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Abstract This paper is devoted to a class of inverse coefficient problems for nonlinear

elliptic hemivariational inequalities. The unknown coefficient of elliptic hemivariational

inequalities depends on the gradient of the solution and belongs to a set of admissible

coefficients. It is shown that the nonlinear elliptic hemivariational inequalities are uniquely

solvable for the given class of coefficients. The result of existence of quasisolutions of the

inverse problems is obtained.
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1 Introduction

In this paper, we study the problem of identification of an unknown coefficient k in an
elliptic hemivariational inequality. The elliptic hemivariational inequality under consideration

is as follows:





−∇(k(|∇u|2)∇u) + w(x) = f(x), x ∈ Ω,

w(x) ∈ ∂G(u),

u(x) ≤ ϕ(x), k(|∇u|2)
∂u

∂n
≤ 0, [u− ϕ]k(|∇u|2)

∂u

∂n
= 0, x ∈ Γ0,

u(x) = 0, x ∈ Γu,

k(|∇u|2)
∂u

∂n
= ψ(x), x ∈ Γσ,

(1.1)

where the open domain Ω ⊂ RN (N ≥ 2) is assumed to be bounded simply connected with a

piecewise smooth boundary ∂Ω and Γ0 ∩ Γu = ∅, Γ0 ∩ Γσ = ∅, Γu ∩ Γσ = ∅, Γ0 ∪ Γu ∪ Γσ =

∂Ω, measΓ0 > 0, measΓu > 0, measΓσ > 0. ∂G denotes the generalized Clarke subdifferential
of a locally Lipschitzian functional G.

Let V = {v ∈ H1(Ω) : γv = 0 on Γu ⊂ ∂Ω}, where γ : H1(Ω) → L2(∂Ω) denotes the trace

operator and H1(Ω) is the usual Sobolev space (see [6]). Applying the Poincaré inequality we

may define the Hilbert space V with the norm of ‖u‖V = (
∫
Ω |∇u|2dx)

1
2 . Identifying H = L2(Ω)
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with its dual, we have an evolution triple V ⊂ H ⊂ V ∗ with dense, continuous and compact

embeddings (see [19]). For conveniences, we denote by 〈 · , · 〉B the duality of B and its dual B∗

as well as by ‖ · ‖B the norm for any Banach space B.
For a locally Lipschitzian functional h : V → R, we denote by h0(u, v) the Clarke generalized

directional derivative of h at u in the direction v, that is,

h0(u, v) := lim sup
λ→0+

w→u

h(w + λv) − h(w)

λ
.

Recall also at this point that

∂h(u) := {u∗ ∈ V ∗ | h0(u, v) ≥ 〈u∗, v〉V , ∀ v ∈ V } (1.2)

denotes the generalized Clarke subdifferential (see [3] for details).

The following situation for the locally Lipschitzian functional G : L2(Ω) → R is of particular

interest in applications (see [9, 10, 13]):

G(u) =

∫

Ω

g(u(x))dx, u ∈ L2(Ω), (1.3)

where g : R → R is the function g(t) =
∫ t

0
θ(τ)dτ, t ∈ R, which corresponds to a function

θ : R → R satisfying the assumption: there exist two positive constants a, c0 independent of

τ such that |θ(τ)| ≤ a + c0|τ |, ∀ τ ∈ R. It is known that under the assumption above the

functional G in (1.3) is locally Lipschitz. We set for δ > 0,

θ−
δ

(s) = ess inf
|t−s|≤δ

θ(t), θ+
δ

(s) = ess sup
|t−s|≤δ

θ(t),

θ−(s) = lim
δ→0+

θ−
δ

(s), θ+(s) = lim
δ→0+

θ+
δ

(s).

From [3], it follows ∂g(t) = [θ−(t), θ+(t)]. Therefore, for any w ∈ ∂g(t), one obtains

|w| ≤ max{|θ−(t)|, |θ+(t)|} ≤ a+ c0|t|, ∀ t ∈ R. (1.4)

By the same argument as in [2], we obtain the following characteristics of the generalized

gradient ∂G(u):

∂(G|V )(u) ⊂ ∂(G|L2(Ω))(u), ∀u ∈ V. (1.5)

If w ∈ ∂G|L2(Ω)(u), then w ∈ L2(Ω) satisfies

w(x) ∈ [θ−(u(x)), θ+(u(x))] for a.e. x ∈ Ω. (1.6)

In the sequel, we need the following assumption of relaxed monotonicity (H1):

〈u∗ − v∗, u− v〉L2(Ω) ≥ −m‖u− v‖2
L2(Ω), ∀u, v ∈ L2(Ω)

for any u∗ ∈ ∂G|L2(Ω)(u) and v∗ ∈ ∂G|L2(Ω)(v), where m is a positive constant (see [11]).

