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Abstract The authors define the equi-nuclearity of uniform Roe algebras of a family of
metric spaces. For a discrete metric space X with bounded geometry which is covered
by a family of subspaces {Xi}

∞

i=1, if {C∗

u(Xi)}
∞

i=1 are equi-nuclear and under some proper
gluing conditions, it is proved that C

∗

u(X) is nuclear. Furthermore, it is claimed that in
general, the coarse Roe algebra C

∗(X) is not nuclear.
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1 Introduction

Many interesting geometrical properties of spaces and groups are captured by the structure

of C∗-algebras associated to those objects. For example, a discrete group G is amenable if and

only if the full C∗-algebra C∗(G) is nuclear (see [2, 7]). The notion of property A for metric

spaces, which was introduced by Yu [12] as a weak form of amenability and was studied later in

[1 , 3, 10], is equivalent to the nuclearity of the uniform Roe algebras (see [2, 3, 11]). The notion

of equi-property A was introduced in [5], where Dadarlat and Guentner proved the following

fact. Given a metric space X which is covered by a family of subspaces {Xi}i∈I , if {Xi}i∈I

have equi-property A and moreover we have a gluing condition, then X has property A. This

theorem is the key to study the permanence of property A under various group operations, such

as free product, extensions and relative hyperbolic groups and so on (see [5, 11]).

Naturally, we want to propose a definition of equi-nuclearity for a family of C∗-algebras.

However, for general C∗-algebras, it is difficult to give such a definition. So, in this paper, we

introduce the equi-nuclearity for a family of uniform Roe algebras. We use analytic techniques

to prove the following theorem.

Theorem 1.1 Let X be a metric space with bounded geometry. Suppose that for all R > 0

and ε > 0, there is a partition of unit (φi)
∞
i=1 on X such that

(1) ∀x, y ∈ X with d(x, y) ≤ R,
∞∑

i=1

|φi(x) − φi(y)| ≤ ε,
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(2) {φi}
∞
i=1 subordinate to a family of subspaces {Xi}

∞
i=1 and {C∗

u(Xi)}
∞
i=1 are equi-nuclear.

Then C∗
u(X) is nuclear.

We know that the equi-property A implies the equi-nuclearity, but we do not know whether

the reverse is true. Our theorem says that with the same gluing condition (1) in Theorem 1.1,

these two definitions imply the same result since the metric space X has property A if and

only if the uniform Roe algebra C∗
u(X) is nuclear (see [2, 11]). Moreover, with this definition

and this theorem, we can prove the permanence of the nuclearity. For example, if G is a

finitely generated group which is hyperbolic relative to subgroups G1, G2, · · · , Gn, then C∗
u(G)

is nuclear if and only if each subalgebra C∗
u(Gi) is nuclear. With our theorem, the proof is only

the routine of [5]. In the last section, we claim that the coarse Roe algebras are not nuclear by

using a result of Choi [4].

2 Preliminaries

The uniform Roe algebra associated to a discrete metric space with bounded geometry (in

particular, a finitely generated group with word length metric) plays an important role in both

index theory (see [6]) and exactness problem in C∗-algebra theory (see [8]). Let (X, d) be

a discrete metric space with bounded geometry. Denote by B(l2(X)) the C∗-algebra of all

bounded linear operators on the Hilbert space l2(X). Any operator in B(l2(X)) has a natural

form of X ×X matrix

T = [t(x, y)](x,y)∈X×X .

T has finite propagation if there exists R ≥ 0 such that t(x, y) = 0 for d(x, y) ≥ R. The

propagation of T is the smallest possible value of R. Denote by Prop(T ) the propagation of T .

Definition 2.1 The collection of all bounded finite propagation operators on l2(X) is a ∗-

subalgebra of B(l2(X)); its norm completion is called uniform Roe algebra, denoted by C∗
u(X).

If tx,y is an element of a C∗-algebra A , we also obtain a C∗-algebra by a similar definition,

denoted by C∗
u(X,A ). Especially, when A = Mn(C), we get C∗

u(X,Mn(C)).

Let Y be a subspace of X . The uniform Roe algebra C∗
u(Y ) acts on the Hilbert space l2(Y ),

a subspace of l2(X). Thus the correspondence T 7→ T ⊕ 0 of T ∈ C∗
u(Y ) gives an inclusion

C∗
u(Y ) →֒ C∗

u(X).

