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1 Introduction

The enumeration problem of p-groups is important in the study of finite p-groups, which

includes two aspects: one is to study the number of subgroups, elements and subsets of finite

p-groups, the other is to study the structure or properties of finite p-groups by means of the

number of subgroups. For example, two well-known counting theorems are as follows.

Theorem 1.1 (see [1]) Assume that G is a group of order pn, 0 ≤ k ≤ n. sk(G) denotes

the number of subgroups of order pk of G. Then sk(G) ≡ 1 (mod p).

Theorem 1.2 (see [2]) Assume that G is a non-cyclic group of order pn, p > 2. If 1 ≤ k ≤

n − 1, then sk(G) ≡ 1 + p (mod p2).

For the possible cases of the number sk(G) of subgroups of a finite p-group G (mod p3),

Hua and Tuan [3], and Berkovich [4] investigated this question and obtained some results. For

example, we see the following theorems.

Theorem 1.3 (see [3]) Assume that G is a group of order pn, p ≥ 3, exp(G) = pn−α and

n ≥ 2α + 1. If 2α + 1 ≤ k ≤ n, then

sk(G) ≡ 1, 1 + p, 1 + p + p2 or 1 + p + 2p2 (mod p3).

Theorem 1.4 (see [4]) Assume that G is a group of order pn, p ≥ 2 and exp(G) = p. Then

for 1 < k < n − 1, sk(G) ≡ 1 + p + 2p2 (mod p3).
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How many possible cases does the number of subgroups of a finite p-group G (mod p3)

have? Up to now, the problem has no complete answer. Hua and Tuan had ever guessed: for

an arbitrary finite p-group G, if p > 2, then sk(G) ≡ 1, 1+p, 1+p+p2 or 1+p+2p2 (mod p3)

(see [5, Problem 1]). For brief, in the following the conjecture is called Hua-Tuan’s conjecture.

By Hua-Tuan’s conjecture, for an arbitrary finite p-group G, if p > 2, then the least number

of subgroups of possible order is one of 1, 1 + p, 1 + p + p2 or 1 + p + 2p2. Obviously, to study

the structure of finite p-groups which have such number of subgroups is an interesting question.

In fact, by Hall’s enumeration principle, groups of order pn in which the number of subgroups

of possible order is less than or equal to 1 + p are classified in [6]. In this paper, we classified

groups of order pn in which the number of subgroups of possible order is less than or equal to

1 + p + 2p2. We find that classifying groups of order pn in which the number of subgroups of

possible order is less than or equal to 1 + p + 2p2 is equivalent to classifying groups of order pn

in which the number of subgroups of possible order is less than or equal to p3. It follows that

classifying groups of order pn in which the number of subgroups of possible order is less than

or equal to 1 + p + 2p2 is equivalent to classifying groups of order pn in which the number of

subgroups of possible order is less than or equal to 1 + p + tp2 (2 < t < p). In particular, if

p > 2, n ≥ 5, then the classification of groups of order pn in which the number of subgroups

of possible order is less than or equal to p3 and the classification of groups of order pn with a

cyclic subgroup of index p2 are the same. This implies that Hua-Tuan’s conjecture is true for

finite p-groups with a cyclic subgroup of index p2. However, Hua-Tuan’s conjecture is not true

for general cases (see [7]).

For p = 2, we also classified groups of order 2n in which the number of subgroups of possible

order is less than or equal to 23 by means of the method of central extension. Thus finite

p-groups in which the number of subgroups of possible order is less than or equal to p3 are

completely classified.

For convenience, we use sk(G) and ck(G) to denote the number of subgroups of order pk

of a finite p-group G and the number of cyclic subgroups of order pk of a finite p-group G,

respectively; Cn and Cm
n to denote the cyclic group of order n and the direct product of m

cyclic groups of order n, respectively; Gn to denote the nth term of lower central series of a

p-group G; H ∗ K to denote a central product of H and K; and c(G) and d(G) to denote the

nilpotency class and minimal number of generators, respectively.

Let G be a finite p-group. For an integer i, we define Λi(G) = {a ∈ G | api

= 1}, Vi(G) =

{api

| a ∈ G}, Ωi(G) = 〈Λi(G)〉 = 〈a ∈ G | api

= 1〉, and ℧i(G) = 〈Vi(G)〉 = 〈api

| a ∈ G〉; G is

called pi-abelian if (ab)pi

= api

bpi

for all a, b ∈ G; G is called inner abelian if G is non-abelian,

but every proper subgroup of G is abelian; G is called meta-abelian if G′′ = 1.

The concepts and symbols in this paper are referred to [8].

2 The Classification of Finite p-Groups with sk(G) ≤ p3

2.1 Preliminaries

Lemma 2.1 (see [9] or [8, p. 339]) Finite 2-groups are maximal class if and only if |G : G′|

= 4.

Lemma 2.2 (see [10]) Assume that G is an inner abelian p-group. Then G is one of the

following:

(1) Q8;

(2) M(n, m) = 〈a, b | apn

= bpm

= 1, ab = a1+pn−1

〉, n ≥ 2 (metacyclic);



Finite p-Groups 499

(3) M(n, m, 1) = 〈a, b, c | apn

= bpm

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉, n ≥ m. If

p = 2, m + n ≥ 3 (non-metacyclic).