With respect to coefficients k = k(s) we assume the following assumptions:

(A1) k ∈ C[0,∞) and c1 ≤ k(s) ≤ c2, ∀s ∈ [0,∞);

(A2)
N∑

i=1

[k(|ξ|2)ξi − k(|ξ′|2)ξ′i](ξi − ξ′i) ≥ c3|ξ − ξ′|2, ∀ ξ = (ξ1, · · · , ξN ), ξ′ = (ξ′1, · · · , ξ
′
N

) ∈

RN , where c1, c2, c3 are positive constants such that

c3 > m[C(Ω)]2, (1.7)
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where m is the constant of Assumption (H1) and C(Ω) is the Poincaré constant, i.e.,

(∫

Ω

|u|2dx
) 1

2

≤ C(Ω)
( ∫

Ω

|∇u|2dx
) 1

2

, ∀u ∈ V. (1.8)

The set K of coefficients satisfying assumptions (A1) and (A2) is called the set of admissible

coefficients for the inverse coefficient problems under consideration.

With respect to the given data we also assume that

f ∈ L2(Ω), ϕ ∈ H
1
2 (Γ0), ψ ∈ L2(Γσ). (1.9)

Let V0 = {v ∈ V : γv(x) ≤ ϕ(x), x ∈ Γ0}, which is a closed convex subset in V .

Define operator A : V → V ∗ and a bounded linear functional ℓ on V as follows:

〈Au, v〉V =

∫

Ω

k(|∇u|2)∇u)∇vdx, ℓ(v) =

∫

Ω

f(x)v(x)dx +

∫

Γσ

ψ(x)γv(x)dx.

Then it is easy to see that u ∈ V0 is a weak solution of problem (1.1) means that there is a

w(x) ∈ ∂G|V (u) such that the following hemivariational inequality holds

〈Au+ w, v − u〉V ≥ ℓ(v − u), ∀ v ∈ V0. (1.10)

If G ≡ 0 in (1.1), the classical form of (1.1) is known as the Signorini problem of elasticity.

This describes the equilibrium position of an elastic body which is supposed at its boundary by

a rigid frictionless constraint surface. For more details of the deformation theory of plasticity,

we refer to [1, 16]. Let us introduce the set Γc = {x ∈ Γ0 : v(x) = ϕ(x)} and assume that Γc

is a nonempty, simply connected subset of Γ0. Note that the main distinction of the elliptic

variational inequality (1.1) is that the part Γc of the boundary is unknown in advance and for

this reason problem (1.1) is nonlinear even for a linear elliptic operator. If Γc were known, the

solution could be more easily obtained by solving the corresponding mixed Dirichlet-Neumann
boundary value problem. But finding this unknown Γc is the essential problem here, analogous

to various problems with a “free boundary”.

In this paper, we are interested in the inverse problem consisting of the recovery of the

coefficient k from some class of admissible coefficients K by using a measured data on the part

of the boundary ∂Ω. Let Γ1 ⊂ ∂Ω be an accessible part of the boundary and Γ1 ∩ Γc = ∅,
Γ1 ∩ Γu = ∅, meas Γ1 6= 0. Assume that

γu(x) = g(x), x ∈ Γ1 (1.11)

is a given Dirichlet-type measured data. Then the problem of finding the coefficient k from
(1.1) and (1.11) we denote as an inverse coefficient problem (the ICP) with Dirichlet data (1.11)

for the nonlinear hemivariational inequality (1.10).

The determination of unknown coefficients in variational inequalities from overspecified data

measured on the boundary is a problem of some importance in applied mathematics. Such so-
called inverse coefficient problems (ICPs) arise naturally, for example, in modeling nonlinear

diffusion and flow in porous media. Direct measurement of the quantities represented by the

unknown coefficients often requires very difficult physical experiments. The point of the inverse

problems is to replace a difficult physical experiment by a mathematical problem for which

the input is easy to measure. The ease of measurement requirement suggests that the data be
measured on the boundary.

