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1 Introduction

Koszul algebras were first introduced by Priddy in 1970 (see [2]), which are a class of

quadratic algebras with lots of nice homological properties. Motivated by cubic AS-regular
algebras, Berger [3] first introduced the notion of nonquadratic Koszul algebras, which were

usually called d-Koszul algebras later (see [4, 5]). In order to study the d-Koszul property for

any finitely generated graded modules, the notion of weakly d-Koszul modules were introduced

in 2007 (see [6]). In order to study the d-Koszul property for any Noetherian semiperfect
algebras, the notion of quasi-d-Koszul algebras were introduced in 2008 (see [7]). In order to

study the d-Koszul property for any finitely generated modules over a Noetherian semiperfect

algebra, the notion of quasi-d-Koszul modules were introduced in 2009 (see [1]).

The following statement is well-known for d-Koszul modules (see [5]):

(1) Let A be a d-Koszul algebra and M a finitely 0-generated graded module. Then M is a
d-Koszul module if and only if the Koszul dual of M ,

⊕

i≥0

Exti
A(M, A0) is generated in degree 0

as a graded
⊕

i≥0

ExtiA(A0, A0)-module.

Motivated by the above result, [1] is an attempt to find a similar characterization for quasi-

d-Koszul modules and the following is the main result:
(2) Let R be a quasi-d-Koszul algebra and M be a quasi-d-Koszul R-module. Then Eev(M)

is generated in degree 0 as a graded Eev(R)-module, where

Eev(M) :=
⊕

i≥0

Ext2i
A (M, R/J), Eev(R) :=

⊕

i≥0

Ext2i
A (R/J, R/J).

One of the aims of this paper is to find equivalent descriptions for quasi-d-Koszul modules

similar to that for d-Koszul modules introduced above and Theorem 2.1 is our main result.
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482 J. F. Lü and Z. B. Zhao

The other aim of this paper is to give some applications for quasi-d-Koszul modules. It is

well-known that “Horseshoe Lemma” plays an important role and is a basic tool in homolog-

ical algebra. It is also well-known that one of the key subjects in homological algebra is to
compute (co-)homological groups of different algebras. To do this, finding or constructing pro-

jective resolution is unavoidable. However, Horseshoe Lemma provides a method to construct

new projective resolutions from the known ones. We also know that using minimal projective

resolution to compute homology groups is more convenient than the ordinary ones.

Motivated by the above, one can ask the following question: Do we have a “Minimal Horse-

shoe Lemma”? That is, replacing “projective resolution” in the classic Horseshoe Lemma by

“minimal projective resolution”. Recall that a projective resolution of M

· · · // Pn
dn

// · · · // P1
d1

// P0
d0

// M // 0

is called “minimal” if for all n ≥ 0, Ωn(M) := kerdn−1 ≪ Pn−1, where Ωn(M) is usually called

the nth syzygy of M , Ω0(M) := M and the symbol “≪” means “superfluous”.

It is easy to see that the above question is not true in general. We will also give an easy

example to explain this (see Example 3.1). Lemma 3.3 is a necessary and sufficient condition
for the Minimal Horseshoe Lemma to be true.

As applications of quasi-d-Koszul modules, we prove that the Minimal Horseshoe Lemma

holds in the category of quasi-d-Koszul modules under certain conditions. More precisely, we

obtain Theorem 3.1.

Now we give some notations and definitions which will be used later.

In the rest of this paper, unless specially stated, R denotes a Noetherian semiperfect algebra

and d ≥ 2 a fixed integer. Let mod(R) denote the category of finitely generated R-modules and

J denote the Jacobson radical of R.

Definition 1.1 (see [1]) Let M ∈ mod(R) and · · · −→ Pn
dn

−→ · · · −→ P0
d0

−→ M −→ 0 be

a minimal projective resolution of M . Then M is called a quasi-d-Koszul module if and only

if Ωi(M) ∩ J2Pi−1 = JΩi(M) for any odd number i ≥ 0 and Ωi(M) ⊆ Jd−1Pi−1, Ωi(M) ∩

JdPi−1 = JΩi(M) for any even number i ≥ 0.

