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1 Introduction

Given arbitrarily a (short) time T > 0 and a bounded domain Ω of R
n (n ≥ 1) with C4

boundary Γ, we put Q = (0, T )×Ω and Σ = (0, T )×Γ. For any t ∈ [0,∞), assume that G(t) is

a suitable (proper) subdomain of Ω. Throughout this paper, we will use C to denote a generic

positive constant which may vary from line to line.

We consider the following Kirchhoff-Rayleigh plate like equation with a potential q ∈

L∞(0, T ;Lp(Ω)) (p ≥ n):






wtt + ∆2w − ∆wtt + qw = 0, in Q,

w = ∆w = 0, on Σ,

w(0) = w0, wt(0) = w1, in Ω,

(1.1)

where the initial datum (w0, w1) is supposed to belong to (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω), the state

space of system (1.1). Thanks to the standard operator semigroup theory, it is easy to show

that system (1.1) admits a mild solution w ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)) ∩C1([0, T ];H1

0 (Ω)).

The main purpose of this paper is, for any given T > 0, to find a constant C(q) > 0 and a

class of subdomains {G(t) | t ∈ [0, T ]} such that all weak solutions w of (1.1) satisfy

‖∆w0‖
2
L2(Ω) + ‖w1‖

2
H1

0 (Ω) ≤ C(q)

∫ T

0

∫

G(t)

(|w|2 + |∆w|2)dxdt,

∀ (w0, w1) ∈ (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω). (1.2)
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In particular, we shall analyze the explicit and sharp dependence of C(q) on the potential q.

The above inequality, the so-called rapid observability inequality for system (1.1), allows es-

timating the total energy of solutions in terms of the energy localized in the moving observation

subdomain G( · ) in an arbitrarily short time. It is relevant to rapid controllability problems.

Especially, in this linear setting this inequality is equivalent to the so-called rapid exact con-

trollability property, i.e., for any given T , that of driving solutions to the rest by means of

the control forces localized in (0, T ) × G( · ) (see [10]). This type of inequality, with explicit

estimates on the observability observability constant, is also relevant to the controllability of

semilinear problems (see [7, 11, 13]). We refer to [5, 8, 15, 18] for more related background.

When the propagation speed of solutions to the system under consideration is infinite, the

(rapid) observability/controllability problems are studied by many authors (see [2, 3, 5, 6, 15, 17]

and the references therein). However, when this speed is finite, things become more delicate

(see [1]), and the desired observability/controllability holds true only when the time T is large

enough or other conditions on the observer/controller are imposed. For the above Kirchhoff-

Rayleigh plate like equation, we shall show the finite speed of propagation for its solutions

(see Proposition 3.1 in Section 3). Because of this, in order to establish the desired rapid

observability estimate (1.2), we need some complicated conditions on the time-variant observer

G( · ) (see Section 2 for more details).

Similar rapid (internal) observability problems were considered for wave equations in [7, 11,

13], and for Maxwell equations in [14]. Note however that, as far as I know, there is no result

published on the rapid observability estimate for the fourth order equations with finite speed

of propagation.

The rest of this paper is organized as follows. In Section 2, we state the main result of this

work. A proof of the finite speed of propagation on system (1.1) is given in Section 3. In Section

4, we collect some preliminary results that will be used later. Finally, Section 5 is devoted to

prove our main result.

2 Statement of the Main Result

To begin with, without loss of generality, we assume that

inf {x1 ∈ R | ∃x′ ∈ R
n−1, such that (x1, x

′) ∈ Ω} = 0,

sup {x1 ∈ R | ∃x′ ∈ R
n−1, such that (x1, x

′) ∈ Ω}
△
= β > 0.

Also, for any T > 0 and any σ ∈ (0, T ), put

a =
T − σ

β
, Kσ = {(t, x1) ∈ (0, T )× [0, β] | ax1 < t < ax1 + σ},

Dσ = (Kσ × R
n−1) ∩Q.