Theorem 2.1 (see [11]) Assume that G is a group of order pn, p > 2, n ≥ 5. Then G has

a cyclic subgroup of index p2 if and only if G is isomorphic to one of the following:

( I ) Abelian groups

(1) Cpn ; (2) Cpn−1 × Cp; (3) Cpn−2 × Cp2 ; (4) Cpn−2 × Cp × Cp;

( II ) d(G) = 2 and |G′| = p

(5) M(n − 1, 1); (6) M(n − 2, 2); (7) M(2, n − 2); (8) M(n − 2, 1, 1);

(III) d(G) = 2 and |G′| = p2

(9) 〈a, b | apn−2

= bp = cp = 1, [a, b] = c, [a, c] = 1, [b, c] = avpn−3

〉, ν is 1 or a fixed

quadratic non-residue (mod p);

(10) 〈a, b | apn−2

= bp = cp = 1, [a, b] = c, [a, c] = apn−3

, [b, c] = 1〉;

(11) 〈a, b | apn−2

= bp2

= 1, [a, b] = apn−4

〉;

(12) 〈a, b | apn−2

= bp2

= 1, [a, b] = apn−4

bp〉;

(IV) d(G) = 3 and |G′| = p

(13) M(n − 2, 1) × Cp; (14) M(1, 1, 1) ∗ Cpn−2 .

Here we give a new and short proof to the following theorem due to [6].

Theorem 2.2 (see [6]) Assume that G is a group of order pn. Then for 1 ≤ k ≤ n − 1,

sk(G) = 1 + p holds if and only if G is one of the following non-isomorphic groups:

(1) Cpn−1 × Cp;

(2) M(n − 1, 1) except for D8.

Proof First we assert that G has a cyclic maximal subgroup. If not, we take two distinct

maximal subgroups Mi (i = 1, 2), then, by hypothesis, sn−2(Mi) ≥ 1 + p. Thus sn−2(G) ≥

sn−2(M1) + sn−2(M2) − 1 ≥ 1 + 2p, which is a contradiction. By hypothesis and [12], or

[1, Theorem 1.2] (i.e., the classification of finite p-groups with a cyclic maximal subgroup),

G ∼= Cpn−1 × Cp or G ∼= M(n − 1, 1) except for D8. Conversely, if G is the group listed in

Theorem 2.2, then for arbitrary integer k (1 ≤ k ≤ n − 1), |Ωk(G)| = pk+1. Thus ck(G) =
|Ωk(G)|−|Ωk−1(G)|

pk−pk−1 = p. It follows that sk(G) = 1 + ck(G) = 1 + p.

2.2 The classification of finite p-groups with sk(G) ≤ p3 for p 6= 2

First, we give some lemmas, which are necessary for the classification.

Lemma 2.3 Assume that G is a group of order pn. If sn−1(G) ≤ p3, then d(G) ≤ 3.

Proof sn−1(G) = 1 + p + p2 + · · · + pd(G)−1. It follows by hypothesis that d(G) − 1 ≤ 2.

That is, d(G) ≤ 3.

Lemma 2.4 Assume that G is a finite p-group, N E G. If for arbitrary integer k satisfying

sk(G) ≤ t, where t is an integer, then sk(G/N) ≤ t.

Proof Assume that |N | = pi, H/N is a subgroup of order pk of G/N . Then H is a subgroup

of order pk+i of G containing N . Thus sk(G/N) ≤ sk+i(G) ≤ t.

Lemma 2.5 Assume that G is a group of order pn, exp(G) = pe, s is a positive integer. If

for 1 ≤ k ≤ n, ck(G) ≤ ps, then e ≥ n − s + 1.
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Proof We assert that for an arbitrary positive integer k, |Λk(G)| < pk+s. In fact, since

c1(G) = |Λ1(G)|−1
ϕ(p) = |Λ1(G)|−1

p−1 ≤ ps, |Λ1(G)| ≤ ps+1 − ps + 1 < ps+1. Assume that the assert

is true for k < m. When k = m, since cm(G) = |Λm(G)|−|Λm−1(G)|
ϕ(pm) = |Λm(G)|−|Λm−1(G)|

pm−1(p−1) ≤ ps,

|Λm(G)| ≤ ps+m−ps+m−1+ |Λm−1(G)| < ps+m. It follows that the assert is true. In particular,

pn = |G| = |Λe(G)| < pe+s. The conclusion is followed.

Remark 2.1 In particular, when s = 2, Lemma 2.5 give another proof for Theorem 2.2.

Lemma 2.6 Assume that G is a group of order pn, p > 2, n ≥ 5, exp(G) = pe. If e ≥ n−2,

then for 1 ≤ k ≤ n, sk(G) ≤ 1 + p + 2p2.

Proof We discuss by the value of e.

If e = n, then G is cyclic, the conclusion is followed. If e = n − 1, then G has at least a

cyclic maximal subgroup. Since p > 2, by [1, Theorem 1.2], G ∼= Cpn−1 × Cp or M(n − 1, 1).