From this point of view, C∗
u(Y ) is a subalgebra of C∗

u(X). Let P denote the projection from

l2(X) to l2(Y ). Then C∗
u(Y ) = PC∗

u(X)P .

Definition 2.2 Let Y be a subspace of X, and let Y (R) = {x ∈ X | d(x, Y ) ≤ R}. Denote

by C∗
u(Y,X) the operator norm closure of the set of all finite propagation operators T on l2(X)

whose support is contained in Y (R) × Y (R) for some R > 0 (depending on T ).

We note that C∗
u(Y,X) is a closed two-sided ideal in C∗

u(X) and C∗
u(Y,X) is an inductive

limit, i.e.,

C∗
u(Y,X) = lim

→
C∗

u(Y (n)) =

∞⋃

n=1

C∗
u(Y (n)).
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Definition 2.3 Let A ,B be C∗-algebras. A linear map ϕ : A → B is said to be completely

positive if ϕn : Mn(A ) → Mn(B), defined by

ϕn([ai,j ]n×n) = [ϕ(ai,j)]n×n,

is positive for every n in N (Here Mn(A ) = {[aij ]n×n | aij ∈ A }). Moreover, if

‖ϕ(a)‖ ≤ ‖a‖,

we call ϕ contractive completely positive.

Definition 2.4 A C∗-algebra A is called nuclear if for any finite subset F ⊂ A and ε > 0,

there exist n ∈ N and contractive completely positive maps ϕ : A → Mn(C), ψ : Mn(C) → A

such that ‖ψ ◦ ϕ(a) − a‖ < ε for any a ∈ F .

Definition 2.5 A C∗-algebra A is called exact if there exists a faithful representation

π : A → B(H) such that π is nuclear. That means for any finite subset F ⊂ A and ε > 0, there

exist n ∈ N and contractive completely positive maps ϕ : A → Mn(C), ψ : Mn(C) → B(H)

such that ‖ψ ◦ ϕ(a) − π(a)‖ < ε for any a ∈ F .

From these definitions, we know that the nuclearity of C∗-algebras implies exactness.

Theorem 2.1 (see [1, 11]) Let X be a discrete metric space with bounded geometry. Then

X has property A if and only if C∗
u(X) is nuclear.

Because C∗
u(X) is the completion of the finite propagation operators on l2(X), the finite

subset can be chosen to be the one of operators with finite propagation. And from the proof of

Theorem 2.1, one can find that there exists λ(n) ∈ N such that

sup{Prop(ψ(T )) | T ∈ Mn(C)} ≤ λ(n).

3 Equi-nuclearity for Uniform Roe Algebras

Now we give the definition of equi-nuclearity of uniform Roe algebras. From now on, we

assume that X is a discrete metric space with bounded geometry, and {Xi}
∞
i=1 is a family of

subspaces of X such that
∞⋃

i=1

Xi = X and for any R ≥ 0, Xi(R) = {x ∈ X : dist(x,Xi) ≤ R}.

For any finite subset F ⊆ C∗
u(X), Prop(F) = max{Prop(T ) : T ∈ F}, ♯F denotes the number

of elements in F . Call a family of subsets Fi ⊆ C∗
u(Xi) uniformly finite if the number of

elements in every subset Fi is uniformly finite, i.e., sup
i

{♯Fi} <∞.

Definition 3.1 We call the family {C∗
u(Xi)}

∞
i=1 equi-nuclear if for any ε > 0 and any family

of uniformly finite subsets Fi ⊆ C∗
u(Xi) such that sup

i∈N

{Prop(Fi)} <∞, there exist n ∈ N, λ(n) ∈

R and contractive completely positive maps ϕi : C∗
u(Xi) → Mn(C), ψi : Mn(C) → C∗

u(Xi) such

that ‖ψi ◦ ϕi(a) − a‖ < ε for any a ∈ Fi and

max{Prop(ψi(Es,t)) | Es,t ∈ Mn(C) are matrix units} ≤ λ(n), i = 1, 2, · · · .
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Remark 3.1 In fact, the condition

max{Prop(ψi(Es,t)) | Es,t ∈ Mn(C) are matrix units} ≤ λ(n), i = 1, 2, · · ·

is equivalent to the condition that there exists γ(n) ∈ N such that

sup{Prop(ψi(T )) | T ∈ Mn(C)} ≤ γ(n), i = 1, 2, · · · .