(2.1)

Denote the set of all subsets in Ω by 2Ω. As in [7, 13], we introduce the following assumption

on the class G of observers:

(A1) Class G is a family of set-valued functions G : [0,∞) → 2Ω with the properties:
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( i ) Any G( · ) ∈ G is continuous with respect to the Hausdorff metric;

(ii) For any T > 0, there exists a G( · ) ∈ G and a σ ∈ (0, T ), such that

G̃T
△
= {(t, x) ∈ Q | x ∈ G(t), t ∈ (0, T )} ⊇ Dσ. (2.2)

As an example, we consider the special case that Ω = (0, 1) and Q = (0, T )× (0, 1). For any

µ > 0, set

α(t) =
1 + µ

T
t−

µ

2
, t ≥ 0,

G(µ, T, t) =
{
x ∈ (0, 1)

∣∣∣ |x− α(t)| <
µ

2

}
.

(2.3)

We see that G( · ) = G(µ, T, · ) satisfies (2.2) provided that σ
T−σ

< µ. Hence the class

G =
⊔

µ>0
T∈(0,∞)

G(µ, T, · )

satisfies (A1) (see Figure 1). In this case, the sets Dσ and G̃T are given by the parallelograms

ABOC and ADOE in Figure 1, respectively.

Figure 1 Sets Dσ and eGT

The main result of this paper is stated as follows.

Theorem 2.1 Assume that (A1) holds and q ∈ L∞(0, T ;Lp(Ω)) with some p ∈ [n,∞].

Then, for any T > 0, there exists an observer G( · ) ∈ G such that all weak solutions w of (1.1)

satisfy estimate (1.2) with some observability constant C(q) > 0 to be of the form

C(q) = C exp(Cr
1

2− n
p ), (2.4)

where

r = ‖q‖L∞(0,T ;Lp(Ω)). (2.5)
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Several remarks are in order.

Remark 2.1 In this paper, we establish the desired observability estimate (1.2) by means of

a careful energy estimate. Here we choose to work in the state space (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω).

But some other choices of the state spaces are possible. For example, one could consider

similar problems in state spaces of the form H1
0 (Ω) × L2(Ω) or {w ∈ H3(Ω) | w|Γ = ∆w|Γ =

0} × (H2(Ω) ∩H1
0 (Ω)), where the Kirchhoff-Rayleigh plate like system is also well-posed. But

the corresponding analysis will be technically more involved.

Remark 2.2 One of the key points to derive inequality (1.2) for system (1.1) is the

possibility to decompose the Kirchhoff-Rayleigh plate like operator ∂2
t + ∆2 − ∂2

t ∆ as follows:

∂2
t + ∆2 − ∂2

t ∆ = (∂tt − ∆)(I − ∆) + ∆,

where I is the identity operator; another point is that we impose the boundary conditions

w = ∆w = 0 on Σ. We set

z = w − ∆w, (2.6)

where w is the solution to system (1.1). Then, the Kirchhoff-Rayleigh plate like system (1.1)

can be written equivalently as the following coupled elliptic-wave system:





w − ∆w = z, in Q,

ztt − ∆z + w − z + qw = 0, in Q,

w = z = 0, on Σ,

z(0) = w0 − ∆w0, zt(0) = w1 − ∆w1, in Ω.

(2.7)

Note however that a similar equivalence does not hold any more when the boundary conditions

in system (1.1) are replaced by w = ∂w
∂ν

= 0 on Σ, where ν is the unit outward normal vector of

Ω at boundary Γ. It would be quite interesting to study the same rapid observability problem

for the Kirchhoff-Rayleigh plate like system with the later boundary conditions, but this is an

unsolved problem.

Remark 2.3 By means of the well-known duality argument (see [9, Lemma 2.4, p. 282]

and [15, Theorem 3.2, p. 19], for examples), it is easy to deduce a rapid controllability result

for the Kirchhoff-Rayleigh plate like equation from our observability estimate in Theorem 2.1.

Since this method is standard, we omit the details.

