∞. A function a(x) is called an (Hp
w, q)-atom centered at x0

if there exists a ball B(x0, r) such that the following conditions are satisfied

supp(a) ⊂ B(x0, r), (4.1)

‖a‖L
q
w
≤ w(B(x0, r))

1

q
− 1

p , (4.2)
∫

Rn

a(x)dx = 0. (4.3)

Lemma 4.3 (see [7] and [17, p. 111]) Let nq
n+1 < p ≤ 1 and p < q. If w ∈ Aq and a(x) is

an (Hp
w, q)-atom, then a ∈ Hp

w(Rn) and

‖a(x)‖H
p
w
≤ C.

Furthermore, we have the atomic decomposition of Hp
w(Rn) (see [7, 17]) as follows.

Lemma 4.4 Let nq
n+1 < p ≤ 1 and p < q. If w ∈ Aq and f ∈ Hp

w(Rn), then f can be

written as

f =
∞∑

j=1

λjaj ,

where aj’s are (Hp
w, q)-atoms and

∞∑

j=1

|λj |
p ≈ ‖f‖p

H
p
w
.

Definition 4.2 Let 1 ≤ q ≤ ∞. A function a(x) is called a large (hp
w, q)-atom centered at

x0 if there exists a ball B(x0, r) of radius r ≥ 1 such that conditions (4.1) and (4.2) are satisfied.

Lemma 4.5 (see [13]) Let n
n+1 < p ≤ 1 ≤ q and p < q. If w ∈ Aq and a(x) is a large

(hp
w, q)-atom, then a ∈ hp

w(Rn) and

‖a‖h
p
w
≤ C.
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Definition 4.3 Let 1 ≤ q ≤ ∞. A function a(x) is a small (hp
w, q)-atom centered at x0 if

there exists a ball B(x0, r) of radius r < 1, which satisfies conditions (4.1), (4.2) and

∣∣∣
∫

Rn

a(x)dx
∣∣∣ ≤ rn

q−1

p

( |B(x0, r)|

w(B(x0, r))

) 1

p

.

Lemma 4.6 (see [13]) Let nq
n+1 < p ≤ 1 and p < q. If w ∈ Aq and a(x) is a small

(hp
w, q)-atom, then a ∈ hp

w(Rn) and

‖a‖h
p
w
≤ C.

Definition 4.4 Let b be β-accretive and 1 ≤ q ≤ ∞. A function a(x) is a small (hp
w, q, b)-

atom centered at x0 if there exists a ball B(x0, r) of radius r < 1, which satisfies conditions

(4.1), (4.2) and

∣∣∣
∫

Rn

a(x)b(x)dx
∣∣∣ ≤ rn

q−1

p

( |B(x0, r)|

w(B(x0 , r))

) 1

p

. (4.4)

Lemma 4.7 Let b be β-accretive and b ∈ ∧α
loc(R

n) (0 < α ≤ 1). Assume that nq
n+1 < p ≤

1 ≤ q and nq
n+α

≤ p < q. If w ∈ Aq and a(x) is a small (hp
w, q, b)-atom, then a ∈ hp

w(Rn) and

‖a‖h
p
w
≤ C.

Proof According to Lemma 4.6, we only need to show that a is a small (hp
w, q)-atom.

∣∣∣
∫

B(x0,r)

a(x)dx
∣∣∣ ≤

∣∣∣ 1

b(x0)

∫

B(x0,r)

a(x)(b(x) − b(x0))dx
∣∣∣ +

∣∣∣ 1

b(x0)

∫

B(x0,r)

a(x)b(x)dx
∣∣∣

≤ C
rα

β

(∫

B(x0,r)

|a(x)|qw(x)dx
) 1

q |B(x0, r)|

w(B(x0, r))
1

q

+
1

β
rn

q−1

p

( |B(x0, r)|

w(B(x0 , r))

) 1

p

≤ Crα+n− n
p

( |B(x0, r)|

w(B(x0, r))

) 1

p

+
1

β
rn q−1

p

( |B(x0, r)|

w(B(x0, r))

) 1

p

≤ Crn
q−1

p

( |B(x0, r)|

w(B(x0, r))

) 1

p

.

Note that we have used the fact r < 1 and nq
n+α

≤ p in the last inequality.