The proof is obvious.

Lemma 3.1 For any R ≥ 0, {C∗
u(Xi)}

∞
i=1 are equi-nuclear if and only if {C∗

u(Xi(R))}∞i=1

are equi-nuclear.

Proof Sufficiency For any ε > 0 and any uniformly finite subsets Fi ⊆ C∗
u(Xi) such that

sup
i∈N

{Prop(Fi)} < ∞, since {C∗
u(Xi(R))}∞i=1 are equi-nuclear and Fi ⊆ C∗

u(Xi) ⊆ C∗
u(Xi(R)),

there exist n ∈ N, λ(n) ∈ R and contractive completely positive maps

ϕi : C∗
u(Xi(R)) → Mn(C), ψi : Mn(C) → C∗

u(Xi(R))

such that ‖ψi ◦ ϕi(a) − a‖ < ε for any a ∈ Fi and

max{Prop(ψi(Es,t)) | Es,t ∈ Mn(C)} ≤ λ(n), i = 1, 2, · · · .

Consider C∗
u(Xi) as a subalgebra of C∗

u(Xi(R)). Let

Pi : l2(Xi(R)) → l2(Xi)

be the associated projection. Then for the n above and any i = 1, 2, · · · , define

ϕ̃i = ϕi|C∗

u
(Xi) : C∗

u(Xi) → Mn(C)

and

ψ̃i : Mn(C) → C∗
u(Xi)

T 7→ Piψi(T )Pi.

It is easy to check that for any i = 1, 2, · · · , ϕ̃i, ψ̃i are all contractive completely positive maps

and for any a ∈ Fi, PiaPi = a. So

‖ψ̃i ◦ ϕ̃i(a) − a‖ = ‖Piψi(ϕi(a))Pi − a‖ = ‖Piψi(ϕi(a))Pi − PiaPi‖ ≤ ε

and

max{Prop(ψ̃i(Es,t)) | Es,t ∈ Mn(C)} ≤ λ(n), i = 1, 2, · · · .

So {C∗
u(Xi)}

∞
i=1 are equi-nuclear.

Necessity Since X has bounded geometry, there exists N ∈ N such that for any x ∈ X ,

♯B(x,R) ≤ N . Let I = {1, 2, · · · , N}, X × I be the Cartesian product. Denote by dX the

metric on X and endow a metric on X×I by d((x, i), (y, j)) = dX(x, y)+ |i− j|. Then for every

i ∈ N, Xi × I is a subspace of X × I with the induced metric. Since X has bounded geometry
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and it is easy to find a subspace Yi of Xi × I such that there exists a bijection fi from Xi(R)

to Yi. Denote by δx the Dirac function. Let

Ui : l2(Xi(R)) → l2(Yi)

δx 7→ δfi(x)

be a unitary operator and define

AdUi : C∗
u(Xi(R)) → C∗

u(Yi)

T 7→ UiTU
∗
i .

Then C∗
u(Xi(R)) is isomorphic to C∗

u(Yi). In fact, it suffices to prove that the image of AdUi

is contained in C∗
u(Yi) for each i ∈ N. Suppose Prop(T ) ≤ S. If d(fi(x), fi(y)) ≥ S + 2R +N ,

then dX(x, y) ≥ S, so

〈UiTU
∗
i δfi(x), δfi(y)〉 = 〈Tδx, δy〉 = 0,

which means Prop(UiTU
∗
i ) ≤ S + 2R+N and the isomorphism is obvious.

By adjusting the basis of l2(Xi × I), we know

C∗
u(Xi,MN (C)) ∼= MN (C∗

u(Xi)).

Then we have

C∗
u(Xi × I) ∼= C∗

u(Xi,MN (C)) ∼= MN (C∗
u(Xi)) ∼= C∗

u(Xi) ⊗ MN (C).

For any ε > 0 and any uniformly finite subsets Fi ⊆ C∗
u(Xi(R)) such that sup

i∈N

{Prop(Fi)} <∞,

we identify C∗
u(Xi(R)) with C∗

u(Yi) ⊆ C∗
u(Xi) ⊗ Mn(C). Then for any a

(i)
r ∈ Fi, we have

a(i)
r =

n∑

s,t=1

b
(i,r)
s,t ⊗ Es,t,

where b
(i,r)
s,t ∈ C∗

u(Xi). Let

Li = {b
(i,r)
s,t ∈ C∗

u(Xi) | 1 ≤ s, t ≤ N, 1 ≤ r ≤ ♯Fi}.

