Finite *p*-Groups in Which the Number of Subgroups of Possible Order Is Less Than or Equal to $p^{3 ***}$

Haipeng QU^{*} Ying SUN^{*} Qinhai ZHANG^{**}

Abstract In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p^3 are classified. It turns out that if p > 2, $n \ge 5$, then the classification of groups of order p^n in which the number of subgroups of possible order is less than or equal to p^3 and the classification of groups of order p^n with a cyclic subgroup of index p^2 are the same.

Keywords Inner abelian p-groups, Metacyclic p-groups, Groups of order p^n with a cyclic subgroup of index p^2 , The number of subgroups 2000 MR Subject Classification 20D15

1 Introduction

The enumeration problem of p-groups is important in the study of finite p-groups, which includes two aspects: one is to study the number of subgroups, elements and subsets of finite p-groups, the other is to study the structure or properties of finite p-groups by means of the number of subgroups. For example, two well-known counting theorems are as follows.

Theorem 1.1 (see [1]) Assume that G is a group of order p^n , $0 \le k \le n$. $s_k(G)$ denotes the number of subgroups of order p^k of G. Then $s_k(G) \equiv 1 \pmod{p}$.

Theorem 1.2 (see [2]) Assume that G is a non-cyclic group of order p^n , p > 2. If $1 \le k \le n-1$, then $s_k(G) \equiv 1 + p \pmod{p^2}$.

For the possible cases of the number $s_k(G)$ of subgroups of a finite *p*-group $G \pmod{p^3}$, Hua and Tuan [3], and Berkovich [4] investigated this question and obtained some results. For example, we see the following theorems.

Theorem 1.3 (see [3]) Assume that G is a group of order p^n , $p \ge 3$, $\exp(G) = p^{n-\alpha}$ and $n \ge 2\alpha + 1$. If $2\alpha + 1 \le k \le n$, then

$$s_k(G) \equiv 1, \ 1+p, \ 1+p+p^2 \text{ or } 1+p+2p^2 \pmod{p^3}.$$

Theorem 1.4 (see [4]) Assume that G is a group of order p^n , $p \ge 2$ and $\exp(G) = p$. Then for 1 < k < n-1, $s_k(G) \equiv 1 + p + 2p^2 \pmod{p^3}$.

Manuscript received September 7, 2009. Published online June 21, 2010.

^{*}Department of Mathematics, Shanxi Normal University, Linfen 041004, Shanxi, China.

E-mail: quhaipeng@yahoo.cn orcawhale@163.com

^{**}Corresponding author. Department of Mathematics, Shanxi Normal University, Linfen 041004, Shanxi, China. E-mail: zhangqh@dns.sxnu.edu.cn

^{***}Project supported by the National Natural Science Foundation of China (No. 10671114), the Shanxi Provincial Natural Science Foundation of China (No. 2008012001) and the Returned Abroad-Student Fund of Shanxi Province (No. [2007]13-56).

How many possible cases does the number of subgroups of a finite *p*-group $G \pmod{p^3}$ have? Up to now, the problem has no complete answer. Hua and Tuan had ever guessed: for an arbitrary finite *p*-group G, if p > 2, then $s_k(G) \equiv 1$, 1+p, $1+p+p^2$ or $1+p+2p^2 \pmod{p^3}$ (see [5, Problem 1]). For brief, in the following the conjecture is called Hua-Tuan's conjecture.

By Hua-Tuan's conjecture, for an arbitrary finite p-group G, if p > 2, then the least number of subgroups of possible order is one of 1, 1 + p, $1 + p + p^2$ or $1 + p + 2p^2$. Obviously, to study the structure of finite *p*-groups which have such number of subgroups is an interesting question. In fact, by Hall's enumeration principle, groups of order p^n in which the number of subgroups of possible order is less than or equal to 1 + p are classified in [6]. In this paper, we classified groups of order p^n in which the number of subgroups of possible order is less than or equal to $1+p+2p^2$. We find that classifying groups of order p^n in which the number of subgroups of possible order is less than or equal to $1 + p + 2p^2$ is equivalent to classifying groups of order p^n in which the number of subgroups of possible order is less than or equal to p^3 . It follows that classifying groups of order p^n in which the number of subgroups of possible order is less than or equal to $1 + p + 2p^2$ is equivalent to classifying groups of order p^n in which the number of subgroups of possible order is less than or equal to $1 + p + tp^2$ (2 < t < p). In particular, if $p > 2, n \ge 5$, then the classification of groups of order p^n in which the number of subgroups of possible order is less than or equal to p^3 and the classification of groups of order p^n with a cyclic subgroup of index p^2 are the same. This implies that Hua-Tuan's conjecture is true for finite p-groups with a cyclic subgroup of index p^2 . However, Hua-Tuan's conjecture is not true for general cases (see [7]).

For p = 2, we also classified groups of order 2^n in which the number of subgroups of possible order is less than or equal to 2^3 by means of the method of central extension. Thus finite *p*-groups in which the number of subgroups of possible order is less than or equal to p^3 are completely classified.

For convenience, we use $s_k(G)$ and $c_k(G)$ to denote the number of subgroups of order p^k of a finite *p*-group *G* and the number of cyclic subgroups of order p^k of a finite *p*-group *G*, respectively; C_n and C_n^m to denote the cyclic group of order *n* and the direct product of *m* cyclic groups of order *n*, respectively; G_n to denote the *n*th term of lower central series of a *p*-group *G*; H * K to denote a central product of *H* and *K*; and c(G) and d(G) to denote the nilpotency class and minimal number of generators, respectively.

Let G be a finite p-group. For an integer i, we define $\Lambda_i(G) = \{a \in G \mid a^{p^i} = 1\}, V_i(G) = \{a^{p^i} \mid a \in G\}, \Omega_i(G) = \langle \Lambda_i(G) \rangle = \langle a \in G \mid a^{p^i} = 1 \rangle$, and $\mathcal{O}_i(G) = \langle V_i(G) \rangle = \langle a^{p^i} \mid a \in G \rangle$; G is called p^i -abelian if $(ab)^{p^i} = a^{p^i} b^{p^i}$ for all $a, b \in G$; G is called inner abelian if G is non-abelian, but every proper subgroup of G is abelian; G is called meta-abelian if G'' = 1.

The concepts and symbols in this paper are referred to [8].

2 The Classification of Finite *p*-Groups with $s_k(G) \leq p^3$

2.1 Preliminaries

Lemma 2.1 (see [9] or [8, p. 339]) Finite 2-groups are maximal class if and only if |G:G'| = 4.