Remark 2.4 As mentioned before, condition (A1) is complicated. However, as remarked in

[7, 13], this condition is necessary for the rapid observation for the wave equations in some sense

(by considering the main result in [1]). Indeed, for any fixed observer, the rapid observation

for the wave equations is impossible except for some trivial case. By adopting the approaches

developed in [4], one can show that similar phenomenon occurs for the Kirchhoff-Rayleigh plate

like equation. Nevertheless, the detailed analysis is complicated and we shall present this result

in a forthcoming paper.
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3 Finite Propagation Speed for the Kirchhoff-Rayleigh

Plate Like Equation

In this section, we prove the property of finite speed of propagation for solutions to the

Kirchhoff-Rayleigh plate like equation. We believe that this result should be known in the

previous literature but we have not found an exact reference.

We consider the following equation (without boundary condition):
{
wtt + ∆2w − ∆wtt + qw = 0, in (0, T ]× Ω,

w(0) = w0, wt(0) = w1, in Ω.
(3.1)

Similarly to [12], fix any (L, x0) ∈ (0,∞) × Ω such that

{x ∈ Rn | |x− x0| ≤ L} ⊂ Ω. (3.2)

Choose ℓ > 1 arbitrarily and denote t0 = L
ℓ
. Set

Ωt = {x ∈ R
n | |x− x0| ≤ ℓ(t0 − t)}, ∀ t ∈ [0, t0]. (3.3)

Define an (modified) energy of system (3.1) in the subdomain Ωt by

E(t) =
1

2

∫

Ωt

[|∇∆w(t, x)|2 + |∆w(t, x)|2 + |∆wt(t, x) − wt(t, x)|
2

+ |∇wt(t, x)|
2 + |∇w(t, x)|2 + |w(t, x)|2]dx. (3.4)

We have the following a prior estimate for solutions to (3.1).

Proposition 3.1 Let T > 0, w0 ∈ H3
loc(Ω) and w1 ∈ H2

loc(Ω) be given, q ∈ L∞(0, T ;

L
p
loc(Ω)) with some p ∈ [n,∞]. Let w ∈ C([0, T ]; H3

loc(Ω)) ∩ C1([0, T ];H2
loc(Ω)) be a weak

solution to equation (3.1). Then, for any (L, x0) ∈ (0,∞) × Ω satisfying (3.2), there exists an

ℓ > 0, such that the energy E(t) of (3.1) satisfies

E(t) ≤ CE(0), ∀ t ∈ [0, t0 ∧ T ], (3.5)

where C = C(t0, T, x0, ℓ) > 0.

Remark 3.1 It is easy to see that the finite speed of propagation for equation (1.1) is a

direct consequence of the above a prior estimate. Indeed, in the case that t0 ≤ T , by (3.5), we

see that E(t) ≡ 0 whenever E(0) = 0. This means that the cone

C
△
= {(s, x) ∈ [0, t0] × R

n | |x− x0| ≤ ℓ(t0 − s)}

is the domain of determination for (t0, x0). Therefore, the data outside C does not affect the

value of the (smooth) solution to equation (1.1) at (t0, x0). Consequently, the propagation

speed is finite.

Proof of Proposition 3.1 We borrow some idea from [12]. Recalling the definition of Ωt

in (3.3), and noting (3.2), we obtain

E(t) =
1

2

∫ ℓ(t0−t)

0

dr

∫

|x−x0|=r

[|∇∆w(t, x)|2 + |∆w(t, x)|2
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+ |∆wt(t, x) − wt(t, x)|
2 + |∇wt(t, x)|

2 + |∇w(t, x)|2 + |w(t, x)|2]dSx, (3.6)

where dSx stands for the area element on |x− x0| = r. Therefore,

dE(t)

dt
=

1

2

∫

Ωt

∂

∂t
[|∇∆w|2 + |∆w|2 + |∆wt − wt|

2 + |∇wt|
2 + |∇w|2 + |w|2]dx

−
ℓ

2

∫

∂Ωt

[|∇∆w|2 + |∆w|2 + |∆wt − wt|
2 + |∇wt|

2 + |∇w|2 + |w|2]d(∂Ωt). (3.7)