2 An Equivalent Description of Quasi-d-Koszul Modules

Let M ∈ mod(R). Then M possesses a minimal projective resolution

Q : · · · // Qn
fn

// · · · // Q1
f1

// Q0
f0

// M // 0.

For the sake of convenience, we denote Si := ker fi−1, the ith syzygy of M .

Let E(R) :=
⊕

i≥0

ExtiR(R/J, R/J) and E(M) :=
⊕

i≥0

Exti
R(M, R/J). Similarly to the graded

case, we also call E(R) the Ext-algebra of R and E(M) the Koszul dual of M , respectively. It
should be noted that E(R) is a positively graded algebra (not bigraded) and E(M) is a graded

E(R)-module (not bigraded) since now R and M are not graded. In order to use the technique

of graded case, we try to give a “second grading” on ExtiR(R/J, R/J) and ExtiR(M, R/J).

Lemma 2.1 Using the above notations, we have Exti
R(M, R/J) ∼= HomR/J (Si/JSi, R/J)

for all i ≥ 0.

Proof Note that M has a minimal projective resolution and R/J is semisimple as an
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R-module, thus

Exti
R(M, R/J) = Hi HomR(Q, R/J) ∼= HomR(Qi, R/J)

∼= HomR(Si, R/J) ∼= HomR/J(Si/JSi, R/J).

Under the above assumptions, Si/JSi admits the following filtration:

Si/JSi = (Si ∩ JQi−1)/JSi ⊇ (Si ∩ J2Qi−1)/JSi ⊇ (Si ∩ J3Qi−1 + JSi)/JSi ⊇ · · · ⊇

(Si ∩ JnQi−1 + JSi)/JSi ⊇ · · · . Because R/J is semisimple, thus the above filtration is stable.

That is, there exists an integer Ni, such that (Si ∩ JNiQi−1 + JSi)/JSi = (Si ∩ JNi+1Qi−1 +

JSi)/JSi = · · · .

Therefore, as R/J-modules, we have

Si/JSi
∼= Si/(Si ∩ J2Qi−1) ⊕ (Si ∩ J2Qi−1)/(Si ∩ J3Qi−1 + JSi)

⊕ (Si ∩ J3Qi−1 + JSi)/(Si ∩ J4Qi−1 + JSi)

⊕ · · · ⊕ (Si ∩ JNiQi−1 + JSi)/JSi

∼= Si/(Si ∩ J2Qi−1) ⊕ (Si ∩ J2Qi−1)/(JSi ∩ J2Qi−1 + Si ∩ J3Qi−1)

⊕ (Si ∩ J3Qi−1)/(JSi ∩ J3Qi−1 + Si ∩ J4Qi−1)

⊕ · · · ⊕ (Si ∩ JNiQi−1 + JSi)/JSi.

Set

Hi
j := (Si ∩ Jj+1Qi−1)/(JSi ∩ Jj+1Qi−1 + Si ∩ Jj+2Qi−1), j = 0, 1, · · · , Ni − 1.

Lemma 2.2 Using the above notations, we have the following isomorphism:

ExtiR(M, R/J) ∼=
(

⊕

j≥0

HomR/J (Hi
j , R/J)

)

⊕

HomR/J ((Si ∩ JNiQi−1 + JSi)/JSi, R/J).

Now we can give a second grading on E(M) as follows:

Exti
R(M, R/J)j =







Ext0R(M, R/J), if i = j = 0,
HomR/J (Hi

j−i, R/J), if j = i, i + 1, i + Ni − 1,
0, otherwise.

Let

Ext
i

R(M, R/J) =
⊕

j≥i

HomR/J(Hi
j−i, R/J), i ≥ 1

and

E(M) = Ext0R(M, R/J)
⊕

(

⊕

i≥1

Ext
i

R(M, R/J)
)

.

Proposition 2.1 (see [7]) The following statements are true.

(1) ExtsR(R/J, R/J)t · ExtiR(M, R/J) ⊆ Exti+s
R (M, R/J)i+s ⊕ · · · ⊕ Exti+s

R (M, R/J)i+t;

(2) E(R) is a graded subalgebra of E(A) and E(M) is a graded submodule of E(M), where

E(R) = E(R/J);
(3) Ext1R(R/J, R/J) · ExtiR(M, R/J) = Exti+1

R (M, R/J)i+1 for all i ≥ 0.