Definition 4.5 Let w ∈ Aq. A function M(x) is called a large (hp
w, q, δ)-molecule centered

at x0 if there exists r ≥ 1 such that the following conditions are satisfied:

( ∫

|x−x0|≤2r

|M(x)|qw(x)dx
) 1

q

≤ Cw(B(x0 , r))
1

q
− 1

p , (4.5)

|M(x)| ≤
rn+δw(B(x0, r))

− 1

p

|x − x0|n+δ
, |x − x0| ≥ 2r. (4.6)

Definition 4.6 Let w ∈ Aq and b be β-accretive. A function M(x) is called a small

(hp
w, q, δ, b)-molecule centered at x0 if there exists r < 1 such that (4.5), (4.6) and the following

condition

∣∣∣
∫

Rn

M(x)b(x)dx
∣∣∣ ≤ Crn

q−1

p

( |B(x0, r)|

w(B(x0, r))

) 1

p

. (4.7)
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Lemma 4.8 Let nq
n+δ

< p ≤ 1 ≤ q and p < q. If w ∈ Aq and a function M(x) is a large

(hp
w, q, δ)-molecule, then M ∈ hp

w(Rn) and

‖M‖h
p
w
≤ C.

Lemma 4.9 Let 0 < α ≤ 1 ≤ q, nq
n+δ

< p < q and nq
n+α

≤ p ≤ 1. Suppose that b

is β-accretive and b ∈ ∧α
loc(R

n). If a function M(x) is a small (hp
w, q, δ, b)-molecule, then

M ∈ hp
w(Rn) and

‖M‖h
p
w
≤ C.

Lemmas 4.8 and 4.9 are the key lemmas to prove our theorems. The proofs of the two

lemmas are similar in nature. So we shall only prove Lemma 4.9 below. The idea of our proof

comes from [12–14, 18].

Proof of Lemma 4.9 Let E0 = {x : |x− x0| < 2r} and Ei = {x : 2ir ≤ |x− x0| < 2i+1r},

i = 1, 2, 3, · · · , b(Ei) =
∫

Ei
b(x)dx. Since b(Ei) 6= 0, we denote χi = χEi

(x), χ̃i = χi

b(Ei)
,

mi = 1
b(Ei)

∫
Ei

b(x)M(x)dx and m̃i =
∫

Ei
b(x)M(x)dx.

We write

M(x) =

∞∑

i=0

(M(x) − mi)χi(x) +

∞∑

i=0

miχi(x) =

∞∑

i=0

Mi(x) +

∞∑

i=0

m̃iχ̃i(x),

where Mi(x) = (M(x) − mi)χi(x). Letting Nj =
∞∑
i=j

m̃i, we have

M(x) =

∞∑

i=0

Mi(x) +

∞∑

i=1

Ni(χ̃i(x) − χ̃i−1(x)) + N0χ̃0(x)

= I + II + III.

Next we shall estimate the above three terms.

(a) It is clear that supp(Mi) ⊂ B(x0, 2
i+1r) and

∫
Mi(x)b(x)dx = 0. So

( ∫
|M0(x)|qw(x)dx

) 1

q

≤
(∫

E0

|M(x)|qw(x)dx
) 1

q

+ |m0|
∣∣∣
∫

E0

w(x)dx
∣∣∣

1

q

≤ Cw(B(x0, r))
1

q
− 1

p + |m0|w(E0)
1

q .

By the definition of m0 and Lemma 4.2, we have

|m0| =
1

|b(E0)|

∣∣∣
∫

E0

M(y)b(y)dy
∣∣∣

≤ C
‖b‖L∞

β|E0|

∫

E0

|M(y)|dy

≤ C
( 1

w(E0)

∫

E0

|M(y)|qw(y)dy
) 1

q

≤ Cw(B(x0 , r))
1

q
− 1

p w(E0)
− 1

q .

Therefore, we get ( ∫
|M0(x)|qw(x)dx

) 1

q

≤ Cw(B(x0, r))
1

q
− 1

p .
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So by Lemma 4.5 or 4.7 we have

‖M0‖h
p
w
≤ C.

When i ≥ 1, we have

( ∫
|Mi(x)|qw(x)dx

) 1

q

≤
(∫

Ei

|M(x)|qw(x)dx
) 1

q

+ |mi|w(Ei)
1

q

= Ĩ + ĨI.

By condition (4.6), we have

Ĩ ≤ rn+δw(B(x0, r))
− 1

p

( ∫

Ei

w(x)

|x − x0|q(n+δ)
dx

) 1

q

≤
rn+δ

(2ir)n+δ
w(B(x0, r))

− 1

p w(B(x0, 2
i+1r))

1

q

≤ C2−iδw(B(x0, r))
1

q
− 1

p .

The last inequality was obtained by Lemma 4.1.