On the other hand, denote by ν = ν(x) the unit out normal vector at x ∈ ∂Ωt. Multiplying

the first equation in (3.1) by ∆wt and wt, respectively, and integrating it in Ωt, using integration

by parts, we get

1

2

∫

Ωt

∂

∂t
[|∇∆w|2 + |∆wt|

2 + |∇wt|
2]dx =

∫

∂Ωt

wttν · ∇wtd(∂Ωt) +

∫

∂Ωt

∆wtν · ∇∆wd(∂Ωt)

+

∫

Ωt

qw∆wtdx, (3.8)

1

2

∫

Ωt

∂

∂t
[|∆w|2 + |∇wt|

2 + |wt|
2]dx =

∫

∂Ωt

wtν · ∇wttd(∂Ωt) +

∫

∂Ωt

∆wν · ∇wtd(∂Ωt)

−

∫

∂Ωt

wtν · ∇∆wd(∂Ωt) −

∫

Ωt

qwwtdx, (3.9)

and also,
∫

Ωt

∂

∂t
(wt∆wt)dx =

∫

Ωt

(wtt∆wt + wt∆wtt)dx

=

∫

∂Ωt

[wttν · ∇wt + wtν · ∇wtt]d(∂Ωt) −
1

2

∫

Ωt

∂

∂t
|∇wt|

2dx, (3.10)

∫

Ωt

∂

∂t

(
|∇w|2 + |w|2

)
dx = 2

∫

Ωt

(∇w · ∇wt + wwt) dx

= 2

∫

∂Ωt

wν · ∇wtd(∂Ωt) − 2

∫

Ωt

w(∆wt − wt)dx. (3.11)

Hence, by (3.8)–(3.11), it follows that

1

2

∫

Ωt

∂

∂t
[|∇∆w|2 + |∆w|2 + |∆wt − wt|

2 + |∇wt|
2 + |∇w|2 + |w|2]dx

=

∫

∂Ωt

[(∆wt − wt)ν · ∇∆w + (∆w + w)ν · ∇wt]d(∂Ωt) +

∫

Ωt

(q − 1)w(∆wt − wt)dx. (3.12)

Choosing ℓ such that ℓ ≥ 4, and combining (3.7) and (3.12), we arrive at

dE(t)

dt
≤

∫

Ωt

(q − 1)w(∆wt − wt)dx. (3.13)

In view of (3.13), by noting q ∈ L∞(0, T ;Lp
loc(Ω)) with some p ∈ [n,∞], 1

p
+ 1

2 + p−2
2p

= 1,

using Hölder’s inequality and Sobolev embedding theorem, and recalling the definition of E(t)

in (3.4), it is easy to deduce that

dE(t)

dt
≤

∫

Ωt

|(q − 1)||w||(∆wt − wt)|dx
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≤ C‖∆wt(t, · ) − wt(t, · )‖L2(Ωt)‖w(t, · )‖
L

2p
p−2 (Ωt)

≤ C(‖∆wt(t, · ) − wt(t, · )‖
2
L2(Ωt)

+ ‖w(t, · )‖2
L2(Ωt)

)

≤ CE(t). (3.14)

Now, the desired estimate (3.5) follows from (3.14), immediately. This completes the proof of

Proposition 3.1.

4 Some Preliminaries

In this section, we show some preliminary results, which will play a key role in our proof of

the main result, i.e., Theorem 2.1.

Denote the energy of system (1.1) by

Ê(t)
△
=

1

2
(‖∆w(t, · )‖2

L2(Ω) + ‖wt(t, · )‖
2
H1

0 (Ω)). (4.1)

Consider also the modified energy function

Ê∗(t)
△
= Ê(t) +

1

2
r

2
2− n

p ‖w(t, · )‖2
L2(Ω). (4.2)

It is clear that both energies are equivalent.