Lemma 2.3 Let M ∈ mod(R) and Q a minimal projective resolution of M . Let f : N → N

be an increasing set function with f(i) ≥ i ≥ 1. Then

(1) If Si ⊆ Jf(i)Qi−1, then ExtiR(M, R/J)j = 0 for all j < f(i) + i − 1;

(2) Exti
R(M, R/J) = Ext

i

R(M, R/J) and Ext
i

R(M, R/J) = Exti
R(M, R/J)f(i) if and only

if Si ⊆ Jf(i)−i+1Qi−1 and Si ∩ Jf(i)−i+2Qi−1 = JSi.
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Proof (1) For any natural number k ≤ f(i), we have Si∩JkQi−1 = Si since Si ⊆ Jf(i)Qi−1.

Exti
R(M, R/J)j = HomR/J (Hi

j−i, R/J)

∼= HomR/J((Si ∩ Jj−i+1Qi−1)/(JSi ∩ Jj−i+1Qi−1 + Si ∩ Jj−i+2Qi−1), R/J).

Note that if j < f(i) + i− 1, then j − i + 2 ≤ f(i) and of course j − i + 1 ≤ f(i). Therefore,

HomR/J ((Si ∩ Jj−i+1Qi−1)/(JSi ∩ Jj−i+1Qi−1 + Si ∩ Jj−i+2Qi−1), R/J)

= HomR/J (Si/(JSi ∩ Jj−i+1Qi−1 + Si), R/J) = 0.

Now we finish the proof of (1).

(2) Since Ext
i

R(M, R/J) = Exti
R(M, R/J)f(i), we have ExtiR(M, R/J)j = 0 if j 6= f(i).

That is, Hi
j−i = (Si ∩ Jj−i+1Qi−1)/(JSi ∩ Jj−i+1Qi−1 + Si ∩ Jj−i+2Qi−1) = 0, ∀ j 6= f(i). It

is obvious that i ≤ f(i) ≤ i + Ni − 1. We divide it into two cases.

(a) For i ≤ j ≤ f(i) − 1. By assumption, we have Hi
j−i = (Si ∩ Jj−i+1Qi−1)/(JSi ∩

Jj−i+1Qi−1 + Si ∩ Jj−i+2Qi−1) = 0, ∀ j = i, · · · , f(i) − 1.
We give the proof by an induction on j − i. Since Hi

0 = (Si ∩ JQi−1)/(JSi ∩ JQi−1 +

Si ∩ J2Qi−1) = Si/(Si ∩ J2Qi−1) = 0, it is implied that Si ⊆ J2Qi−1. Since Hi
1 = (Si ∩

J2Qi−1)/(JSi∩J2Qi−1+Si∩J3Qi−1) = Si/(JSi∩J2Qi−1+Si∩J3Qi−1) = 0, it is implied that

Si = JSi ∩J2Qi−1 +Si ∩J2Qi−1 = JSi +Si ∩J3Qi−1. Thus Si = Si ∩J3Qi−1 since JSi ≪ Si.

In particular, we have Si ⊆ J3Qi−1. Following this clue, we can get Si ⊆ Jf(i)−i+1Qi−1.
(b) For f(i) + 1 ≤ j ≤ i + Ni − 1. Similarly to (a), we have Hi

f(i)−i+1 = Hi
f(i)−i+2 = · · · =

Hi
Ni−1 = 0.
Recall that Hi

j−i = (Si ∩ Jj−i+1Qi−1)/(JSi ∩ Jj−i+1Qi−1 + Si ∩ Jj−i+2Qi−1). Therefore,

we have the following equations:

Si ∩ Jf(i)−i+2Qi−1 = JSi ∩ Jf(i)−i+2Qi−1 + Si ∩ Jf(i)−i+3Qi−1,

Si ∩ Jf(i)−i+3Qi−1 = JSi ∩ Jf(i)−i+3Qi−1 + Si ∩ Jf(i)−i+4Qi−1,

...

Si ∩ JNiQi−1 = JSi ∩ JNiQi−1 + Si ∩ JNi+1Qi−1.

Thus, we have

Si ∩ Jf(i)−i+2Qi−1 = JSi ∩ Jf(i)−i+2Qi−1 + · · · + JSi ∩ JNiQi−1 + Si ∩ JNi+1Qi−1.