By Theorem 2.2, for 1 ≤ k < n, sk(G) = 1 + p holds. The conclusion is followed.

If e = n − 2, then, by Theorem 2.1, |G′| ≤ p2, d(G) ≤ 3 and G is p2 abelian. It follows

that Ωi(G) = Λi(G) and d(Ωi(G)) ≤ 3 (2 ≤ i ≤ e). Since e = n − 2 and pn = |G| =

|Ω2(G)|
e
∏

s=3

∣

∣Ωs(G)/Ωs−1(G)
∣

∣, |Ω2(G)| ≤ p4 and Ω2(G) < G. If d(G) = 3, then |G′| ≤ p by

Theorem 2.1. If d(G) = 2, then |G′| ≤ p2 by Theorem 2.1 again. Taking a normal subgroup

N of order p of G contained in G′. It is easy to prove that G/N is abelian or inner abelian. It

follows that the derived subgroups of all proper subgroups of G are contained in N . Thus we

get |Ω2(G)′| ≤ p. So Ω2(G) is p-abelian. It means that Λ1(G) = Λ1(Ω2(G)) = Ω1(Ω2(G)) is a

group. It follows that Λ1(G) = Ω1(G).

Since e = n − 2 and pn = |G| = |Ω1(G)|
e
∏

s=2

∣

∣Ωs(G)/Ωs−1(G)
∣

∣, |Ω1(G)| ≤ p3. Since G is not

cyclic, |Ω1(G)| 6= p. We discuss in two cases according to |Ω1(G)| = p2 and |Ω1(G)| = p3.

Case 1 Assume |Ω1(G)| = p2. Then s1(G) = |Ω1(G)|−1
ϕ(p) = 1 + p. Since e = n − 2 and pn =

|G| = |Ω1(G)|
e
∏

s=2

∣

∣Ωs(G)/Ωs−1(G)
∣

∣, there exists an integer t such that
∣

∣Ωt(G)/Ωt−1(G)
∣

∣ = p2.

Moreover, if 2 ≤ i ≤ e and i 6= t, then
∣

∣Ωi(G)/Ωi−1(G)
∣

∣ = p. Therefore, if s ≤ t − 1, then

|Ωs(G)| = ps+1; if e ≥ s ≥ t, then |Ωs(G)| = ps+2. We calculate the number of subgroups of

order pj (2 ≤ j ≤ n − 1) of G as follows.

If 2 ≤ j ≤ t−1, then, by Ωi(G) = Λi(G) (2 ≤ i ≤ e), cj(G) =
|Ωj(G)|−|Ωj−1(G)|

ϕ(pj) = pj(p−1)
pj−1(p−1) =

p. Since |Ωj−1(G)| = pj , sj(Ωj−1(G)) = 1. So sj(G) = cj(G) + sj(Ωj−1(G)) = 1 + p.

If j = t, then ct(G) = |Ωt(G)|−|Ωt−1(G)|
ϕ(pt) = pt(p2−1)

pt−1(p−1) = p + p2. Since |Ωt−1(G)| = pt,

st(Ωt−1(G)) = 1. So st(G) = ct(G) + st(Ωt−1(G)) = 1 + p + p2.

If e ≥ j > t, then cj(G) =
|Ωj(G)|−|Ωj−1(G)|

ϕ(pj) = pj+1(p−1)
pj−1(p−1) = p2. Since |Ωj−1(G)| = pj+1 and

d(Ωj−1(G)) ≤ 3, sj(Ωj−1(G)) ≤ 1 + p + p2. So sj(G) = cj(G) + sj(Ωj−1(G)) = 1 + p + 2p2.

If j = e + 1 = n − 1, then, by d(G) ≤ 3, we have sj(G) ≤ 1 + p + p2.

In this case, sk(G) ≤ 1 + p + 2p2 for 1 ≤ k ≤ n.

Case 2 Assume |Ω1(G)| = p3. Then s1(G) = |Ω1(G)|−1
ϕ(p) = 1 + p + p2. Since e = n − 2

and pn = |G| = |Ω1(G)|
e
∏

s=2

∣

∣Ωs(G)/Ωs−1(G)
∣

∣,
∣

∣Ωi(G)/Ωi−1(G)
∣

∣ = p for 2 ≤ i ≤ e. Thus

|Ωi(G)| = pi+2 and ci(G) = |Ωi(G)|−|Ωi−1(G)|
ϕ(pi) = pi+1(p−1)

pi−1(p−1) = p2. Since d(Ωi−1(G)) ≤ 3 and

|Ωi−1(G)| = pi+1, we have si(Ωi−1(G)) ≤ 1 + p + p2. So we get si(G) = ci(G) + si(Ωi−1(G)) ≤

1 + p + 2p2. Since d(G) ≤ 3, we have sn−1(G) ≤ 1 + p + p2.
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In this case, we also have sk(G) ≤ 1 + p + 2p2 for 1 ≤ k ≤ n.

To sum up, the conclusion is followed.