ICPs for partial differential equations have been studied by many authors (see [4, 5, 7, 8,

12, 17]). ICPs for elliptic hemivariational inequalities were considered by Migorski and Ochal

[14, 15].
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For a given coefficient k = k(s), we sometimes call problem (1.1) (or (1.10)) as the direct

problem (DP). Denote the solution of DP by u[x; k]. Then from the additional condition

(1.11), it is seen that the ICP1 consists of solving the following nonlinear functional equation
γu[x; k] = g(x), x ∈ Γ1 for a given data g = g(x), over the solution u = u[x; k] of the elliptic

hemivariational inequalities (1.10).

In applications, instead of the measured data (1.11) on the boundary, one may get the

nonlocal measured data
∫

Ω1

u(x)dx = Φ, (1.12)

where Ω1 ⊆ Ω is a given set. In this case we define the problem of determining a solution

k = k(s) of nonlinear functional equation
∫
Ω1
u[x; k]dx = Φ over the solution of the DP as a

nonlocal inverse coefficient problem.

In the practical solution of such ICPs, instead of solving, for example, the functional equa-

tions above, one may usually try to find the solutions of the minimization problems

I1(k) = minek∈K

I1(k̃), (1.13)

where I1(k̃) =
∫
Γ1

|γu[x; k̃]− g(x)|2dx is an auxiliary functional, K is a set of admissible coeffi-

cients. According to [18], a solution of the minimization problems (1.13) is called a quasisolution

of the ICP1.

For the ICP2, a quasisolution can be defined as a solution of the following minimization

problems

I2(k) = minek∈K

I2(k̃), (1.14)

where I2(k̃) = |
∫
Ω1
u[x; k̃]dx − Φ|.

2 The Inverse Coefficient Problems

To formulate our main results, let us recall that a multivalued operator T is said to
be bounded if it maps bounded sets into bounded sets. We say that T : V → 2V

∗

is

pseudomonotone if and only if the following three conditions are fulfilled:

(a) For each u ∈ V , the set Tu be nonempty, bounded, closed and convex,

(b) The restriction of T to any finite dimensional subspace S of V is weakly u.s.c. as an

operator from S to V ∗,

(c) If {un} ⊂ V such that un ⇀ u in V , u∗n ∈ T (un) (n = 1, 2, · · · ) and lim sup
n→∞

〈u∗n, un −

u〉V ≤ 0, then for each v ∈ V there exists u∗(v) ∈ T (u) with the property that

lim inf
n→∞

〈u∗n, un − v〉V ≥ 〈u∗(v), u− v〉V .

The first theorem we intend to prove is the following

Theorem 2.1 If k ∈ K, then the elliptic hemivariational inequality (1.10) has a unique

solution u ∈ V . For any solution of the hemivariational inequalities of (1.10), there exists a

constant c > 0 (which is independent of k ∈ K) such that

‖u‖V ≤ c(1 + ‖f‖L2(Ω) + ‖ψ‖L2(Γσ)). (2.1)
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Proof In virtue of Assumptions (H1), (A1), (A2), we can easily show that the sum operator

A+∂G|V : V → 2V
∗

is coercive and pseudomonotone. Applying a well-known existence theorem

for pseudomonotone operators, we readily obtain that the hemivariational inequality (1.10) has
at least a solution in V for any k ∈ K (see, for example, [9–11, 13]).

For a given k ∈ K, let u1, u2 be two solutions to (1.10). Then there exist wi ∈ ∂G|V (ui), i =

1, 2 such that

〈Au1, u2 − u1〉V + 〈w1, u2 − u1〉V ≥ ℓ(u2 − u1),

〈Au2, u1 − u2〉V + 〈w2, u1 − u2〉V ≥ ℓ(u1 − u2),

which imply

〈Au2 −Au1, u2 − u1〉V + 〈w2 − w1, u2 − u1〉V ≤ 0. (2.2)

From (1.5) we have wi ∈ ∂(G|L2(Ω))(ui), i = 1, 2, which implies wi ∈ L2(Ω), i = 1, 2. Hence

〈wi, v〉V = 〈wi, v〉L2(Ω), ∀ v ∈ V, i = 1, 2. (2.3)

By use of (2.2) and (2.3), we obtain from (H1) and (A2) that

0 ≥ 〈Au2 −Au1, u2 − u1〉V + 〈w2 − w1, u2 − u1〉L2(Ω)

≥

∫

Ω

[k(|∇u2|
2)∇u2 − k(|∇u1|

2)∇u1]∇(u2 − u1)dx −m‖u2 − u1‖
2
L2(Ω)

≥ c3‖u2 − u1‖
2
V −m‖u2 − u1‖

2
L2(Ω)

≥ (c3 −mC(Ω)2)‖u2 − u1‖
2
V . (2.4)

Therefore, we have u1 = u2, which completes the proof of uniqueness.