Lemma 2.2 (see [10]) Assume that G is an inner abelian p-group. Then G is one of the following:

(2) $M(n,m) = \langle a,b \mid a^{p^n} = b^{p^m} = 1, \ a^b = a^{1+p^{n-1}} \rangle, \ n \ge 2 \ (metacyclic);$

⁽¹⁾ $Q_8;$

Finite p-Groups

(3) $M(n,m,1) = \langle a,b,c \mid a^{p^n} = b^{p^m} = c^p = 1, [a,b] = c, [c,a] = [c,b] = 1 \rangle, n \ge m.$ If $p = 2, m + n \ge 3$ (non-metacyclic).

Theorem 2.1 (see [11]) Assume that G is a group of order p^n , p > 2, $n \ge 5$. Then G has a cyclic subgroup of index p^2 if and only if G is isomorphic to one of the following:

- (I) Abelian groups
- (1) C_{p^n} ; (2) $C_{p^{n-1}} \times C_p$; (3) $C_{p^{n-2}} \times C_{p^2}$; (4) $C_{p^{n-2}} \times C_p \times C_p$;
- (II) d(G) = 2 and |G'| = p
- (5) M(n-1,1); (6) M(n-2,2); (7) M(2,n-2); (8) M(n-2,1,1);
- (III) d(G) = 2 and $|G'| = p^2$

(9) $\langle a, b \mid a^{p^{n-2}} = b^p = c^p = 1, \ [a, b] = c, \ [a, c] = 1, \ [b, c] = a^{vp^{n-3}} \rangle, \ \nu \text{ is 1 or a fixed}$ quadratic non-residue (mod p);

- (10) $\langle a, b \mid a^{p^{n-2}} = b^p = c^p = 1, \ [a, b] = c, \ [a, c] = a^{p^{n-3}}, \ [b, c] = 1 \rangle;$ (11) $\langle a, b \mid a^{p^{n-2}} = b^{p^2} = 1, \ [a, b] = a^{p^{n-4}} \rangle;$ (12) $\langle a, b \mid a^{p^{n-2}} = b^{p^2} = 1, \ [a, b] = a^{p^{n-4}} b^p \rangle;$

- (IV) d(G) = 3 and |G'| = p
- (13) $M(n-2,1) \times C_p$; (14) $M(1,1,1) * C_{p^{n-2}}$.

Here we give a new and short proof to the following theorem due to [6].

Theorem 2.2 (see [6]) Assume that G is a group of order p^n . Then for $1 \le k \le n-1$, $s_k(G) = 1 + p$ holds if and only if G is one of the following non-isomorphic groups:

(1)
$$C_{p^{n-1}} \times C_p;$$

(2) M(n-1,1) except for D_8 .

Proof First we assert that G has a cyclic maximal subgroup. If not, we take two distinct maximal subgroups M_i (i = 1, 2), then, by hypothesis, $s_{n-2}(M_i) \ge 1 + p$. Thus $s_{n-2}(G) \ge 1 + p$. $s_{n-2}(M_1) + s_{n-2}(M_2) - 1 \ge 1 + 2p$, which is a contradiction. By hypothesis and [12], or [1, Theorem 1.2] (i.e., the classification of finite p-groups with a cyclic maximal subgroup), $G \cong C_{p^{n-1}} \times C_p$ or $G \cong M(n-1,1)$ except for D_8 . Conversely, if G is the group listed in Theorem 2.2, then for arbitrary integer k $(1 \le k \le n-1), |\Omega_k(G)| = p^{k+1}$. Thus $c_k(G) =$ $\frac{|\Omega_k(G)| - |\Omega_{k-1}(G)|}{p^k - p^{k-1}} = p.$ It follows that $s_k(G) = 1 + c_k(G) = 1 + p.$

2.2 The classification of finite p-groups with $s_k(G) \le p^3$ for $p \ne 2$

First, we give some lemmas, which are necessary for the classification.

Lemma 2.3 Assume that G is a group of order p^n . If $s_{n-1}(G) \leq p^3$, then $d(G) \leq 3$.

Proof $s_{n-1}(G) = 1 + p + p^2 + \dots + p^{d(G)-1}$. It follows by hypothesis that $d(G) - 1 \leq 2$. That is, $d(G) \leq 3$.

Lemma 2.4 Assume that G is a finite p-group, $N \leq G$. If for arbitrary integer k satisfying $s_k(G) < t$, where t is an integer, then $s_k(G/N) < t$.

Proof Assume that $|N| = p^i$, H/N is a subgroup of order p^k of G/N. Then H is a subgroup of order p^{k+i} of G containing N. Thus $s_k(G/N) \leq s_{k+i}(G) \leq t$.

Lemma 2.5 Assume that G is a group of order p^n , $exp(G) = p^e$, s is a positive integer. If for $1 \leq k \leq n$, $c_k(G) \leq p^s$, then $e \geq n-s+1$.

Proof We assert that for an arbitrary positive integer k, $|\Lambda_k(G)| < p^{k+s}$. In fact, since $c_1(G) = \frac{|\Lambda_1(G)| - 1}{\varphi(p)} = \frac{|\Lambda_1(G)| - 1}{p - 1} \le p^s, \ |\Lambda_1(G)| \le p^{s+1} - p^s + 1 < p^{s+1}.$ Assume that the assert is true for k < m. When k = m, since $c_m(G) = \frac{|\Lambda_m(G)| - |\Lambda_{m-1}(G)|}{\varphi(p^m)} = \frac{|\Lambda_m(G)| - |\Lambda_{m-1}(G)|}{p^{m-1}(p-1)} \le p^s$, $|\Lambda_m(G)| \leq p^{s+m} - p^{s+m-1} + |\Lambda_{m-1}(G)| < p^{s+m}$. It follows that the assert is true. In particular, $p^n = |G| = |\Lambda_e(G)| < p^{e+s}$. The conclusion is followed.

Remark 2.1 In particular, when s = 2, Lemma 2.5 give another proof for Theorem 2.2.

Lemma 2.6 Assume that G is a group of order p^n , p > 2, $n \ge 5$, $\exp(G) = p^e$. If $e \ge n-2$, then for $1 \le k \le n$, $s_k(G) \le 1 + p + 2p^2$.

Proof We discuss by the value of *e*.

If e = n, then G is cyclic, the conclusion is followed. If e = n - 1, then G has at least a cyclic maximal subgroup. Since p > 2, by [1, Theorem 1.2], $G \cong C_{n^{n-1}} \times C_p$ or M(n-1,1). By Theorem 2.2, for $1 \le k < n$, $s_k(G) = 1 + p$ holds. The conclusion is followed.