To begin with, we show the following result.

Lemma 4.1 Let q ∈ L∞(0, T ;Lp(Ω)) with p ∈ [n,∞]. Then, for any (w(0), wt(0)) ∈

(H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω), the corresponding weak solution w( · ) to (1.1) satisfies (recall (2.5)

for r)

Ê∗(t) ≤ CÊ∗(s)eCr

1
2− n

p

, ∀ t, s ∈ [0, T ]. (4.3)

Proof We proceed as in the proof of Lemma 1 in [16, p. 358] and [2]. Noting system (1.1),

it is easy to get

∂Ê∗(t)

∂t
= −

∫

Ω

qwwtdx+ r
2

2− n
p

∫

Ω

wwtdx ≤
∣∣∣
∫

Ω

qwwtdx
∣∣∣ + r

2
2− n

p

∣∣∣
∫

Ω

wwtdx
∣∣∣. (4.4)

Put p1 = 2p
n−2 and p2 = 2p

p−n
. Noting that 1

p
+ 1

p1
+ 1

p2
+ 1

2 = 1 and 1
2( n

p
)−1 + 1

2(1−n
p
)−1 + 1

2 = 1,

by Hölder’s inequality and Sobolev embedding theorem, we get

∣∣∣
∫

Ω

qwwtdx
∣∣∣ ≤

∫

Ω

|q||w||wt|dx

≤ r‖|w(t, · )|
n
p ‖Lp1(Ω)‖|w(t, · )|1−

n
p ‖Lp2(Ω)‖wt(t, · )‖L2(Ω)

= r
1

2− n
p ‖w(t, · )‖

n
p

L
2n

n−2 (Ω)
(r

1− n
p

2− n
p ‖w(t, · )‖

1−n
p

L2(Ω))‖wt(t, · )‖L2(Ω)

≤ Cr
1

2− n
p Ê∗(t). (4.5)
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Similarly,

r
2

2− n
p

∣∣∣
∫

Ω

wwtdx
∣∣∣ ≤

r
1

2− n
p

2

∫

Ω

(r
2

2− n
p |w|2 + |wt|

2)dx ≤ Cr
1

2− n
p Ê∗(t). (4.6)

Now, combining (4.4)–(4.6), and applying Gronwall’s inequality, we conclude the desired esti-

mate (4.3). This completes the proof of Lemma 4.1.

Further, by using multiplier techniques similar to those in [10], the following lemma holds.

Lemma 4.2 Let 0 ≤ S1 < S2 < T2 < T1 ≤ T and q ∈ L∞(0, T ;Lp(Ω)) with p ∈ [n,∞].

Then the weak solution w( · ) of (1.1) satisfies

∫ T2

S2

‖wt(t, · )‖
2
H1

0 (Ω)dt ≤ C(1 + r)

∫ T1

S1

‖∆w(t, · )‖2
L2(Ω)dt. (4.7)

Proof Put g(t) = (t − S1)
2(T1 − t)2. Multiplying the first equation of system (1.1) by

g(t)w(t) and integrating it in (S1, T1)×Ω, using integration by parts, and by Hölder’s inequality

and Sobolev embedding theorem, it is easy to see that

∫ T1

S1

g(t)‖wt(t, · )‖
2
H1

0 (Ω)dt

=

∫ T1

S1

∫

Ω

gt(t)wt∆wdxdt −

∫ T1

S1

∫

Ω

gt(t)wwtdxdt

+

∫ T1

S1

∫

Ω

g(t)|∆w|2dxdt+

∫ T1

S1

∫

Ω

g(t)q|w|2dxdt

≤
1

2

∫ T1

S1

g(t)‖wt(t, · )‖
2
H1

0 (Ω)dt+ C(1 + r)

∫ T1

S1

‖∆w(t, · )‖2
L2(Ω)dt. (4.8)

Thus, we get (4.7), which completes the proof of Lemma 4.2.