Then

♯Li ≤ N2 · ♯Fi

and

sup
i∈N

{Prop(Li)} ≤ sup
i∈N

{Prop(Fi)} + 2R+N.

As C∗
u(Xi) are equi-nuclear, there exist n ∈ N, λ(n) ∈ R and contractive completely positive

maps

ϕi : C∗
u(Xi) → Mn(C), ψi : Mn(C) → C∗

u(Xi)

such that ‖ψi ◦ ϕi(b) − b‖ < ε for any b ∈ Li (i = 1, 2, · · · ) and

max{Prop(ψi(Es,t)) | Es,t ∈ Mn(C)} ≤ λ(n), i = 1, 2, · · · .
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Define

ϕ̃i = ϕi ⊗ id : C∗
u(Xi) ⊗ MN (C) → Mn(C) ⊗ MN (C)

and

ψ̃i = ψi ⊗ id : Mn(C) ⊗ MN (C) → C∗
u(Xi) ⊗ MN (C).

By [1, Theorem 3.5.3], we know that ϕ̃i and ψ̃i are contractive completely positive maps. Let

P ′
i : l2(Xi × I) → l2(Y ) be the projection and identify C∗

u(Xi(R)) with C∗
u(Y ). Define

ϕ̂i = ϕ̃i|C∗

u
(Xi(R)) : C∗

u(Xi(R)) → Mn(C) ⊗ MN (C)

and

ψ̂i = P ′
i ψ̃iP

′
i : Mn(C) ⊗ MN (C) → C∗

u(Xi(R)).

Then ϕ̂i and ψ̂i are contractive completely positive maps.

For any a ∈ Fi ⊆ C∗
u(Xi(R)), we know a =

n∑
s,t=1

bs,t ⊗ Es,t. Since P ′
iaP

′
i = a, so

‖ψ̂i ◦ ϕ̂i(a) − a‖ = ‖P ′
i ψ̃i(ϕ̃i(a))P

′
i − a‖

≤

N∑

s,t=1

‖P ′
iψi ◦ ϕi(bs,t ⊗ Es,t)P

′
i − P ′

i (bs,t ⊗ Es,t)P
′
i ‖

≤

N∑

s,t=1

‖P ′
i (ψi ◦ ϕi(bs,t) − bs,t) ⊗ Es,tP

′
i ‖

≤ N2ε

and

max{Prop(ψ̂i(Es,t ⊗ Es′,t′)) | Es,t ∈ Mn(C), Es′,t′ ∈ MN (C)} ≤ N · λ(n) + 2R

for i = 1, 2, · · · . So {C∗
u(Xi(R))}∞i=1 are equi-nuclear. We complete the proof.

Corollary 3.1 Let X be a metric space with bounded geometry, Y be a subspace of X.

Then C∗
u(Y ) is nuclear if and only if C∗

u(Y,X) is nuclear.

Proof If C∗
u(Y ) is nuclear, for any n ∈ N, by a similar proof as that of the above lemma,

C∗
u(Y (n)) is nuclear. As C∗

u(Y,X) = lim
→
C∗

u(Y (n)), the nuclearity is preserved by the inductive

limits.

Conversely, by using the projection P : X → Y similarly as the above lemma, it is easy to

prove that C∗
u(Y ) is nuclear.

Lemma 3.2 Let X be a metric space with bounded geometry. Then for any T ∈ C∗
u(X)

with Prop(T ) ≤ R, there exists some N(R) > 0 such that

‖T ‖ ≤ N(R) · sup
(x,y):d(x,y)≤R

|Tx,y|.

Proof As X has bounded geometry, we know that there exists some N(R) > 0 such that

♯B(x,R) ≤ N(R) for any x ∈ X . For any (ξx) ∈ l2(X), (Tξ)x =
∑
y

Tx,yξy. By Cauchy-Schwarz
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inequality, we know

|(Tξ)x|
2 ≤ N(R) ·

(
sup

(x,y):d(x,y)≤R

|Tx,y|
)2 ∑

y:d(x,y)≤R

|ξy|
2.