Note that we have obtained Si ⊆ Jf(i)−i+1Qi−1 in (a). Now using the method in (a), we

can get Si ∩ Jf(i)−i+2Qi−1 = JSi which completes the proof of necessity.

Now we give the proof of sufficiency. By assumption, we have Si ⊆ Jf(i)−i+1Qi−1. By (1),
we have Exti

R(M, R/J)j = 0 for all j < f(i). In order to finish the proof, we have to show

ExtiR(M, R/J)j = 0 for all j > f(i). It suffices to prove Hi
j−i = (Si ∩ Jj−i+1Qi−1)/(JSi ∩

Jj−i+1Qi−1 + Si ∩ Jj−i+2Qi−1) = 0 for all j > f(i). Note that Jj−i+1Qi−1 ⊆ Jf(i)−i+1Qi−1

since j > f(i). Therefore,

Exti
R(M, R/J)j

= HomR/J (Hi
j−i, R/J)

∼= HomR/J ((Si ∩ Jj−i+1Qi−1)/(JSi ∩ Jj−i+1Qi−1 + Si ∩ Jj−i+2Qi−1), R/J)

= HomR/J ((Si ∩ Jj−i+1Qi−1 ∩ Jf(i)−i+1Qi−1)/(JSi ∩ Jj−i+1Qi−1 + Si ∩ Jj−i+2Qi−1), R/J)

∼= HomR/J ((JSi ∩ Jj−i+1Qi−1)/(JSi ∩ Jj−i+1Qi−1 + Si ∩ Jj−i+2Qi−1), R/J)

= 0.
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Lemma 2.4 Let M ∈ mod(R). Then M is a quasi-d-Koszul module if and only if for any

i ≥ 1, k ∈ N, we have Exti
R(M, R/J) = Ext

i

R(M, R/J) and

Ext
i

R(M, R/J) =

{

ExtiR(M, R/J)i, i = 2k + 1,

ExtiR(M, R/J)d−2+i, i = 2k.

Proof Let · · · −→ Qn
fn

−→ · · · −→ Q1
f1

−→ Q0
f0

−→ M −→ 0 be a minimal projective

resolution. Then M is a quasi-d-Koszul module if and only if for all i ≥ 0, we have

(a) Si ⊆ JQi−1 and JSi = J2Qi−1 ∩ Si (i = 2k + 1),

(b) Si ⊆ Jd−1Qi−1 and JSi = JdQi−1 ∩ Si (n = 2k), where k ∈ Z. By Lemma 2.3,

conditions (a) and (b) are equivalent to Exti
R(M, R/J) = Ext

i

R(M, R/J) (∀ i ≥ 1) and

Ext
i

R(M, R/J) =

{

Exti
R(M, R/J)i, i = 2k + 1,

Exti
R(M, R/J)d−2+i, i = 2k.

Lemma 2.5 (see [1, 7]) The following statements are true.

(1) R is a quasi-d-Koszul algebra if and only if for all i ≥ 1, k ∈ N, we have Exti
R(R/J, R/J)

= Ext
i

R(R/J, R/J) and

Ext
i

R(R/J, R/J) =

{

ExtiR(R/J, R/J)i, i = 2k + 1,

ExtiR(R/J, R/J)d−2+i, i = 2k.

(2) Let R be a quasi-d-Koszul algebra and M a quasi-d-Koszul module. Then for all i ≥ 0,

we have Ext2i
R (M, R/J) = Ext2i

R (R/J, R/J) · Ext0R(M, R/J).

Theorem 2.1 Let R be a quasi-d-Koszul algebra and M be a finitely generated R-module.

Then M is a quasi-d-Koszul module if and only if the following conditions hold:

(1) ExtiR(M, R/J) = Ext
i

R(M, R/J) (i ≥ 1);

(2) Ext
i

R(M, R/J) = Exti
R(M, R/J)i for any odd number i ≥ 0;

(3) ExtiA(R/J, R/J)s · Ext0A(M, R/J) = ExtiA(M, R/J)s for any even number i ≥ 0;

(4) Ext2i
A (M, R/J) = Ext2i

A (R/J, R/J) · Ext0A(M, R/J) for any integer i ≥ 0.