5 Proof of Theorem 2.1

We are now in a position to prove Theorem 2.1. Without loss of generality, we may assume

|a| < 1 (recall that a is defined in (2.1)). The proof is divided into several steps.

Step 1 To begin with, put

q1(t, x) =

{
q(t, x), if (t, x) ∈ Q,

0, if (t, x) ∈ ((−∞, 0) ∪ (T,∞)) × Ω.
(5.1)

Assume that (W,Z) satisfy the following system:





W − ∆W = Z, in R × Ω,

Ztt − ∆Z +W − Z + q1W = 0, in R × Ω,

W = Z = 0, on R × Γ,

Z(0) = w0 − ∆w0, Zt(0) = w1 − ∆w1, in Ω.

(5.2)
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By (5.1), it is clear that q1 ≡ q in Q. Hence, comparing system (5.2) with system (2.7), we find

(W,Z) ≡ (w, z), in Q. (5.3)

We introduce the following coordinate transformation:
{
t = t+ ax1,

x = x.
(5.4)

Set

(w̃, z̃)(t, x) = (W,Z)(t, x)(= (W,Z)(t+ ax1, x)), (t, x) ∈ R × Ω. (5.5)

Then, by (5.2), (w̃, z̃) solve the following equation:




w̃ − a2w̃tt + 2aw̃tx1
−

∑
i

w̃xixi
= z̃, in R × Ω,

(1 − a2)z̃tt + 2az̃tx1
−

∑
i

z̃xixi
+ w̃ − z̃ + q2w̃ = 0, in R × Ω,

w̃ = z̃ = 0, on R × Γ,

(5.6)

where q2(t, x) = q1(t+ ax1, x),
∑
i

=
n∑
i

.

Next, for any given s ∈ R, denote

v(t, x) =

∫ t

s

z̃(τ, x)dτ + χ(x), (5.7)

with χ satisfying




χ(x) +

∑
i

χxixi
= (1 − a2)z̃t(s) + 2az̃x1(s), in Ω,

χ = 0, on Γ.
(5.8)

It is easy to check that




vt = w̃ − a2w̃tt + 2aw̃tx1
−

∑
i

w̃xixi
, in R × Ω,

(1 − a2)vtt + 2avtx1
−

∑
i

vxixi
+

∫ t

s

w̃(τ, x)dτ

−v +

∫ t

s

q2(τ, x)w̃(τ, x)dτ = 0, in R × Ω,

w̃ = v = 0, on R × Γ,

v(s) = χ(x), vt(s) = z̃(s), in Ω.

(5.9)

Step 2 Next, we introduce some energy estimate. First, denote the energy function of the

system (5.9) by

E(t)
△
=

1

2
[‖v(t, · )‖2

H1
0 (Ω) + (1 − a2)‖vt(t, · )‖

2
L2(Ω)]. (5.10)

Multiplying the second equation of system (5.9) by vt and integrating it in Ω, using integration

by parts, we have

d E(t)

dt
= −

∫

Ω

( ∫ t

s

(1 + q2(τ, x))w̃(τ, x)dτ
)
vt(t, x)dx+

∫

Ω

vvtdx. (5.11)
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Using the first equation in (5.2) and integrating by part, one obtains

‖W (t, · )‖2
H1

0 (Ω) ≤ C‖Z(t, · )‖2
L2(Ω), ∀ t ∈ R. (5.12)

Then, by (5.5), (5.7) and (5.12), we could also get

‖w̃(t, · )‖2
L2(Ω) ≤ C‖vt(t, · )‖

2
L2(Ω), ∀ t ∈ R. (5.13)

Similarly to the proof of Lemma 4.1, by Hölder’s inequality and Sobolev embedding theorem,

and noting (5.13), we conclude that

E(t) ≤ CrE(s), ∀ s, t ∈ [−2T, 2T ]. (5.14)

Define
{
D(A) = H2(Ω) ∩H1

0 (Ω),

Az = −∆z, ∀ z ∈ D(A).
(5.15)