So by

‖Tξ‖2 ≤ N(R) ·
(

sup
(x,y):d(x,y)≤R

|Tx,y|
)2 ∑

x

( ∑

y: d(x,y)≤R

|ξy|
2
)

≤ N(R) ·
(

sup
(x,y):d(x,y)≤R

|Tx,y|
)2 ∑

y

( ∑

x:d(x,y)≤R

|ξy |
2
)

≤ N2
(R) ·

(
sup

(x,y):d(x,y)≤R

|Tx,y|
)2 ∑

y

|ξy|
2,

we get the conclusion.

Proof of Theorem 1.1 For any finite subset F ⊂ C∗
u(X), as the finite propagation

operators are dense in C∗
u(X), we assume that the elements in F are all finite propagation

operators. Let R = max{Prop(T ) : T ∈ F}, M = max{‖T ‖ : T ∈ F}. For any ε > 0, by

assumption, there is a partition of unit {φi}
∞
i=1 subordinated to a cover {Xi}

∞
i=1 of X such that

∀x, y ∈ X with d(x, y) ≤ R,
∞∑

i=1

|φi(x) − φi(y)| ≤
ε

M

and {C∗
u(Xi)}

∞
i=1 are equi-nuclear. So by Lemma 3.1 we know that {C∗

u(Xi(R))}∞i=1 are equi-

nuclear. Let Pi : l2(X) → l2(Xi(R)) be the projection. For the uniformly finite subsets

Fi = PiFPi, there exist n ∈ N and contractive completely positive maps

ϕi : C∗
u(Xi(R)) → Mn(C), ψi : Mn(C) → C∗

u(Xi(R))

such that ‖ψi ◦ ϕi(a) − a‖ < ε for any a ∈ Fi and

max{Prop(ψi(Es,t)) | Es,t ∈ Mn(C)} ≤ λ(n), i = 1, 2, · · · .

Let
∞∏

i=1

Mn(C) = {(ai)
∞
i=1 | ai ∈ Mn(C) (i = 1, 2, · · · ) such that sup

i

‖ai‖ ≤ ∞}.

Define

ϕ : C∗
u(X) →

∞∏

i=1

Mn(C)

T 7→ (ϕi(Ti))
∞
i=1,

where Ti = PiTPi. As all ϕi are all contractive completely positive maps, so ϕ is also contractive

completely positive.

Define Vi : l2(X) → l2(Xi) by setting Viδx = φi(x)
1

2 δx. We now define

ψ :

∞∏

i=1

Mn(C) → B(l2(X))

(Si)
∞
i=1 7→

∞∑

i=1

V ∗
i ψi(Si)Vi.
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ψ is well-defined and contractive since

∥∥∥
( ∞∑

i=1

V ∗
i ψi(Si)Vi

)
ξ
∥∥∥

2

≤

∞∑

i=1

‖V ∗
i ψi(Si)Viξ‖

2 ≤ max
i

‖Si‖
2

∞∑

i=1

‖Viξ‖
2 ≤ max

i
‖Si‖

2‖ξ‖2.

And from the form of ψ, it is obviously completely positive. Since

〈ψ((Si)
∞
i=1)δx, δy〉 =

〈 ∞∑

i=1

V ∗
i (ψi(Si))Viδx, δy

〉
=

∞∑

i=1

φi(x)
1

2φi(y)
1

2 〈ψi(Si)δx, δy〉

and for any i ∈ N,

Prop{ψi(Es,t) | Es,t ∈ Mn(C)} ≤ λ(n),

we know that ψ((Si)
∞
i=1) have finite propagation and thus ψ((Si)

∞
i=1) ∈ C∗

u(X). If d(x, y) ≤ R

and x ∈ Xi0 , then x, y ∈ Xi0(R). Assume

O = {i ∈ N | x, y ∈ Xi(R)}.

Then

1 =

∞∑

i=1

φi(x) =
∑

i: x∈Xi

φi(x) =
∑

i∈O

φi(x). (∗)

We have

|〈ψ ◦ ϕ(T )δx, δy〉 − 〈Tδx, δy〉|

=
∣∣∣

∞∑

i=1

φi(x)
1

2φi(y)
1

2 〈ψiϕi(Ti)δx, δy〉 − 〈Ti0δx, δy〉
∣∣∣

≤
∣∣∣

∞∑

i=1

φi(x)
1

2φi(y)
1

2 〈(ψiϕi(Ti) − Ti)δx, δy〉
∣∣∣ +

∣∣∣
∞∑

i=1

φi(x)
1

2φi(y)
1

2 〈Tiδx, δy〉 − 〈Ti0δx, δy〉
∣∣∣

≤ ε ·

∞∑

i=1

φi(x)
1

2φi(y)
1

2 +
∣∣∣
∑

i∈O

φi(x)
1

2φi(y)
1

2 〈Ti0δx, δy〉 − 〈Ti0δx, δy〉
∣∣∣

≤ ε+
∣∣∣
∑

i∈O

φi(x)
1

2φi(y)
1

2 − 1
∣∣∣ · |〈Ti0δx, δy〉| (by Cauchy-Schwarz inequality)