Suppose that u is a solution of (1.10). Then there exists w ∈ ∂G|V (u) such that for any

fixed v0 ∈ V0,

∫

Ω

k(|∇u|2)∇u∇(v0 − u)dx+ 〈w, v0 − u〉V ≥

∫

Ω

f(v0 − u)dx+

∫

Γσ

ψ(γ(v0 − u))dx. (2.5)

Similarly, we have from (2.5) for any w0 ∈ ∂G(v0) that

(c3 −mC(Ω)2)‖u− v0‖
2
V

≤

∫

Ω

[k(|∇u|2)∇u− k(|∇v0|
2)∇v0]∇(u − v0)dx + 〈w − w0, u− v0〉V

≤

∫

Ω

k(|∇v0|
2)|∇v0||∇(u − v0)|dx + |〈w0, u− v0〉V |

+

∫

Ω

f(u− v0)dx +

∫

Γσ

ψ(γ(u− v0))dx. (2.6)

By the Hölder inequality, we get from (A1) that

∫

Ω

k(|∇v0|
2)|∇v0||∇(u − v0)|dx + |〈w0, u− v0〉V |

≤ c2

∫

Ω

|∇v0||∇(u− v0)|dx+ ‖w0‖V ∗‖u− v0‖V

≤ C1‖u− v0‖V , (2.7)
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where the positive constant C1 may depend on the norm of v0 and its subdifferential ∂G|V (v0).

Similarly, we have

∣∣∣
∫

Ω

f(u− v0)dx
∣∣∣ ≤ ‖f‖L2(Ω)‖u− v0‖L2(Ω) ≤ C(Ω)‖f‖L2(Ω)‖u− v0‖V . (2.8)

By virtue of the boundedness of the trace operator γ and the Hölder inequality again, we obtain

∣∣∣
∫

Γσ

ψ(γ(u− v0))dx
∣∣∣ ≤ ‖ψ‖L2(Γσ)‖γ(u− v0)‖L2(Γσ)

≤ ‖ψ‖L2(Γσ)‖γ‖‖u− v0‖V . (2.9)

From (1.7) and (2.6)–(2.9), we may choose a fixed element v0 ∈ V0 and readily deduce (2.1).

This completes the proof.

In the following text, we analyze the class of admissible coefficients and prove the coefficient

stability and then obtain the main result— the existence theorem for the inverse problem. As

seen above, the assumptions (H1), (A1) and (A2) guarantee the solvability of the nonlinear DP
in V . Therefore, to define a set of admissible coefficients for the ICPs under consideration, some

conditions are already given. On the other hand, it is natural to endeavour to obtain a solution

of any ICP with minimal requirements on the desired coefficient. Unfortunately, in many cases

the given conditions (physical or mathematical, such as the DP solvability conditions (A1) and
(A2)) do not guarantee the compactness of the set of admissible coefficients in the suitable

space. Therefore, the main problem is to construct a compact set of admissible coefficients

with minimal additional conditions with respect to k = k(s). Now we turn to the solvability of

inverse coefficient problems. In order to obtain the existence theorems of quasisolutions for the

inverse coefficient problems, we need the following result.

Theorem 2.2 Suppose that a sequence of coefficients {km} ∈ K converges pointwise in

[0,∞) to a function k ∈ K. Then the sequence of solutions um = u(x; km) converges to the

solution u = u(x; k) in V .