If e = n - 2, then, by Theorem 2.1, $|G'| \le p^2$, $d(G) \le 3$ and G is p^2 abelian. It follows that $\Omega_i(G) = \Lambda_i(G)$ and $d(\Omega_i(G)) \leq 3$ $(2 \leq i \leq e)$. Since e = n-2 and $p^n = |G| =$ $|\Omega_2(G)| \prod_{n=2}^{e} |\Omega_s(G)/\Omega_{s-1}(G)|, |\Omega_2(G)| \le p^4 \text{ and } \Omega_2(G) < G.$ If d(G) = 3, then $|G'| \le p$ by Theorem 2.1. If d(G) = 2, then $|G'| \le p^2$ by Theorem 2.1 again. Taking a normal subgroup N of order p of G contained in G'. It is easy to prove that G/N is abelian or inner abelian. It follows that the derived subgroups of all proper subgroups of G are contained in N. Thus we get $|\Omega_2(G)'| \leq p$. So $\Omega_2(G)$ is p-abelian. It means that $\Lambda_1(G) = \Lambda_1(\Omega_2(G)) = \Omega_1(\Omega_2(G))$ is a group. It follows that $\Lambda_1(G) = \Omega_1(G)$.

Since e = n - 2 and $p^n = |G| = |\Omega_1(G)| \prod_{s=2}^{e} |\Omega_s(G)/\Omega_{s-1}(G)|, |\Omega_1(G)| \le p^3$. Since G is not cyclic, $|\Omega_1(G)| \ne p$. We discuss in two cases according to $|\Omega_1(G)| = p^2$ and $|\Omega_1(G)| = p^3$.

Case 1 Assume $|\Omega_1(G)| = p^2$. Then $s_1(G) = \frac{|\Omega_1(G)|-1}{\varphi(p)} = 1 + p$. Since e = n - 2 and $p^n = 1 + p$. $|G| = |\Omega_1(G)| \prod_{s=2}^{e} |\Omega_s(G)/\Omega_{s-1}(G)|, \text{ there exists an integer } t \text{ such that } |\Omega_t(G)/\Omega_{t-1}(G)| = p^2.$ Moreover, if $2 \leq i \leq e$ and $i \neq t$, then $|\Omega_i(G)/\Omega_{i-1}(G)| = p$. Therefore, if $s \leq t-1$, then $|\Omega_s(G)| = p^{s+1}$; if $e \ge s \ge t$, then $|\Omega_s(G)| = p^{s+2}$. We calculate the number of subgroups of order p^j $(2 \le j \le n-1)$ of G as follows.

 $\begin{aligned} &\text{If } 2 \leq j \leq t-1, \text{ then, by } \Omega_i(G) = \Lambda_i(G) \ (2 \leq i \leq e), c_j(G) = \frac{|\Omega_j(G)| - |\Omega_{j-1}(G)|}{\varphi(p^j)} = \frac{p^j(p-1)}{p^{j-1}(p-1)} = \\ &p. \text{ Since } |\Omega_{j-1}(G)| = p^j, s_j(\Omega_{j-1}(G)) = 1. \text{ So } s_j(G) = c_j(G) + s_j(\Omega_{j-1}(G)) = 1 + p. \\ &\text{ If } j = t, \text{ then } c_t(G) = \frac{|\Omega_t(G)| - |\Omega_{t-1}(G)|}{\varphi(p^t)} = \frac{p^t(p^2-1)}{p^{t-1}(p-1)} = p + p^2. \text{ Since } |\Omega_{t-1}(G)| = p^t, \\ &s_t(\Omega_{t-1}(G)) = 1. \text{ So } s_t(G) = c_t(G) + s_t(\Omega_{t-1}(G)) = 1 + p + p^2. \\ &\text{ If } e \geq j > t, \text{ then } c_j(G) = \frac{|\Omega_j(G)| - |\Omega_{j-1}(G)|}{\varphi(p^j)} = \frac{p^{j+1}(p-1)}{p^{j-1}(p-1)} = p^2. \text{ Since } |\Omega_{j-1}(G)| = p^{j+1} \text{ and} \\ &d(\Omega_{j-1}(G)) \leq 3, s_j(\Omega_{j-1}(G)) \leq 1 + p + p^2. \text{ So } s_j(G) = c_j(G) + s_j(\Omega_{j-1}(G)) = 1 + p + 2p^2. \\ &\text{ If } i = e + 1 = n - 1 \text{ then, by } d(G) \leq 3 \text{ we have } s_j(G) \leq 1 + n + n^2. \end{aligned}$ If j = e + 1 = n - 1, then, by $d(G) \le 3$, we have $s_j(G) \le 1 + p + p^2$. In this case, $s_k(G) \leq 1 + p + 2p^2$ for $1 \leq k \leq n$.

Case 2 Assume $|\Omega_1(G)| = p^3$. Then $s_1(G) = \frac{|\Omega_1(G)| - 1}{\varphi(p)} = 1 + p + p^2$. Since e = n - 2and $p^n = |G| = |\Omega_1(G)| \prod_{s=2}^{e} |\Omega_s(G)/\Omega_{s-1}(G)|, |\Omega_i(G)/\Omega_{i-1}(G)| = p$ for $2 \le i \le e$. Thus $|\Omega_i(G)| = p^{i+2}$ and $c_i(G) = \frac{|\Omega_i(G)| - |\Omega_{i-1}(G)|}{\varphi(p^i)} = \frac{p^{i+1}(p-1)}{p^{i-1}(p-1)} = p^2$. Since $d(\Omega_{i-1}(G)) \le 3$ and $|\Omega_{i-1}(G)| = p^{i+1}$, we have $s_i(\Omega_{i-1}(G)) \le 1 + p + p^2$. So we get $s_i(G) = c_i(G) + s_i(\Omega_{i-1}(G)) \le 1 + p + p^2$. $1 + p + 2p^2$. Since $d(G) \le 3$, we have $s_{n-1}(G) \le 1 + p + p^2$.

In this case, we also have $s_k(G) \leq 1 + p + 2p^2$ for $1 \leq k \leq n$. To sum up, the conclusion is followed.

Remark 2.2 Lemma 2.6 is not true for p = 2 or n = 4. For example, D_{2^n} $(n \ge 4)$ and $\langle a, b \mid a^{3^2} = b^3 = c^3 = 1$, [a, b] = c, [c, a] = 1, $[c, b] = a^6 \rangle$ are counterexamples.

By Lemmas 2.5 and 2.6, we have the following theorem.