Proof (⇒) Suppose that M is a quasi-d-Koszul module. By Lemma 2.4, for any i ≥ 1,

k ∈ N, we have ExtiR(M, R/J) = Ext
i

R(M, R/J) and

Ext
i

R(M, R/J) =

{

ExtiR(M, R/J)i, i = 2k + 1,

ExtiR(M, R/J)d−2+i, i = 2k.

Hence (1) and (2) hold. Note that R is a quasi-d-Koszul algebra, by Lemma 2.5, for all

i = 2k ≥ 0, we have Ext2k
R (R/J, R/J)s = Ext2k

R (R/J, R/J)2k+d−2. Since M is a quasi-d-Koszul

R-module, by Lemma 2.5 again, we have Ext2k
R (M, R/J) = Ext2k

R (R/J, R/J) · Ext0R(M, R/J).
Thus (4) holds. But Ext2k

R (M, R/J) = Ext2k
R (M, R/J)2k+d−2, so for all i = 2k ≥ 0, we have

Exti
R(R/J, R/J)s · Ext0R(M, R/J) = Ext2k

R (R/J, R/J)2k+d−2 · Ext0R(M, R/J)

= Ext2k
R (M, R/J)2k+d−2

= ExtiR(M, R/J)2k+d−2

= ExtiR(M, R/J)s.

Therefore, (3) holds.
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(⇐) According to (3), for all i = 2k ≥ 0, we have Exti
R(R/J, R/J)s · Ext0R(M, R/J) =

ExtiR(M, R/J)s. Note that R is a quasi-d-Koszul algebra, by Lemma 2.5, for all i = 2k ≥

0, we have Ext2k
R (R/J, R/J)s = Ext2k

R (R/J, R/J)2k+d−2. By (4), we get Ext2k
R (M, R/J) =

Ext2k
R (R/J, R/J) · Ext0R(M, R/J). Therefore,

Ext
2k

R (M, R/J) = Ext2k
R (M, R/J) = Ext2k

R (R/J, R/J) · Ext0R(M, R/J)

= Ext2k
R (R/J, R/J)2k+d−2 · Ext0R(M, R/J) = Ext2k

R (M, R/J)2k+d−2.

Now combining conditions (1) and (2), by Lemma 2.4, we obtain that M is a quasi-d-Koszul

module.

3 Applications of Quasi-d-Koszul Modules

In this section, R denotes an augmented Noetherian semiperfect algebra with Jacobson
radical J .

Lemma 3.1 Let X
f

// Y
g

// Z be a sequence of R/J-modules. Then

0 // R
⊗

R/J X
1⊗f

// R
⊗

R/J Y
1⊗g

// R
⊗

R/J Z // 0

is an exact sequence of R-modules if and only if

0 // X
f

// Y
g

// Z // 0

is an exact sequence of R/J-modules.

Proof (⇒) It is a routine check.

(⇐) It is obvious since R/J is semisimple.

Lemma 3.2 Let 0 −→ K −→ M −→ N −→ 0 be an exact sequence in mod(R). Then

JK = K ∩ JM if and only if we have the following commutative diagram with exact rows and

columns

0

��

0

��

0

��

0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // P0

��

// Q0

��

// L0

��

// 0

0 // K

��

// M

��

// N

��

// 0

0 0 0

where P0 −→ K −→ 0, Q0 −→ M −→ 0 and L0 −→ N −→ 0 are projective covers, respectively.

Proof (⇒) Clearly, we obtain the exact sequence

0 // K/JK // M/JM // N/JN // 0.
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Note that for any M ∈ mod(R), R
⊗

R/J M/JM −→ M −→ 0 is a projective cover. Now

setting

P0 := R
⊗

R/J K/JK, Q0 := R
⊗

R/J M/JM, L0 := R
⊗

R/J N/JN.

By Lemma 3.1, we have the following exact sequence

0 // P0
// Q0

// L0
// 0

since R/J is semisimple. Therefore, we have the desired diagram.

(⇐) Suppose that we have the above commutative diagram. Note that the projective cover

of a module is unique up to isomorphisms. We may assume that

P0 := R
⊗

R/J K/JK, Q0 := R
⊗

R/J M/JM, L0 := R
⊗

R/J N/JN.