≤ ε+
∑

i∈O

|φi(x)
1

2 − φi(y)
1

2 |2 · |〈Ti0δx, δy〉| (by (∗))

≤ ε+
∑

i∈O

|φi(x) − φi(y)| · ‖T ‖

≤ 2 ε.

Since X has bounded geometry, there exists an N ∈ N such that for any x ∈ X , ♯B(x,R) ≤ N .

Hence by Lemma 3.2 ‖ψ ◦ ϕ(T ) − T ‖ ≤ 2Nε, then C∗
u(X) is nuclear.

Remark 3.2 With Theorem 1.1, we can give an analytic proof that if a finitely generated

group G is hyperbolic relative to the subgroups G1, G2, · · · , Gn, then C∗
u(G) is nuclear if and

only if C∗
u(Gi) (i = 1, 2, · · · , n) are nuclear. But we omit the proof here because it is only a

routine of [5].
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4 Coarse Roe Algebras are not Nuclear

The coarse Roe algebras arise from index theory for general noncompact complete Rie-

mannian manifold (see [9]) and have been associated to coarse geometry of proper metric spaces

(see [6, 12]). But unlike the uniform Roe algebra, unless the metric space is finite, its coarse

Roe algebra is not nuclear.

Definition 4.1 Let X be a discrete metric space, and H be an infinite dimensional Hilbert

space. A bounded operator T : l2(X) ⊗H → l2(X) ⊗H is said to have propagation at most R

if for all ϕ, ψ ∈ l2(X) ⊗H with d(supp(ϕ), supp(ψ)) > R such that

〈Tϕ, ψ〉 = 0.

Note that if X is discrete, then we can write

l2(X) ⊗H =
⊕

x∈X

(δx ⊗H),

where δx is the Dirac function at x. Every bounded operator acting on l2(X) ⊗H has a corre-

sponding matrix representation

T = (Tx,y)x,y∈X ,

where Tx,y : δy ⊗ H → δx ⊗ H is a bounded operator. We say T locally compact if Tx,y is a

compact operator for all x, y ∈ X. Since T has finite propagation R, it is equivalent to say that

the matrix coefficient Tx,y of T vanishes when d(x, y) > R.

Definition 4.2 The collection of all locally compact, finite propagation operators on l2(X)⊗

H is a ∗-subalgebra of B(l2(X) ⊗ H). Its norm completion, denoted by C∗(X), is called the

coarse Roe algebra of X.

Let F2 be the free group with two generators, C∗(F2) be the full C∗-algebra of F2. Let

∞∏

i=1

Mi(C) =
{

(ai)
∞
i=1

∣∣∣ ai ∈ Mi(C) (i = 1, 2, · · · ) such that sup
i

‖ai‖ ≤ ∞
}
.

Theorem 4.1 (see [1, 4]) The full C∗-algebra C∗(F2) can isometrically embed into the

C∗-algebra
∞∏

i=1

Mi(C).

Theorem 4.2 Let X be a discrete countable metric space. Then the coarse Roe algebra

C∗(X) can not be nuclear.

Proof If C∗(X) is nuclear, then it is exact. By Theorem 4.1, we can view C∗(F2) as a

subalgebra of
∞∏

i=1

Mi(C) and it is a subalgebra of C∗(X) too. Because the exactness passes to

subalgebras, we get that C∗(F2) is exact. By [1, Proposition 3.7.11], it is implied that F2 is

amenable, which is a contradiction.

Corollary 4.1 l∞(X,K(H)) is not isomorphic to l∞(X,K(H)).

Proof By Theorem 4.1, we view C∗(F2) as a subalgebra of l∞(X,K(H)), then we know

that l∞(X,K(H)) is not nuclear. But l∞(X) ⊗K(H) is a nuclear C∗-algebra, so they are not

isomorphic.
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