Fix s0 and s′0 such that

0 < s0 < s′0 < σ, (5.16)

and put ψ(t) = t
2
(σ− t)2. By (5.5), noting (5.6) and (5.13), and using integration by parts, we

get

∫ σ

0

∫

Ω

(1 + q2)w̃ψ(A−1z̃)dxdt

=

∫ σ

0

∫

Ω

(
− (1 − a2)z̃tt − 2az̃tx +

∑

i

z̃xixi
+ z̃

)
ψ(A−1z̃)dxdt

= (1 − a2)

∫ σ

0

ψ‖z̃t(t, · )‖
2
H−1(Ω)dt−

1 − a2

2

∫ σ

0

∫

Ω

ψtt(A
− 1

2 z̃)2dxdt

+ 2a

∫ σ

0

∫

Ω

[ψ(A− 1
2 z̃x1

)(A− 1
2 z̃t) + (A− 1

2 z̃x1
)ψt(A

− 1
2 z̃)]dxdt

−

∫ σ

0

∫

Ω

ψz̃2dxdt+

∫ σ

0

∫

Ω

ψ(A− 1
2 z̃)2dxdt. (5.17)

Further, it is obvious that

∫

Ω

|A− 1
2 z̃x1

|2dx ≤ C‖z̃x1
(t, · )‖2

H−1(Ω) ≤ C‖z̃(t, · )‖2
L2(Ω). (5.18)

Combining (5.17) and (5.18), we deduce

∫ σ

0

‖z̃t(t, · )‖
2
H−1(Ω)dt ≤ C(1 + r)

∫ σ

0

‖z̃(t, · )‖2
L2(Ω)dt. (5.19)

Step 3 We finish the proof of Theorem 2.1 in this step.

By (4.1)–(4.3), (4.7), (5.2)–(5.7) and (5.10), we arrive at

‖∆w0‖
2
L2(Ω) + ‖w1‖

2
H1

0 (Ω)
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≤ C(1 + r)eCr

1
2− n

p

∫ (1−ε)T

εT

(‖∆w(t, · )‖2
L2(Ω) + ‖wt(t, · )‖

2
H1

0 (Ω))dt

≤ C(1 + r)eCr

1
2− n

p

∫ T

0

‖∆w(t, · )‖2
L2(Ω)dt

≤ CeCr

1
2− n

p

∫ T

0

‖z(t, ·)‖2
L2(Ω)dt

≤ CeCr

1
2− n

p

∫ 2T

−2T

‖z̃(t, · )‖2
L2(Ω)dt

≤ CeCr

1
2− n

p

∫ 2T

−2T

‖vt(t, · )‖
2
L2(Ω)dt

≤ CeCr

1
2− n

p

∫ 2T

−2T

ε(t)dt. (5.20)

Combining (5.5), (5.10), (5.12), (5.14) and (5.20), for any s ∈ [−2T, 2T ], one finds

‖∆w0‖
2
L2(Ω) + ‖w1‖

2
H1

0 (Ω) ≤CeCr

1
2− n

p

(‖z̃(s, ·)‖2
L2(Ω) + ‖z̃t(s, ·)‖

2
H−1(Ω)). (5.21)

Integrating the above inequality with respect to s from s0 to s′0 (with s0 and s′0 satisfying

(5.16)), and by (5.19), we conclude that

‖∆w0‖
2
L2(Ω) + ‖w1‖

2
H1

0 (Ω) ≤CeCr

1
2− n

p

∫ σ

0

‖z̃(t, · )‖2
L2(Ω)dt. (5.22)

Hence, recalling (2.6), (5.3) and (5.5), and using assumption (A1), we obtain

‖∆w0‖
2
L2(Ω) + ‖w1‖

2
H1

0 (Ω) ≤CeCr

1
2− n

p

∫

Dσ

|z(t, x)|2dxdt

≤CeCr

1
2− n

p

∫ T

0

∫

G(t)

(|w|2 + |∆w|2)dxdt, (5.23)

which yields the desired estimate (1.2). This completes the proof of Theorem 2.1.
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