Theorem 2.3 Assume that G is a group of order p^n , p > 2, $n \ge 5$, $\exp(G) = p^e$. Then the following conditions are equivalence:

- (1) $e \ge n 2;$
- (2) for $1 \le k \le n$, $s_k(G) \le 1 + p + 2p^2$;
- (3) for $1 \le k \le n$, $s_k(G) \le 1 + p + tp^2$, where 2 < t < p;
- (4) for $1 \le k \le n$, $s_k(G) \le p^3$;
- (5) for $1 \le k \le n$, $c_k(G) \le p^3$.

Theorem 2.3 implies that if p > 2 and $n \ge 5$, then finite *p*-groups in which the number of subgroups of possible order is less than or equal to p^3 are exactly those groups listed in Theorem 2.1. It is easy to verify that for *p*-groups *G* with $|G| \le p^3$, the number of subgroups of possible order of *G* is less than or equal to p^3 . Therefore, in the case of p > 2, by Theorem 2.3, we know that in order to classify finite *p*-groups in which the number of subgroups of possible order is less than or equal to p^3 .

Theorem 2.4 Assume that G is a group of order p^4 , where p > 2. Then for arbitrary integer k, $s_k(G) \le p^3$ holds if and only if G is isomorphic to one of the following:

- (1) C_{p^4} ; (2) $C_{p^3} \times C_p$; (3) $C_{p^2} \times C_{p^2}$; (4) $C_{p^2} \times C_p \times C_p$;
- (5) M(3,1); (6) M(2,2); (7) M(2,1,1); (8) $M(2,1) * C_{p^2}$;

(9) $\langle a, b \mid a^{p^2} = b^p = c^p = 1$, [a, b] = c, [c, a] = 1, $[c, b] = a^{ip} \rangle$, where i = 1 or a fixed quadratic non-residue (mod p). If p = 3, then $i \neq 2$;

- (10) $\langle a, b \mid a^{p^2} = b^p = c^p = 1, \ [a, b] = c, \ [c, a] = a^p, \ [c, b] = 1 \rangle;$
- (11) $\langle a, b \mid a^9 = c^3 = 1, b^3 = a^3, [a, b] = c, [c, a] = 1, [c, b] = a^{-3} \rangle$.

Proof By checking the list of groups of order p^4 , the conclusion is followed. Conversely, those groups listed in Theorem 2.4 satisfy the hypothesis.

Remark 2.3 By checking the group lists in Theorem 2.4, we know that the restriction for $n \ge 5$ in Theorem 2.3 can be removed.

By Theorems 2.1, 2.3, 2.4, a direct consequence is as follows.

Theorem 2.5 Assume that G is a finite p-group, p > 2. Then for arbitrary integer k, $s_k(G) \leq p^3$ holds if and only if G is isomorphic to one of the following:

(I) Abelian groups

(1) C_{p^n} ; (2) $C_{p^n} \times C_p$; (3) $C_{p^n} \times C_{p^2}$ $(n \ge 2)$; (4) $C_{p^n} \times C_p \times C_p$;

- (II) d(G) = 2 and |G'| = p
- (5) M(n,1) $(n \ge 2)$; (6) M(n,2) $(n \ge 2)$; (7) M(2,n) $(n \ge 3)$; (8) M(n,1,1) $(n \ge 2)$;
- (III) d(G) = 2 and $|G'| = p^2$

(9) $\langle a, b \mid a^{p^{n+1}} = b^p = c^p = 1$, [a, b] = c, [a, c] = 1, $[b, c] = a^{vp^n} \rangle$, where v = 1 or a fixed quadratic non-residue (mod p). If p = 3 and n = 1, then $v \neq 2$;

(10) $\langle a, b \mid a^{p^{n+1}} = b^p = c^p = 1, \ [a, b] = c, \ [a, c] = a^{p^n}, \ [b, c] = 1 \rangle;$

(11) $\langle a, b \mid a^{p^{n+1}} = b^{p^2} = 1$, $[a, b] = a^{p^{n-1}} \rangle$ $(n \ge 2)$; (12) $\langle a, b \mid a^{p^{n+1}} = b^{p^2} = 1$, $[a, b] = a^{p^{n-1}}b^p \rangle$ $(n \ge 2)$; (13) $\langle a, b \mid a^9 = c^3 = 1$, $b^3 = a^3$, [a, b] = c, [c, a] = 1, $[c, b] = a^{-3} \rangle$; (IV) d(G) = 3 and |G'| = p

(14) $M(n,1) \times C_p$ $(n \ge 2)$; (15) $M(1,1,1) * C_{p^n}$ $(n \ge 2)$.

Corollary 2.1 Assume that G is a finite p-group, p > 2. Then for arbitrary integer k, $s_k(G) \leq 1 + p + p^2$ holds if and only if G is isomorphic to one of the following:

- (I) Abelian groups
- (1) C_{p^n} ; (2) $C_{p^n} \times C_p$; (3) $C_{p^n} \times C_{p^2}$ $(n \ge 2)$; (4) $C_p \times C_p \times C_p$;
- (II) |G'| = p

(5) M(n,1) $(n \ge 2)$; (6) M(n,2) $(n \ge 2)$; (7) M(2,n) $(n \ge 3)$; (8) M(1,1,1); (9) $M(1,1,1)*C_{p^2}$;

P /

(III) $|G'| = p^2$ (10) $\langle a, b | a^{p^{n+1}} = b^{p^2} = 1, [a, b] = a^{p^{n-1}} \rangle \ (n \ge 2);$

(11) $\langle a, b \mid a^{p^{n+1}} = b^{p^2} = 1, \ [a, b] = a^{p^{n-1}}b^p \rangle \ (n \ge 2);$

(12) $\langle a, b \mid a^{p^2} = b^p = c^p = 1$, [a, b] = c, [a, c] = 1, $[b, c] = a^{vp} \rangle$, where v = 1 or a fixed quadratic non-residue (mod p). If p = 3, then $v \neq 2$;

 $(13) \ \langle a,b \mid a^9 = c^3 = 1, \ a^3 = b^3, \ [a,b] = c, \ [c,b] = 1, \ [c,a] = a^3 \rangle.$

Corollary 2.2 Assume that G is a group of order p^n . Then for $1 \le k \le n-1$, $s_k(G) = 1 + p + p^2$ holds if and only if G is isomorphic to one of the following:

(1) $C_p \times C_p \times C_p;$

(2) $\langle a, b, c | a^{p^2} = b^p = c^p = 1, \ [b, c] = a^p, \ [a, b] = [a, c] = 1 \rangle \cong M(1, 1, 1) * C_{p^2} \cong M(2, 1) * C_{p^2}.$

2.3 The Classification of Finite 2-Groups with $s_k(G) \leq 2^3$

If G is a finite group of order 2^n with $s_k(G) \leq 2^3$ for $1 \leq k \leq n$, then by Lemma 2.3 we have $d(G) \leq 3$. In the following, we will prove that if d(G) = 2, then $|G'| \leq 4$; if d(G) = 3, then $|G'| \leq 2$. We discuss in two cases.