Remark 2.2 Lemma 2.6 is not true for p = 2 or n = 4. For example, D2n (n ≥ 4) and

〈a, b | a32

= b3 = c3 = 1, [a, b] = c, [c, a] = 1, [c, b] = a6〉 are counterexamples.

By Lemmas 2.5 and 2.6, we have the following theorem.

Theorem 2.3 Assume that G is a group of order pn, p > 2, n ≥ 5, exp(G) = pe. Then the

following conditions are equivalence:

(1) e ≥ n − 2;

(2) for 1 ≤ k ≤ n, sk(G) ≤ 1 + p + 2p2;

(3) for 1 ≤ k ≤ n, sk(G) ≤ 1 + p + tp2, where 2 < t < p;

(4) for 1 ≤ k ≤ n, sk(G) ≤ p3;

(5) for 1 ≤ k ≤ n, ck(G) ≤ p3.

Theorem 2.3 implies that if p > 2 and n ≥ 5, then finite p-groups in which the number of

subgroups of possible order is less than or equal to p3 are exactly those groups listed in Theorem

2.1. It is easy to verify that for p-groups G with |G| ≤ p3, the number of subgroups of possible

order of G is less than or equal to p3. Therefore, in the case of p > 2, by Theorem 2.3, we know

that in order to classify finite p-groups in which the number of subgroups of possible order is

less than or equal to p3, we only need to consider those groups of order p4.

Theorem 2.4 Assume that G is a group of order p4, where p > 2. Then for arbitrary

integer k, sk(G) ≤ p3 holds if and only if G is isomorphic to one of the following:

(1) Cp4 ; (2) Cp3 × Cp; (3) Cp2 × Cp2 ; (4) Cp2 × Cp × Cp;

(5) M(3, 1); (6) M(2, 2); (7) M(2, 1, 1); (8) M(2, 1) ∗ Cp2 ;

(9) 〈a, b | ap2

= bp = cp = 1, [a, b] = c, [c, a] = 1, [c, b] = aip〉, where i = 1 or a fixed

quadratic non-residue (mod p). If p = 3, then i 6= 2;

(10) 〈a, b | ap2

= bp = cp = 1, [a, b] = c, [c, a] = ap, [c, b] = 1〉;

(11) 〈a, b | a9 = c3 = 1, b3 = a3, [a, b] = c, [c, a] = 1, [c, b] = a−3〉.

Proof By checking the list of groups of order p4, the conclusion is followed. Conversely,

those groups listed in Theorem 2.4 satisfy the hypothesis.

Remark 2.3 By checking the group lists in Theorem 2.4, we know that the restriction for

n ≥ 5 in Theorem 2.3 can be removed.

By Theorems 2.1, 2.3, 2.4, a direct consequence is as follows.

Theorem 2.5 Assume that G is a finite p-group, p > 2. Then for arbitrary integer k,

sk(G) ≤ p3 holds if and only if G is isomorphic to one of the following:

( I ) Abelian groups

(1) Cpn ; (2) Cpn × Cp; (3) Cpn × Cp2 (n ≥ 2); (4) Cpn × Cp × Cp;

( II ) d(G) = 2 and |G′| = p

(5) M(n, 1) (n ≥ 2); (6) M(n, 2) (n ≥ 2); (7) M(2, n) (n ≥ 3); (8) M(n, 1, 1) (n ≥ 2);

(III) d(G) = 2 and |G′| = p2

(9) 〈a, b | apn+1

= bp = cp = 1, [a, b] = c, [a, c] = 1, [b, c] = avpn

〉, where v = 1 or a fixed

quadratic non-residue (mod p). If p = 3 and n = 1, then v 6= 2;

(10) 〈a, b | apn+1

= bp = cp = 1, [a, b] = c, [a, c] = apn

, [b, c] = 1〉;



502 H. P. Qu, Y. Sun and Q. H. Zhang

(11) 〈a, b | apn+1

= bp2

= 1, [a, b] = apn−1

〉 (n ≥ 2);

(12) 〈a, b | apn+1

= bp2

= 1, [a, b] = apn−1

bp〉 (n ≥ 2);

(13) 〈a, b | a9 = c3 = 1, b3 = a3, [a, b] = c, [c, a] = 1, [c, b] = a−3〉;

(IV) d(G) = 3 and |G′| = p

(14) M(n, 1) × Cp (n ≥ 2); (15) M(1, 1, 1) ∗ Cpn (n ≥ 2).

Corollary 2.1 Assume that G is a finite p-group, p > 2. Then for arbitrary integer k,

sk(G) ≤ 1 + p + p2 holds if and only if G is isomorphic to one of the following:

( I ) Abelian groups

(1) Cpn ; (2) Cpn × Cp; (3) Cpn × Cp2 (n ≥ 2); (4) Cp × Cp × Cp;

( II ) |G′| = p

(5) M(n, 1) (n ≥ 2); (6) M(n, 2) (n ≥ 2); (7) M(2, n) (n ≥ 3); (8) M(1, 1, 1); (9) M(1, 1, 1)∗

Cp2 ;

(III) |G′| = p2

(10) 〈a, b | apn+1

= bp2

= 1, [a, b] = apn−1

〉 (n ≥ 2);

(11) 〈a, b | apn+1

= bp2

= 1, [a, b] = apn−1

bp〉 (n ≥ 2);

(12) 〈a, b | ap2

= bp = cp = 1, [a, b] = c, [a, c] = 1, [b, c] = avp〉, where v = 1 or a fixed

quadratic non-residue (mod p). If p = 3, then v 6= 2;

(13) 〈a, b | a9 = c3 = 1, a3 = b3, [a, b] = c, [c, b] = 1, [c, a] = a3〉.