From the middle row of the diagram, we have the following exact sequence

0 // R
⊗

R/J K/JK // R
⊗

R/J M/JM // R
⊗

R/J N/JN // 0.

By Lemma 3.1, we have the following short exact sequence as R/J-modules

0 // K/JK // M/JM // N/JN // 0,

which implies JK = K ∩ JM .

Lemma 3.3 Let 0 −→ K −→ M −→ N −→ 0 be a short exact sequence in mod(R). Then

JΩi(K) = Ωi(K) ∩ JΩi(M) for all i ≥ 0 if and only if the Minimal Horseshoe Lemma holds.

Proof By Lemma 3.2, JΩi(K) = Ωi(K)∩ JΩi(M) for all i ≥ 0 if and only if, for all i ≥ 0,

we have the following commutative diagram with exact rows and columns

0

��

0

��

0

��

0 // Ωi+1(K)

��

// Ωi+1(M)

��

// Ωi+1(N)

��

// 0

0 // Pi

��

// Qi

��

// Li

��

// 0

0 // Ωi(K)

��

// Ωi(M)

��

// Ωi(N)

��

// 0

0 0 0

where Pi, Qi and Li are projective covers of Ωi(K), Ωi(M) and Ωi(N), respectively. Now

putting this commutative diagrams together, we finish the proof.

Theorem 3.1 Let 0 −→ K −→ M −→ N −→ 0 be an exact sequence in the category of

quasi-d-Koszul modules such that JK = K ∩ JM . Then the Minimal Horseshoe Lemma holds.
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Proof By Lemma 3.2, we have the following commutative diagram with exact rows and

columns

0

��

0

��

0

��

0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // P0

��

// Q0

��

// L0

��

// 0

0 // K

��

// M

��

// N

��

// 0

0 0 0

since JK = K ∩ JM , which implies the following commutative diagram with exact rows

0

��

0

��

0

��

0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // JP0

��

// JQ0

��

// JL0

��

// 0

0 // JK

��

// JM

��

// JN

��

// 0

0 0 0

Applying the functor R/J
⊗

R to the above diagram, we have the following commutative dia-

gram with exact rows

0

��

0

��

0

��

0 // R/J
⊗

R Ω1(K)

α

��

β
// R/J

⊗

R Ω1(M)

γ

��

// R/J
⊗

R Ω1(N)

��

// 0

0 // R/J
⊗

R JP0
// R/J

⊗

R JQ0
// R/J

⊗

R JL0
// 0

where α and γ are monomorphisms since K, M are quasi-d-Koszul modules, β is a monomor-

phism induced by the commutativity of the left square. Hence JΩ1(K) = Ω1(K) ∩ JΩ1(M).
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By Lemma 3.2 again, we have the following commutative diagram with exact rows and columns

0

��

0

��

0

��

0 // Ω2(K)

��

// Ω2(M)

��

// Ω2(N)

��

// 0

0 // P1

��

// Q1

��

// L1

��

// 0

0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 0 0

Note that K, M and N are quasi-d-Koszul modules, we have the following commutative diagram

with exact rows

0

��

0

��

0

��

0 // Ω2(K)

��

// Ω2(M)

��

// Ω2(N)

��

// 0

0 // Jd−1P1
// Jd−1Q1

// Jd−1L1
// 0

Now applying the functor R/J
⊗

R to the above diagram and repeating the above procedures,

we finish the proof by Lemma 3.3.

Now we end this paper with an example to expound that the Minimal Horseshoe Lemma

does not hold in general.

Example 3.1 Let M ∈ mod(R) with Rad(M) 6= 0, where Rad(M) denotes the Jacobson

radical of M . Set K = Rad(M), N = M/Rad(M). Then we have the following commutative
diagram with exact rows and columns

0 // P∗

��

// Q∗

��

// L∗

��

// 0

0 // K

��

// M

��

// N

��

// 0

0 0 0

where both sides are minimal projective resolutions and the middle column is a projective

resolution. Now we claim that Q0 −→ M −→ 0 must not be a projective cover. If not, note

that N = M/Rad(M), we have Q0 = L0, which forces P0 = 0. It is impossible since K 6= 0.

Therefore, the “Minimal Horseshoe Lemma” does not hold in this case.
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