Lemma 2.7 Assume that G is a finite 2-group and $d(G) \leq 2$. If $|G'| \leq 2$, then for arbitrary integer k, $s_k(G) \leq 8$ holds if and only if G is isomorphic to one of the following:

(1) C_{2^n} ; (2) $C_{2^n} \times C_2$; (3) $C_{2^n} \times C_4$ $(n \ge 2)$;

(4) M(n,1); (5) M(n,2); (6) M(2,m) $(m \ge 3)$; (7) Q_8 .

Proof Since $d(G) \leq 2$ and $|G'| \leq 2$, G is abelian or inner abelian.

If d(G) = 1, then $G \cong C_{2^n}$.

If d(G) = 2 and G is abelian, then it is easy to get $G \cong C_{2^n} \times C_2$ or $G \cong C_{2^n} \times C_{2^2}$.

If d(G) = 2 and G is inner abelian, it is easy to check that $s_k(G) \leq 8$ for $1 \leq k \leq 3$ for all groups of order 2^3 . Assume $|G| > 2^3$. If $G \cong M(n, m, 1)$, then for $i \leq m$, $s_i(G) = 1+2+2(2^2+\cdots 2^i)+2^{i+1}$. By hypothesis, we get m = 1, that is, $G \cong M(n, 1, 1)$. By checking we get $s_2(G) = 1+2+2^3 > 8$, which is a contradiction. Thus $G \cong M(n,m)$. By calculating, we get $s_i(G) = 1+2+2^2+\cdots+2^i$ for $i \leq \min(m, n)$. By hypothesis, we get $\min(m, n) \leq 2$. It follows that G is isomorphic to one of the following: $M(n, 1), M(n, 2), M(2, m) \ (m \geq 3)$. Conversely, it is easy to check that these three groups satisfy the hypothesis. The conclusion holds. Assume that G is a finite group of order 2^n , d(G) = 2 and |G'| = 4. Then there exists a normal subgroup N of order 2 of G contained in G'. If $s_k(G) \leq 8$ holds for $1 \leq k \leq n$, then, by Lemma 2.4, $s_k(G/N) \leq 8$. Thus, by Lemma 2.7, $G/N \cong M(n, 1)$, M(n, 2), M(2, m) $(m \geq 3)$ or Q_8 . On the other hand, there does not exist a G such that |G'| = 4 and $G/N \cong Q_8$ by [13, Lemma 8]. Thus, in the following, according to the structure of G/N, we determine G by means of the method of central extension.

Theorem 2.6 Assume that G is a finite 2-group, d(G) = 2 and |G'| = 4. If there exists an $N \leq G'$ with |N| = 2 such that $G/N \cong M(n, 1)$, then for arbitrary integer k, $s_k(G) \leq 8$ holds if and only if G is isomorphic to one of the following:

- (I) $\langle a, b \mid a^8 = b^2 = 1, \ [a, b] = a^2 \rangle \cong SD_{16};$
- (II) $\langle a, b \mid a^8 = 1, b^2 = a^4, [a, b] = a^{-2} \rangle \cong Q_{16}.$

Proof Since |G'| = 4, there exists a subgroup N of order 2 of G contained in G' such that $N \leq Z(G)$. Since $G/N \cong M(n, 1)$, by [13, Theorem 10], we know that G is isomorphic to one of the following:

- (1) $\langle a, b \mid a^8 = b^2 = 1, \ [a, b] = a^2 \rangle \cong SD_{16};$
- (2) $\langle a, b \mid a^8 = b^2 = 1, \ [a, b] = a^{-2} \rangle \cong D_{16};$
- (3) $\langle a, b \mid a^8 = 1, b^2 = a^4, [a, b] = a^{-2} \rangle \cong Q_{16}.$

By calculation, we get that for D_{16} , $s_1(D_{16}) = 9$, which is contrary to our hypothesis. For SD_{16} , $s_1(SD_{16}) = 5$, $s_2(SD_{16}) = 5$, $s_3(SD_{16}) = 3$; for Q_{16} , $s_1(Q_{16}) = 1$, $s_2(Q_{16}) = 5$, $s_3(Q_{16}) = 3$. Conversely, it is easy to check that these groups listed in the theorem satisfy the hypothesis. The conclusion holds.

Theorem 2.7 Assume that G is a finite 2-group, d(G) = 2 and |G'| = 4. If there exists an $N \leq G'$ with |N| = 2 such that $G/N \cong M(n, 2)$, then for arbitrary integer k, $s_k(G) \leq 8$ holds if and only if G is isomorphic to one of the following:

- (I) $\langle a, b \mid a^{2^{n+1}} = b^4 = 1, \ [a, b] = a^{2^{n-1}} \rangle \ (n \ge 3);$
- (II) $\langle a, b \mid a^8 = 1, b^4 = a^4, [a, b] = a^{-2} \rangle.$

Proof Since |G'| = 4, there exists a subgroup N of order 2 of G contained in G' such that $N \leq Z(G)$. Since $G/N \cong M(n, 2)$, by [13, Theorem 10], we know that G is isomorphic to one of the following four groups:

$$\begin{split} H_{(1)} &= \langle a, b \mid a^{2^{n+1}} = b^4 = 1, \ [a, b] = a^{2^{n-1}} \rangle \ (n \ge 3); \\ H_{(2)} &= \langle a, b \mid a^8 = b^4 = 1, \ [a, b] = a^2 \rangle; \\ H_{(3)} &= \langle a, b \mid a^8 = b^4 = 1, \ [a, b] = a^{-2} \rangle; \\ H_{(4)} &= \langle a, b \mid a^8 = 1, \ b^4 = a^4, \ [a, b] = a^{-2} \rangle. \end{split}$$

For $H_{(1)}$, we have $|H_{(1)}| = 2^{n+3}$. Since $[a^4, b] = [a, b]^4 = a^{2^{n+1}} = 1$, we have $a^4 \in Z(H_{(1)})$. By calculation, we get $\Omega_1(H_{(1)}) = \Lambda_1(H_{(1)}) = \langle a^{2^n}, b^2 \rangle \cong C_2 \times C_2$, $\Omega_i(H_{(1)}) = \Lambda_i(H_{(1)}) = \langle a^{2^{n+1-i}}, b \rangle \cong C_{2^i} \times C_4$ $(2 \le i \le n-1)$, $\Omega_n(H_{(1)}) = \Lambda_n(H_{(1)}) = \langle a^2, b \rangle \cong M(n, 2)$, $\Omega_{n+1}(H_{(1)}) = \Lambda_{n+1}(H_{(1)}) = H_{(1)}$. It follows that $s_1(H_{(1)}) = 3$, $s_i(H_{(1)}) = c_i(H_{(1)}) + s_i(\Omega_{i-1}(H_{(1)})) = 7$ $(2 \le i \le n+1)$, $s_{n+2}(H_{(1)}) = 3$. So $H_{(1)}$ is the required group.