Corollary 2.2 Assume that G is a group of order pn. Then for 1 ≤ k ≤ n − 1, sk(G) =

1 + p + p2 holds if and only if G is isomorphic to one of the following:

(1) Cp × Cp × Cp;

(2) 〈a, b, c | ap2

= bp = cp = 1, [b, c] = ap, [a, b] = [a, c] = 1〉 ∼= M(1, 1, 1) ∗ Cp2
∼=

M(2, 1) ∗ Cp2 .

2.3 The Classification of Finite 2-Groups with sk(G) ≤ 23

If G is a finite group of order 2n with sk(G) ≤ 23 for 1 ≤ k ≤ n, then by Lemma 2.3 we

have d(G) ≤ 3. In the following, we will prove that if d(G) = 2, then |G′| ≤ 4; if d(G) = 3,

then |G′| ≤ 2. We discuss in two cases.

Lemma 2.7 Assume that G is a finite 2-group and d(G) ≤ 2. If |G′| ≤ 2, then for arbitrary

integer k, sk(G) ≤ 8 holds if and only if G is isomorphic to one of the following:

(1) C2n ; (2) C2n × C2; (3) C2n × C4 (n ≥ 2);

(4) M(n, 1); (5) M(n, 2); (6) M(2, m) (m ≥ 3); (7) Q8.

Proof Since d(G) 6 2 and |G′| 6 2, G is abelian or inner abelian.

If d(G) = 1, then G ∼= C2n .

If d(G) = 2 and G is abelian, then it is easy to get G ∼= C2n × C2 or G ∼= C2n × C22 .

If d(G) = 2 and G is inner abelian, it is easy to check that sk(G) ≤ 8 for 1 ≤ k ≤ 3

for all groups of order 23. Assume |G| > 23. If G ∼= M(n, m, 1), then for i ≤ m, si(G) =

1+2+2(22 + · · · 2i)+2i+1. By hypothesis, we get m = 1, that is, G ∼= M(n, 1, 1). By checking

we get s2(G) = 1 + 2 + 23 > 8, which is a contradiction. Thus G ∼= M(n, m). By calculating,

we get si(G) = 1 + 2 + 22 + · · · + 2i for i ≤ min(m, n). By hypothesis, we get min(m, n) ≤ 2.

It follows that G is isomorphic to one of the following: M(n, 1), M(n, 2), M(2, m) (m ≥ 3).

Conversely, it is easy to check that these three groups satisfy the hypothesis. The conclusion

holds.
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Assume that G is a finite group of order 2n, d(G) = 2 and |G′| = 4. Then there exists a

normal subgroup N of order 2 of G contained in G′. If sk(G) ≤ 8 holds for 1 ≤ k ≤ n, then, by

Lemma 2.4, sk(G/N) ≤ 8. Thus, by Lemma 2.7, G/N ∼= M(n, 1), M(n, 2), M(2, m) (m ≥ 3)

or Q8. On the other hand, there does not exist a G such that |G′| = 4 and G/N ∼= Q8 by

[13, Lemma 8]. Thus, in the following, according to the structure of G/N , we determine G by

means of the method of central extension.

Theorem 2.6 Assume that G is a finite 2-group, d(G) = 2 and |G′| = 4. If there exists an

N ≤ G′ with |N | = 2 such that G/N ∼= M(n, 1), then for arbitrary integer k, sk(G) ≤ 8 holds

if and only if G is isomorphic to one of the following:

( I ) 〈a, b | a8 = b2 = 1, [a, b] = a2〉 ∼= SD16;

(II) 〈a, b | a8 = 1, b2 = a4, [a, b] = a−2〉 ∼= Q16.

Proof Since |G′| = 4, there exists a subgroup N of order 2 of G contained in G′ such that

N ≤ Z(G). Since G/N ∼= M(n, 1), by [13, Theorem 10], we know that G is isomorphic to one

of the following:

(1) 〈a, b | a8 = b2 = 1, [a, b] = a2〉 ∼= SD16;

(2) 〈a, b | a8 = b2 = 1, [a, b] = a−2〉 ∼= D16;

(3) 〈a, b | a8 = 1, b2 = a4, [a, b] = a−2〉 ∼= Q16.

By calculation, we get that for D16, s1(D16) = 9, which is contrary to our hypothesis.

For SD16, s1(SD16) = 5, s2(SD16) = 5, s3(SD16) = 3; for Q16, s1(Q16) = 1, s2(Q16) = 5,

s3(Q16) = 3. Conversely, it is easy to check that these groups listed in the theorem satisfy the

hypothesis. The conclusion holds.