Using the condition (4.6) again and the fact |Ei| ≈ |B(x0, 2
i+1r)|, we have

ĨI ≤ w(Ei)
1

q
‖b‖L∞

β|Ei|

∫

Ei

|M(y)|dy

≤ C
w(Ei)

1

q

|Ei|

∫

Ei

rn+δw(B(x0, r))
− 1

p

|y − x0|n+δ
dy

≤ C2−iδw(B(x0 , r))
1

q
− 1

p .

According to Lemma 4.1, we reach

(∫
|Mi|

qw(x)dx
) 1

q

≤ C2−iδw(B(x0, r))
1

q
− 1

p

≤ C2−i(δ+nq( 1

q
− 1

p
))w(B(x0, 2

i+1r))
1

q
− 1

p .

By Lemma 4.5 or 4.7, we get

‖Mi‖h
p
w
≤ C2−i(δ+nq( 1

q
− 1

p
)).

Since nq
n+δ

< p, we finally conclude

∞∑

i=0

‖Mi‖
p

h
p
w
≤ C and ‖I‖h

p
w
≤ C.

(b) Let Ai = Ni(χ̃i(x) − χ̃i−1(x)). It is easy to see that supp(Ai) ⊂ B(x0, 2
i+1r) and∫

Rn Ai(x)b(x)dx = 0, i = 1, 2, 3 · · · .
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Using condition (4.6) and Lemma 4.1, we have

(∫
|Ai(x)|qw(x)dx

) 1

q

≤ |Ni|
(∫

|χ̃i(x) − χ̃i−1(x)|qw(x)dx
) 1

q

≤
( |w(Ei)|

1

q

|b(Ei)|
+

|w(Ei−1)|
1

q

|b(Ei−1)|

) ∞∑

k=i

∣∣∣
∫

Ek

M(y)b(y)dy
∣∣∣

≤ C
w(B(x0, 2

i+1r))
1

q

β(2ir)n
‖b‖L∞

∞∑

k=i

∫

Ek

|M(y)|dy

≤ C
w(B(x0, r))

1

q

rn

∞∑

k=i

∫

Ek

rn+δw(B(x0, r))
− 1

p

|y − x0|n+δ
dy

≤ Crδw(B(x0, r))
1

q
− 1

p

∫

|y−x0|≥2ir

1

|y − x0|n+δ
dy

≤ C2−iδw(B(x0, r))
1

q
− 1

p

≤ C2−i(δ+nq( 1

q
− 1

p
))w(B(x0, 2

i+1r))
1

q
− 1

p .

So by Lemma 4.5 or 4.7, we have

∞∑

i=0

‖Ai‖
p

h
p
w
≤ C and ‖II‖h

p
w
≤ C.

(c) Conditions (4.5), (4.6) together with the fact supp(N0χ̃0(x)) ⊂ B(x0, 2r) imply

(∫
|N0χ̃0(x)|qw(x)dx

) 1

q

≤ |N0|
1

|b(E0)|

( ∫

E0

w(x)dx
) 1

q

≤ C
w(E0)

1

q

βrn

∣∣∣
∫

M(x)b(x)dx
∣∣∣

≤ C
w(E0)

1

q

rn
‖b‖L∞

( ∫

|x−x0|<2r

|M(x)|dx +

∫

|x−x0|≥2r

|M(x)|dx
)

≤ Cw(B(x0, 2r))
1

q
− 1

p .

By condition (4.7), we have

∣∣∣
∫

Rn

N0χ̃0(x)b(x)dx
∣∣∣ =

∣∣∣
∫

Rn

M(x)b(x)dx
∣∣∣ ≤ Crn

q−1

p

( |B(x0, r)|

w(B(x0, r))

) 1

p

.

By Lemma 4.5 or 4.7, we have

‖N0χ̃0‖h
p
w
≤ C.

Finally combining (a), (b) and (c), we complete the proof of Lemma 4.9.

Lemma 4.10 Let w ∈ A1 and M(x) be a function on Rn. If there exists a ball B(x0, r),

r > 0, satisfies the following conditions
∫

|x−x0|≤2r

|M(x)|w(x)dx ≤ C, (4.8)

|M(x)| ≤ C
rn+δw(B(x0, r))

−1

|x − x0|n+δ
, |x − x0| ≥ 2r; (4.9)
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and furthermore, if 0 < r < 1, M(x) also satisfies

∣∣∣
∫

Rn

M(x)dx
∣∣∣ ≤ C

|B(x0, r)|

w(B(x0, r))
, (4.10)

then M(x) ∈ h1
w(Rn) and

‖M(x)‖h1
w
≤ C.