For $H_{(2)}$ and $H_{(3)}$, we have $s_2(H_{(2)}) = s_2(H_{(3)}) = 11$, so $H_{(2)}$ and $H_{(3)}$ are not the required groups.

For $H_{(4)}$, we have $s_1(H_{(4)}) = 3$, $s_2(H_{(4)}) = 3$, $s_3(H_{(4)}) = 7$, so $H_{(4)}$ is the required groups.

Conversely, it is easy to check that $H_{(1)}$ and $H_{(4)}$ satisfy the hypothesis, respectively. The conclusion holds.

Theorem 2.8 Assume that G is a finite 2-group, d(G) = 2 and |G'| = 4. If there exists an $N \leq G'$ with |N| = 2 such that $G/N \cong M(2,m)$ $(m \geq 3)$, then for arbitrary integer k, $s_k(G) \leq 8$ holds if and only if $G \cong \langle a, b \mid a^8 = 1, b^{2^m} = a^4, [a, b] = a^{-2} \rangle \ (m \geq 3).$

Proof Since |G'| = 4, there exists a subgroup N of order 2 of G contained in G' such that $N \leq Z(G)$. Since $G/N \cong M(2,m)$ $(m \geq 3)$, by [13, Theorem 10], we know that G is isomorphic to one of the following:

 $H_{(1)} = \langle a, b \mid a^8 = b^{2^m} = 1, \ [a, b] = a^2 \rangle \ (m \ge 3);$ $H_{(2)} = \langle a, b \mid a^8 = b^{2^m} = 1, \ [a, b] = a^{-2} \rangle \ (m \ge 3);$ $H_{(3)} = \langle a, b \mid a^8 = 1, b^{2^m} = a^4, [a, b] = a^{-2} \rangle \ (m \ge 3).$

For $H_{(i)}$ (i = 1, 2), we have $a^4, b^2 \in Z(H_{(i)})$. By calculation, we get $\Omega_1(H_{(i)}) = \Lambda_1(H_{(i)}) =$ $\langle a^4, b^{2^{m-1}} \rangle \cong C_2 \times C_2, \ \Omega_2(H_{(i)}) = \Lambda_2(H_{(i)}) = \langle a^2, b^{2^{m-2}} \rangle \cong C_4 \times C_4, \ \Omega_3(H_{(i)}) = \Lambda_3(H_{(i)}) = \Lambda_3(H_{$ $\langle a, b^{2^{m-3}} \rangle$, $|\Omega_3(H_{(i)})| = 2^6$. It follows that $s_3(H_{(i)}) = c_3(H_{(i)}) + s_3(\Omega_2(H_{(i)})) = 15$. So $H_{(i)}$ (i = 1, 2) are not the required groups.

For $H_{(3)}$, we have $a^4, b^2 \in Z(H_{(3)})$. By calculation, we get $\Omega_1(H_{(3)}) = \Lambda_1(H_{(3)}) = \langle a^4, a^2 b^{2^{m-1}} \rangle \cong C_2 \times C_2; \ \Omega_2(H_{(3)}) = \Lambda_2(H_{(3)}) = \langle a^2, b^{2^{m-1}}, ab^{2^{m-2}} \rangle = \langle a^2, ab^{2^{m-2}} \rangle,$ $|\Omega_2(H_{(3)})| = 2^4, \ \Omega_i(H_{(3)}) = \langle a, b^{2^{m-i+1}} \rangle, \ |\Omega_i(H_{(3)})| = 2^{i+1} \ (3 \le i \le m+1), \ \Omega_{m+1}(H_{(3)}) = \langle a^2, ab^{2^{m-2}} \rangle.$ $\Lambda_{m+1}(H_{(3)}) = H_{(3)}$. It follows that $s_1(H_{(3)}) = s_{m+2}(H_{(3)}) = 3$, $s_i(H_{(3)}) = 7$ ($2 \le i \le m+1$). So $H_{(3)}$ is the required group. Conversely, it is easy to check that $H_{(3)}$ satisfies the hypothesis.

By Theorems 2.6–2.8 we have the following theorem.

Theorem 2.9 Assume that G is a finite 2-group, d(G) = 2 and |G'| = 4. Then for arbitrary integer k, $s_k(G) \leq 8$ holds if and only if G is isomorphic to one of the following:

- (1) $\langle a, b \mid a^8 = b^2 = 1, \ [a, b] = a^2 \rangle \cong SD_{16};$
- (2) $\langle a, b | a^8 = 1, b^2 = a^4, [a, b] = a^{-2} \rangle \cong Q_{16};$ (3) $\langle a, b | a^{2^{n+1}} = b^4 = 1, [a, b] = a^{2^{n-1}} \rangle \ (n \ge 3);$
- (4) $\langle a, b \mid a^8 = 1, b^{2^m} = a^4, [a, b] = a^{-2} \rangle (m > 2).$

Theorem 2.10 Assume that G is a finite 2-group, d(G) = 2. If for arbitrary integer k, $s_k(G) \leq 8$ holds, then $|G'| \leq 4$.

Proof Assume that G is a counterexample of the smallest order. Then $|G'| = 2^i$, where $i \geq 3$. Let M be a normal subgroup of order 2^{i-3} of G contained in G'. Then d(G/M) = 2and $s_k(G/M) \leq 2^3$. Since $|(G/M)'| = 2^3$, G/M is also a counterexample. Since G is a counterexample of the smallest order, we have M = 1. That is, $|G'| = 2^3$.

Taking a minimal subgroup N satisfying $N \leq Z(G)$. Then d(G/N) = 2, $s_k(G/N) \leq 2^3$ and $|(G/N)'| = 2^2$. By Theorem 2.9, G/N is isomorphic to one of the following:

- (1) $\langle a, b \mid a^8 = b^2 = 1, \ [a, b] = a^2 \rangle \cong SD_{16};$
- (2) $\langle a, b \mid a^8 = 1, b^2 = a^4, [a, b] = a^{-2} \rangle \cong Q_{16};$
- (3) $\langle a, b \mid a^{2^{n+1}} = b^4 = 1, [a, b] = a^{2^{n-1}} \rangle \ (n \ge 3);$
- (4) $\langle a, b \mid a^8 = 1, b^{2^m} = a^4, [a, b] = a^{-2} \rangle \ (m \ge 2).$

Thus, G can be determined by central extension.