Theorem 2.7 Assume that G is a finite 2-group, d(G) = 2 and |G′| = 4. If there exists an

N ≤ G′ with |N | = 2 such that G/N ∼= M(n, 2), then for arbitrary integer k, sk(G) ≤ 8 holds

if and only if G is isomorphic to one of the following:

( I ) 〈a, b | a2n+1

= b4 = 1, [a, b] = a2n−1

〉 (n ≥ 3);

(II) 〈a, b | a8 = 1, b4 = a4, [a, b] = a−2〉.

Proof Since |G′| = 4, there exists a subgroup N of order 2 of G contained in G′ such that

N ≤ Z(G). Since G/N ∼= M(n, 2), by [13, Theorem 10], we know that G is isomorphic to one

of the following four groups:

H(1) = 〈a, b | a2n+1

= b4 = 1, [a, b] = a2n−1

〉 (n ≥ 3);

H(2) = 〈a, b | a8 = b4 = 1, [a, b] = a2〉;

H(3) = 〈a, b | a8 = b4 = 1, [a, b] = a−2〉;

H(4) = 〈a, b | a8 = 1, b4 = a4, [a, b] = a−2〉.

For H(1), we have |H(1)| = 2n+3. Since [a4, b] = [a, b]4 = a2n+1

= 1, we have a4 ∈ Z(H(1)).

By calculation, we get Ω1(H(1)) = Λ1(H(1)) = 〈a2n

, b2〉 ∼= C2 × C2, Ωi(H(1)) = Λi(H(1)) =

〈a2n+1−i

, b〉 ∼= C2i×C4 (2 ≤ i ≤ n−1), Ωn(H(1)) = Λn(H(1)) = 〈a2, b〉 ∼= M(n, 2), Ωn+1(H(1)) =

Λn+1(H(1)) = H(1). It follows that s1(H(1)) = 3, si(H(1)) = ci(H(1)) + si(Ωi−1(H(1))) = 7

(2 ≤ i ≤ n + 1), sn+2(H(1)) = 3. So H(1) is the required group.

For H(2) and H(3), we have s2(H(2)) = s2(H(3)) = 11, so H(2) and H(3) are not the required

groups.

For H(4), we have s1(H(4)) = 3, s2(H(4)) = 3, s3(H(4)) = 7, so H(4) is the required groups.

Conversely, it is easy to check that H(1) and H(4) satisfy the hypothesis, respectively. The

conclusion holds.
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Theorem 2.8 Assume that G is a finite 2-group, d(G) = 2 and |G′| = 4. If there exists

an N ≤ G′ with |N | = 2 such that G/N ∼= M(2, m) (m ≥ 3), then for arbitrary integer k,

sk(G) ≤ 8 holds if and only if G ∼= 〈a, b | a8 = 1, b2m

= a4, [a, b] = a−2〉 (m ≥ 3).

Proof Since |G′| = 4, there exists a subgroup N of order 2 of G contained in G′ such that

N ≤ Z(G). Since G/N ∼= M(2, m) (m ≥ 3), by [13, Theorem 10], we know that G is isomorphic

to one of the following:

H(1) = 〈a, b | a8 = b2m

= 1, [a, b] = a2〉 (m ≥ 3);

H(2) = 〈a, b | a8 = b2m

= 1, [a, b] = a−2〉 (m ≥ 3);

H(3) = 〈a, b | a8 = 1, b2m

= a4, [a, b] = a−2〉 (m ≥ 3).

For H(i) (i = 1, 2), we have a4, b2 ∈ Z(H(i)). By calculation, we get Ω1(H(i)) = Λ1(H(i)) =

〈a4, b2m−1

〉 ∼= C2 × C2, Ω2(H(i)) = Λ2(H(i)) = 〈a2, b2m−2

〉 ∼= C4 × C4, Ω3(H(i)) = Λ3(H(i)) =

〈a, b2m−3

〉, |Ω3(H(i))| = 26. It follows that s3(H(i)) = c3(H(i)) + s3(Ω2(H(i))) = 15. So H(i)

(i = 1, 2) are not the required groups.

For H(3), we have a4, b2 ∈ Z(H(3)). By calculation, we get Ω1(H(3)) = Λ1(H(3)) =

〈a4, a2b2m−1

〉 ∼= C2 × C2; Ω2(H(3)) = Λ2(H(3)) = 〈a2, b2m−1

, ab2m−2

〉 = 〈a2, ab2m−2

〉,

|Ω2(H(3))| = 24, Ωi(H(3)) = 〈a, b2m−i+1

〉, |Ωi(H(3))| = 2i+1 (3 ≤ i ≤ m + 1), Ωm+1(H(3)) =

Λm+1(H(3)) = H(3). It follows that s1(H(3)) = sm+2(H(3)) = 3, si(H(3)) = 7 (2 ≤ i ≤ m + 1).

So H(3) is the required group. Conversely, it is easy to check that H(3) satisfies the hypothesis.

By Theorems 2.6–2.8 we have the following theorem.