The proof of Lemma 4.10 is almost similar to that of Lemma 7 in [13], so we omit the details.

5 Proof of the Theorems

Proof of Theorem 3.4 By Lemma 4.4 and Theorem 7.2 in [1], it suffices to show that

there is a constant C > 0 such that ‖Ta‖h
p
w
≤ C for every (Hp

w, 2q)-atom a(x).

Assuming (Hp
w,∞)-atom a(x) supported in B(x0, r), we show that Ta(x) is a constant

multiple of a large (hp
w, q, δ)-molecule with r ≥ 1 or a constant multiple of a small (hp

w, q, δ, b)-

molecule with r < 1.

Since T is bounded on L2q
w (Rn) (see [11, p. 52]), we have

(∫

|x−x0|≤2r

|Ta(x)|qw(x)dx
) 1

q

≤ C
( ∫

|x−x0|≤2r

|Ta(x)|2qw(x)dx
) 1

2q
(∫

|x−x0|≤2r

w(x)dx
) 1

2q

≤ C‖a‖L
2q
w

w(B(x0, r))
1

2q

≤ Cw(B(x0 , r))
1

q
− 1

p .

If |x − x0| ≥ 2r, then

|Ta(x)| =
∣∣∣
∫

B(x0,r)

[K(x, y) − K(x, x0)]a(y)dy
∣∣∣

≤ C
rδ

|x − x0|n+δ

∫

B(x0,r)

|a(y)|dy

≤ C
rn+δ

|x − x0|n+δ
w(B(x0, r))

− 1

p .

If r ≥ 1, by Lemma 4.8, we have

‖Ta(x)‖h
p
w
≤ C.

If r < 1, by (4.2) and (4.3), we have

∣∣∣
∫

Ta(x)b(x)dx
∣∣∣ = |〈a, t̃Tb〉| =

∣∣∣
∫

B(x0,r)

a(x)[t̃Tb(x) − t̃Tb(x0)]dx
∣∣∣

≤ ‖t̃Tb‖Λα
loc

rα

∫

B(x0,r)

|a(x)|dx

≤ Crαw(B(x0, r))
− 1

p |B(x0, r)|

≤ Crα+n p−1

p

( |B(x0, r)|

w(B(x0, r))

) 1

p

≤ Crn
q−1

p

( |B(x0, r)|

w(B(x0, r))

) 1

p

,
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where the last inequality is obtained for r < 1 and nq
n+α

≤ p.

By Lemma 4.9 and the above argument, we obtain the desired result

‖Ta‖h
p
w
≤ C.

Proof of Theorem 3.5 Similar to the argument of Theorem 3.4, it suffices to show that

there is a constant C > 0 such that ‖Ta‖h1
w

≤ C for all (H1
w, 2)-atoms a(x) supported in

B(x0, r). It is easy to see ∫

|x−x0|≤2r

|Ta(x)|w(x)dx ≤ C.

And if |x − x0| ≥ 2r,

|Ta(x)| ≤ C
rn+δw(B(x0, r))

−1

|x − x0|n+δ
.

If T is a δ-Calderón-Zygmund operator, then t̃T1 ∈ BMO and ‖t̃T1‖BMO ≤ C by the famous

“T1 theorem” (see [5]). So we have

∣∣∣
∫

Rn

Ta(x)dx
∣∣∣ = |〈a, t̃T1〉| =

∣∣∣
∫

B(x0,r)

a(x)[t̃T1(x) − mB
t̃T1]dx

∣∣∣

≤ ‖t̃T1‖BMO|B(x0, r)|w(B(x0 , r))−1

≤ C
|B(x0, r)|

w(B(x0, r))
,

where mBf = 1
|B(x0,r)|

∫
B(x0,r)

f(x)dx. According to Lemma 4.10 and the above argument, we

get the desired conclusion immediately.

Proof of Theorem 3.6 Note that CA is a 1-Calderón-Zygmund operator by Theorem 3.1.

Let b(x) = 1 + iA′(x). Then b is a 1-accretive and b ∈ ∧α
loc(R

1). By the calculus of complex

analysis (refer to calculation in [14] or [19, p. 407]),

t̃CAb(x) = lim
ǫ→0

∫

|x−y|>ǫ

{ 1 + iA′(y)

y − x + i(A(y) − A(x))
−

1 + iA′(y)

y + i(A(y) − A(0))
χ|y|≥1(y)

}
dy

= constant,

which implies t̃CAb(x) ∈ ∧α
loc(R

1). Therefore the theorem is proved by Theorem 3.4.
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