If G is the group which is determined by (1) or (2) by central extension, then, by |G/G'| = 4and Lemma 2.1, G is a 2-group of maximal class of order 2^5 . But the quotient group of order 2^4 of a 2-group of maximal class of order 2^5 is exactly a dihedral group, which is a contradiction.

If G is the group which is determined by (3) by central extension, letting $G/N = \langle \overline{a}, \overline{b} | \overline{a}^{2^{n+1}} =$ $\overline{b}^4 = 1, [\overline{a}, \overline{b}] = \overline{a}^{2^{n-1}} \rangle, \text{ we have } G = \langle a, b \rangle. \text{ If } N = \langle x \rangle, [a, b] = a^{2^{n-1}} x^i \ (i = 0 \text{ or } 1), \text{ then } [a, b, a] = 1, [a, b, b] = a^{2^{n-2}}. \text{ It follows that } G' = \langle a^{2^{n-1}} x^i, a^{2^{2n-2}} \rangle = \langle a^{2^{n-1}} x^i \rangle. \text{ Since } |G'| = 8,$ we have $o(a) = 2^{n+2}$. Hence $N = \langle a^{2^{n+1}} \rangle$. Assume $[a, b] = a^{2^{n-1}} a^{k2^{n+1}} = a^{2^{n-1}(1+4k)}$ (k = 0 or 1). Let l = 1 + 4k. Then $a^b = a^{2^{n-1}l+1}$, (l, 2) = 1. Since $b^4 \in N \leq Z(G)$, we have $a = a^{b^4} = a^{(1+l2^{n-1})^4} = a^{1+l2^{n+1}} \neq a$, which is a contradiction.

If G is the group which is determined by (4) by central extension, letting $G/N = \langle \overline{a}, \overline{b} | \overline{a}^8 = 1$, $\overline{b}^{2^m} = \overline{a}^4$, $[\overline{a}, \overline{b}] = \overline{a}^{(-2)} \rangle$ $(m \ge 2)$, $N = \langle x \rangle$ and $[a, b] = a^6 x^i$ $(0 \le i < 2)$, we get [a, b, a] = 1, $[a, b, b] = a^{36}$. It follows that $G' = \langle a^6 x^i, a^{36} \rangle = \langle a^6 x^i \rangle$. Since |G'| = 8, we have $o(a) = 2^4$. Thus, $1 = [b^{2^m}, b] = [a^4, b] = [a, b]^4 = a^8 \ne 1$, which is a contradiction.

Theorem 2.11 Assume that G is a finite 2-group, d(G) = 3 and $|G'| \leq 2$. Then for arbitrary integer k, $s_k(G) \leq 8$ holds if and only if G is isomorphic to one of the following:

- (I) $C_2 \times C_2 \times C_2;$
- (II) $\langle a, b, c \mid a^4 = 1, a^2 = b^2, c^2 = 1, [a, b] = a^2, [c, a] = [c, b] = 1 \rangle \cong Q_8 \times C_2;$
- (III) $\langle a, b, c \mid a^4 = b^2 = c^2 = 1, \ [b, c] = a^2, \ [a, b] = [a, c] = 1 \rangle \cong D_8 * C_4 \cong Q_8 * C_4.$

Proof If |G'| = 1, it follows by d(G) = 3 that $G \cong C_2 \times C_2 \times C_2$.

If |G'| = 2, then, by Lemma 2.3, $s_k(G/G') \leq 8$ holds for arbitrary integer k. Since d(G/G') = 3 and G/G' is abelian, $G/G' \cong C_2 \times C_2 \times C_2$. It follows that G is a group of order 2^4 . Since d(G) = 3 and $|G'| \leq 2$, by the classification of group of order 2^4 , G is isomorphic to one of the following:

$$\begin{split} H_{(1)} &= \langle a,b,c \mid a^4 = 1, \ b^2 = 1, \ c^2 = 1, \ [a,b] = a^2, \ [c,a] = [c,b] = 1 \rangle \cong D_8 \times C_2; \\ H_{(2)} &= \langle a,b,c \mid a^4 = 1, \ b^2 = a^2, \ c^2 = 1, \ [a,b] = a^2, \ [c,a] = [c,b] = 1 \rangle \cong Q_8 \times C_2; \\ H_{(3)} &= \langle a,b,c \mid a^4 = b^2 = c^2 = 1, \ [b,c] = a^2, \ [a,b] = [a,c] = 1 \rangle \cong D_8 * C_4 \cong Q_8 * C_4. \end{split}$$

For $H_{(1)}$, we have $s_1(H_{(1)}) = 11$. So $H_{(1)}$ is not the required group. For $H_{(2)}$, we have $s_1(H_{(2)}) = 3$, $s_2(H_{(2)}) = s_3(H_{(2)}) = 7$. For $H_{(3)}$, we have $s_1(H_{(3)}) = s_2(H_{(3)}) = s_3(H_{(3)}) = 7$. So $H_{(2)}$ and $H_{(3)}$ are the required groups. Conversely, it is easy to check that $H_{(2)}$ and $H_{(3)}$ satisfy the hypothesis, respectively.

Theorem 2.12 Assume that G is a finite 2-group, d(G) = 3. If for arbitrary integer k, $s_k(G) \leq 8$ holds, then $|G'| \leq 2$.

Proof Assume that G is a counterexample of the smallest order. Then $|G'| = 2^i$, where $i \ge 2$. Let M be a normal subgroup of order 2^{i-2} of G contained in G'. Then d(G/M) = 3, $s_k(G/M) \le 2^3$. Since $|(G/M)'| = 2^2$, G/M is also a counterexample. But G is a counterexample of the smallest order, so M = 1. That is, $|G'| = 2^2$.