Theorem 2.9 Assume that G is a finite 2-group, d(G) = 2 and |G′| = 4. Then for arbitrary

integer k, sk(G) ≤ 8 holds if and only if G is isomorphic to one of the following:

(1) 〈a, b | a8 = b2 = 1, [a, b] = a2〉 ∼= SD16;

(2) 〈a, b | a8 = 1, b2 = a4, [a, b] = a−2〉 ∼= Q16;

(3) 〈a, b | a2n+1

= b4 = 1, [a, b] = a2n−1

〉 (n ≥ 3);

(4) 〈a, b | a8 = 1, b2m

= a4, [a, b] = a−2〉 (m ≥ 2).

Theorem 2.10 Assume that G is a finite 2-group, d(G) = 2. If for arbitrary integer k,

sk(G) ≤ 8 holds, then |G′| ≤ 4.

Proof Assume that G is a counterexample of the smallest order. Then |G′| = 2i, where

i ≥ 3. Let M be a normal subgroup of order 2i−3 of G contained in G′. Then d(G/M) = 2

and sk(G/M) ≤ 23. Since |(G/M)′| = 23, G/M is also a counterexample. Since G is a

counterexample of the smallest order, we have M = 1. That is, |G′| = 23.

Taking a minimal subgroup N satisfying N ≤ Z(G). Then d(G/N) = 2, sk(G/N) ≤ 23 and

|(G/N)′| = 22. By Theorem 2.9, G/N is isomorphic to one of the following:

(1) 〈a, b | a8 = b2 = 1, [a, b] = a2〉 ∼= SD16;

(2) 〈a, b | a8 = 1, b2 = a4, [a, b] = a−2〉 ∼= Q16;

(3) 〈a, b | a2n+1

= b4 = 1, [a, b] = a2n−1

〉 (n ≥ 3);

(4) 〈a, b | a8 = 1, b2m

= a4, [a, b] = a−2〉 (m ≥ 2).

Thus, G can be determined by central extension.

If G is the group which is determined by (1) or (2) by central extension, then, by |G/G′| = 4

and Lemma 2.1, G is a 2-group of maximal class of order 25. But the quotient group of order 24

of a 2-group of maximal class of order 25 is exactly a dihedral group, which is a contradiction.

If G is the group which is determined by (3) by central extension, letting G/N = 〈a, b | a2n+1

=

b
4

= 1, [a, b] = a2n−1

〉, we have G = 〈a, b〉. If N = 〈x〉, [a, b] = a2n−1

xi (i = 0 or 1), then

[a, b, a] = 1, [a, b, b] = a22n−2

. It follows that G′ = 〈a2n−1

xi, a22n−2

〉 = 〈a2n−1

xi〉. Since |G′| = 8,
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we have o(a) = 2n+2. Hence N = 〈a2n+1

〉. Assume [a, b] = a2n−1

ak2n+1

= a2n−1(1+4k) (k = 0

or 1). Let l = 1 + 4k. Then ab = a2n−1l+1, (l, 2) = 1. Since b4 ∈ N ≤ Z(G), we have

a = ab4 = a(1+l2n−1)4 = a1+l2n+1

6= a, which is a contradiction.

If G is the group which is determined by (4) by central extension, letting G/N = 〈a, b | a8 =

1, b
2m

= a4, [a, b] = a(−2)〉 (m ≥ 2), N = 〈x〉 and [a, b] = a6xi (0 ≤ i < 2), we get [a, b, a] = 1,

[a, b, b] = a36. It follows that G′ = 〈a6xi, a36〉 = 〈a6xi〉. Since |G′| = 8, we have o(a) = 24.

Thus, 1 = [b2m

, b] = [a4, b] = [a, b]4 = a8 6= 1, which is a contradiction.

Theorem 2.11 Assume that G is a finite 2-group, d(G) = 3 and |G′| ≤ 2. Then for

arbitrary integer k, sk(G) ≤ 8 holds if and only if G is isomorphic to one of the following:

( I ) C2 × C2 × C2;

( II ) 〈a, b, c | a4 = 1, a2 = b2, c2 = 1, [a, b] = a2, [c, a] = [c, b] = 1〉 ∼= Q8 × C2;

(III) 〈a, b, c | a4 = b2 = c2 = 1, [b, c] = a2, [a, b] = [a, c] = 1〉 ∼= D8 ∗ C4
∼= Q8 ∗ C4.

Proof If |G′| = 1, it follows by d(G) = 3 that G ∼= C2 × C2 × C2.

If |G′| = 2, then, by Lemma 2.3, sk(G/G′) ≤ 8 holds for arbitrary integer k. Since d(G/G′) =

3 and G/G′ is abelian, G/G′ ∼= C2 × C2 × C2. It follows that G is a group of order 24. Since

d(G) = 3 and |G′| ≤ 2, by the classification of group of order 24, G is isomorphic to one of the

following:

H(1) = 〈a, b, c | a4 = 1, b2 = 1, c2 = 1, [a, b] = a2, [c, a] = [c, b] = 1〉 ∼= D8 × C2;

H(2) = 〈a, b, c | a4 = 1, b2 = a2, c2 = 1, [a, b] = a2, [c, a] = [c, b] = 1〉 ∼= Q8 × C2;

H(3) = 〈a, b, c | a4 = b2 = c2 = 1, [b, c] = a2, [a, b] = [a, c] = 1〉 ∼= D8 ∗ C4
∼= Q8 ∗ C4.