Proof Since k, km ∈ K (m = 1, 2. · · · ), by Theorem 2.1 the solutions u, um (m = 1, 2, 3, · · · )
are well-defined. By the definition of solutions for (1.10), there exist w ∈ ∂G|V (u), wm ∈
∂G|V (um) such that

∫

Ω

k(|∇u|2)∇u∇(um − u)dx+ 〈w, um − u)〉V ≥

∫

Ω

f(um − u)dx+

∫

Γσ

ψ(γ(um − u))dx,

∫

Ω

km(|∇um|2)∇um∇(u − um)dx+ 〈wm, u− um〉V ≥

∫

Ω

f(u− um)dx+

∫

Γσ

ψ(γ(u− um))dx,

which imply

0 ≥

∫

Ω

[km(|∇um|2)∇um − k(|∇u|2)∇u]∇(um − u)dx+ 〈wm − w, um − u〉V

=

∫

Ω

[km(|∇um|2)∇um − km(|∇u|2)∇u]∇(um − u)dx+ 〈wm − w, um − u〉V

+

∫

Ω

[km(|∇u|2) − k(|∇u|2)]∇u∇(um − u)dx. (2.10)
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Similarly to (2.4), we get from the Hölder inequality that

(c3 −mC(Ω)2)‖um − u‖2
V

≤

∫

Ω

[km(|∇um|2)∇um − km(|∇u|2)∇u]∇(um − u)dx+ 〈wm − w, um − u〉V

≤

∫

Ω

[km(|∇u|2) − k(|∇u|2)]∇u∇(u − um)dx

≤
{∫

Ω

|km(|∇u|2) − k(|∇u|2)|2|∇u|2dx
} 1

2

‖um − u‖V ,

which implies

(c3 −mC(Ω)2)‖um − u‖V ≤

∫

Ω

|km(|∇u|2) − k(|∇u|2)|2|∇u|2dx. (2.11)

By Assumption (A1), we have

|km(|∇u|2) − k(|∇u|2)|2|∇u|2 ≤ (c2 − c1)
2|∇u|2. (2.12)

In virtue of (2.12), the assumption of the theorem and the Lebegue’s dominated convergence

theorem, we obtain lim
m→∞

∫
Ω |km(|∇u|2)−k(|∇u|2)|2|∇u|2dx = 0. Therefore, by using inequality

(2.11), it is easy to see that

lim
m→∞

‖um − u‖V = 0. (2.13)

The proof of the theorem is complete.

Next we study the existence of a quasisolution of the inverse problems ICP1 and ICP2. For
this reason we need a compact set of coefficients and continuity of the functionals I1(k), I2(k)

defined in previous section, respectively. First we note the two assumptions (A1), (A2) that

compose the set of admissible coefficients K arise as solvability conditions for the problem DP.

In virtue of Theorem 2.2, it is natural to construct a compactness set of admissible coefficients

in C[0,∞). For this reason, in addition to Assumptions (A1), (A2), we assume that the subset
Kc of K has the equicontinuity, i.e., Kc ⊂ K and for every ǫ > 0, there exists δ > 0 such that

if ∀k ∈ Kc, s1, s2 ∈ [0,∞) and |s1 − s2| < δ, then |k(s1) − k(s2)| < ǫ.

In the sequel, we also need the following generalized Ascoli-Arzela theorem.

Theorem 2.3 Let Kc be an equicontinuous subset of K. Then for any sequence {km} of

coefficients in Kc, there exists a subsequence, still denoted by {km}, such that lim
m→∞

km(s) =

k(s), ∀s ∈ [0,∞) and k ∈ Kc.

Proof The idea of the proof is similar to that of Ascoli-Arzela theorem. So we omit the

detailed proof. For instance, one may refer to [17].

Remark 2.1 Let Kh be a uniformly Hölder continuous subset of K. Then Kh is equicon-

tinuous. Especially any subsets of K which are bounded in H1([0,∞)) are equicontinuous.

Using the compactness of the class of admissible coefficients Kc ⊂ K, we can prove the

following existence theorems for the problem ICPs.

Theorem 2.4 Both ICP1 and ICP2 have at least one quasisolution in the set of admissible

coefficients Kc.
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Proof Let {km} ⊂ Kc be a minimizing sequence of the functional I1 on Kc defined by

(1.13). Due to Theorem 2.3, we may assume that km(s) → k(s), as m → ∞, ∀ s ∈ [0,∞).

By using Theorem 2.2, the sequence um = u(x; km) converges to u = u(x; k) in V . Applying
the trace theorem (see [6, Theorem 6.5]), we conclude that the sequence {um} converges to u

in L2(Γ1). Therefore, we have minek∈Kc

I1(k̃) = lim
m→∞

I1(km) = I1(k). Similarly, we can get the

existence of quaisolutions of I2 on Kc. The proof is complete.
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