Taking a normal subgroup N of order 2 of G contained in G', we have d(G/N) = 3, $s_k(G/N) \le 2^3$, |(G/N)'| = 2. By Lemma 2.11, G/N is isomorphic to one of the following:

- (1) $\langle \overline{a}, \overline{b}, \overline{c} \mid \overline{a}^4 = 1, \ \overline{a}^2 = \overline{b}^2, \overline{c}^2 = 1, \ [\overline{a}, \overline{b}] = \overline{a}^2, \ [\overline{c}, \overline{a}] = [\overline{c}, \overline{b}] = 1 \rangle \cong Q_8 \times C_2;$
- (2) $\langle \overline{a}, \overline{b}, \overline{c} \mid \overline{a}^4 = \overline{b}^2 = \overline{c}^2 = 1, \ [\overline{b}, \overline{c}] = \overline{a}^2, \ [\overline{a}, \overline{b}] = [\overline{a}, \overline{c}] = 1 \rangle \cong D_8 * C_4 \cong Q_8 * C_4.$
- Thus, G can be determined by central extension.

Note $G' = \langle a^2 \rangle N$. It is easy to see that $[a^2, b] = [a^2, c] = 1$. It follows that $G' \leq Z(G)$, c(G) = 2. If G is the group which is determined by (1) by central extension, then $1 = [a^2, b] = [a, b]^2 = a^4$. If G is the group which is determined by (2) by central extension, then, by $c^2 \in N$, $1 = [b, c^2] = [b, c]^2 = a^4$. That is, o(a) = 4. So $\exp(G) = \exp(G/N)$. It follows that $|\Lambda_2(G)| = |G| = 2^5$. But by the argument of Lemma 2.5, we get $|\Lambda_2(G)| < 2^5$. This is a contradiction.

Theorem 2.13 Assume that G is a finite 2-group. Then for arbitrary integer k, $s_k(G) \leq 8$ holds if and only if G is isomorphic to one of the following:

(I) Abelian groups

 $\begin{array}{ll} (1) \ C_{2^{n}}; \ (2) \ C_{2^{n}} \times C_{2}; \ (3) \ C_{2^{n}} \times C_{4} \ (n \geq 2); \ (4) \ C_{2} \times C_{2} \times C_{2}; \\ (\mathrm{II}) \ d(G) = 2 \ and \ |G'| = 2 \\ (5) \ M(n,1); \ (6) \ M(n,2) \ (n \geq 2); \ (7) \ M(2,m) \ (m \geq 3); \ (8) \ Q_{8}; \\ (\mathrm{III}) \ d(G) = 2 \ and \ |G'| = 4 \\ (9) \ \langle a,b \ | \ a^{8} = b^{2} = 1, \ [a,b] = a^{2} \rangle \cong SD_{16}; \\ (10) \ \langle a,b \ | \ a^{8} = 1, \ b^{2} = a^{4}, \ [a,b] = a^{-2} \rangle \cong Q_{16}; \\ (11) \ \langle a,b \ | \ a^{2^{n+1}} = b^{4} = 1, \ [a,b] = a^{2^{n-1}} \rangle \ (n \geq 3); \\ (12) \ \langle a,b \ | \ a^{8} = 1, \ b^{2^{m}} = a^{4}, \ [a,b] = a^{-2} \rangle \ (m \geq 2); \\ (\mathrm{IV}) \ d(G) = 3 \\ (13) \ \langle a,b,c \ | \ a^{4} = 1, \ a^{2} = b^{2}, \ c^{2} = 1, \ [a,b] = a^{2}, \ [c,a] = [c,b] = 1 \rangle \cong Q_{8} \times C_{2}; \\ (14) \ \langle a,b,c \ | \ a^{4} = b^{2} = c^{2} = 1, \ [b,c] = a^{2}, \ [a,b] = [a,c] = 1 \rangle \cong D_{8} * C_{4} \cong Q_{8} * C_{4}. \end{array}$

Proof By Lemma 2.3, we get $d(G) \leq 3$. By Theorems 2.12 and 2.10, we have $|G'| \leq 4$. Thus the conclusion is followed by Theorems 2.7, 2.9 and 2.11.

Corollary 2.3 Assume that G is a group of order 2^n . Then for $1 \le k < n$, $s_k(G) = 7$ holds if and only if G is isomorphic to one of the following:

(1) $C_2 \times C_2 \times C_2$;

(2)
$$\langle a, b, c \mid a^4 = b^2 = c^2 = 1, \ [b, c] = a^2, \ [a, b] = [a, c] = 1 \rangle \cong D_8 * C_4 \cong Q_8 * C_4.$$

Corollary 2.4 Assume that G is a finite 2-group. Then for arbitrary integer k, $s_k(G) \leq 5$ holds if and only if G is isomorphic to one of the following:

- (1) C_{2^n} ; (2) $C_{2^n} \times C_2$; (3) M(n, 1);
- (4) $\langle a, b \mid a^8 = b^2 = 1, \ [a, b] = a^2 \rangle \cong SD_{16};$
- (5) $\langle a, b \mid a^8 = 1, b^2 = a^4, [a, b] = a^{-2} \rangle \cong Q_{16}.$

References

- [1] Berkovich, Y., Groups of Prime Power Order I, Walter de Gruyter, Berlin, 2008.
- Kulakoff, A., Über die Anzahl der eigentlichen Untergruppen und der Elemente von gegebener Ordnung in p-Gruppen, Math. Ann., 104, 1931, 778–793.
- [3] Tuan, H. F., An "Anzahl" theorem of Kulakoff's type for p-groups, Sci. Rep. Nat. Tsing-Hua Univ. Ser. A., 5, 1948, 182–189.
- Berkovich, Y., On the number of subgroups of given order in a finite p-group of exponent p, Proc. Amer. Math. Soc., 109, 1990, 875–879.
- [5] Xu, M. Y., Some Problems on Finite *p*-Groups (in Chinese), Adv. Math., 14(3), 1985, 205–226.
- [6] Chen, Y. H. and Cao, H. P., The complete classification of p-group with p+1 nontrivial subgroups of each order (in Chinese), J. Southwest Univ., 29(2), 2007, 11–14.
- [7] Zhang, Q. H. and Qu, H. P., On Hua-Tuan's conjecture, Sci. in China Ser. A, Math., 52(2), 2009, 389–393.
- [8] Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
- [9] Taussky, O., Remark on the class field tower, J. London Math. Soc., 12, 1937, 82–85.
- [10] Rédei, L., Das schiefe product in der Gruppentheorie, Comm. Math. Helvet, 20, 1947, 225–267.
- [11] Hua, L. K. and Tuan, H. F., Determination of the groups of odd-prime-power order pⁿ which contain a cyclic subgroup of index p², Sci. Rep. Nat. Tsing Hua Univ. Ser. A., 4, 1940, 145–151.
- [12] Burnside, W., Theory of Groups of Finite Order, Cambridge University Press, London, 1897.
- [13] Li, L. L., Qu, H. P. and Chen, G. Y., Central extension of inner abelian p-groups I (in Chinese), Acta Math. Sinica, 53(4), 2010, to appear.