For H(1), we have s1(H(1)) = 11. So H(1) is not the required group. For H(2), we have

s1(H(2)) = 3, s2(H(2)) = s3(H(2)) = 7. For H(3), we have s1(H(3)) = s2(H(3)) = s3(H(3)) = 7.

So H(2) and H(3) are the required groups. Conversely, it is easy to check that H(2) and H(3)

satisfy the hypothesis, respectively.

Theorem 2.12 Assume that G is a finite 2-group, d(G) = 3. If for arbitrary integer k,

sk(G) ≤ 8 holds, then |G′| ≤ 2.

Proof Assume that G is a counterexample of the smallest order. Then |G′| = 2i, where

i ≥ 2. Let M be a normal subgroup of order 2i−2 of G contained in G′. Then d(G/M) = 3,

sk(G/M) ≤ 23. Since |(G/M)′| = 22, G/M is also a counterexample. But G is a counterexample

of the smallest order, so M = 1. That is, |G′| = 22.

Taking a normal subgroup N of order 2 of G contained in G′, we have d(G/N) = 3,

sk(G/N) ≤ 23, |(G/N)′| = 2. By Lemma 2.11, G/N is isomorphic to one of the following:

(1) 〈a, b, c | a4 = 1, a2 = b
2
, c2 = 1, [a, b] = a2, [c, a] = [c, b] = 1〉 ∼= Q8 × C2;

(2) 〈a, b, c | a4 = b
2

= c2 = 1, [b, c] = a2, [a, b] = [a, c] = 1〉 ∼= D8 ∗ C4
∼= Q8 ∗ C4.

Thus, G can be determined by central extension.

Note G′ = 〈a2〉N . It is easy to see that [a2, b] = [a2, c] = 1. It follows that G′ ≤ Z(G),

c(G) = 2. If G is the group which is determined by (1) by central extension, then 1 = [a2, b] =

[a, b]2 = a4. If G is the group which is determined by (2) by central extension, then, by

c2 ∈ N , 1 = [b, c2] = [b, c]2 = a4. That is, o(a) = 4. So exp(G) = exp(G/N). It follows

that |Λ2(G)| = |G| = 25. But by the argument of Lemma 2.5, we get |Λ2(G)| < 25. This is a

contradiction.

Theorem 2.13 Assume that G is a finite 2-group. Then for arbitrary integer k, sk(G) ≤ 8

holds if and only if G is isomorphic to one of the following:

( I ) Abelian groups
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(1) C2n ; (2) C2n × C2; (3) C2n × C4 (n ≥ 2); (4) C2 × C2 × C2;

( II ) d(G) = 2 and |G′| = 2

(5) M(n, 1); (6) M(n, 2) (n ≥ 2); (7) M(2, m) (m ≥ 3); (8) Q8;

(III) d(G) = 2 and |G′| = 4

(9) 〈a, b | a8 = b2 = 1, [a, b] = a2〉 ∼= SD16;

(10) 〈a, b | a8 = 1, b2 = a4, [a, b] = a−2〉 ∼= Q16;

(11) 〈a, b | a2n+1

= b4 = 1, [a, b] = a2n−1

〉 (n ≥ 3);

(12) 〈a, b | a8 = 1, b2m

= a4, [a, b] = a−2〉 (m ≥ 2);

(IV) d(G) = 3

(13) 〈a, b, c | a4 = 1, a2 = b2, c2 = 1, [a, b] = a2, [c, a] = [c, b] = 1〉 ∼= Q8 × C2;

(14) 〈a, b, c | a4 = b2 = c2 = 1, [b, c] = a2, [a, b] = [a, c] = 1〉 ∼= D8 ∗ C4
∼= Q8 ∗ C4.

Proof By Lemma 2.3, we get d(G) ≤ 3. By Theorems 2.12 and 2.10, we have |G′| ≤ 4.

Thus the conclusion is followed by Theorems 2.7, 2.9 and 2.11.

Corollary 2.3 Assume that G is a group of order 2n. Then for 1 ≤ k < n, sk(G) = 7

holds if and only if G is isomorphic to one of the following:

(1) C2 × C2 × C2;

(2) 〈a, b, c | a4 = b2 = c2 = 1, [b, c] = a2, [a, b] = [a, c] = 1〉 ∼= D8 ∗ C4
∼= Q8 ∗ C4.

Corollary 2.4 Assume that G is a finite 2-group. Then for arbitrary integer k, sk(G) ≤ 5

holds if and only if G is isomorphic to one of the following:

(1) C2n ; (2) C2n × C2; (3) M(n, 1);

(4) 〈a, b | a8 = b2 = 1, [a, b] = a2〉 ∼= SD16;

(5) 〈a, b | a8 = 1, b2 = a4, [a, b] = a−2〉 ∼= Q16.
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