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Abstract Let H be a semisimple Hopf algebra over a field of characteristic 0, and A
a finite-dimensional transitive H-module algebra with a 1-dimensional ideal. It is proved
that the smash product A# H is isomorphic to a full matrix algebra over some right coideal
subalgebra N of H. The correspondence between A and such N and the special case
A = k(X) of function algebra on a finite set X are considered.
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1 Introduction

Let k be a field, G a finite group and X a finite transitive G-set. Then the group algebra kG is
a finite-dimensional Hopf algebra and the function algebra k(X) = Hom(X, k) is a commutative
kG-module algebra via the module structure induced by the G action. Harrison [3] showed that
the smash product of kG and k(X) is isomorphic to a full matrix algebra over kN, where
N is the stabilizer of some = € X. The similar question about smash products over finite
dimensional Hopf algebras was also discussed by Blattner and Montgomery, Van den Bergh,
and Koppinen. In [1], Blattner and Montgomery showed that H#H* = End,H = M, (k) for
an n-dimensional Hopf algebra H over k. This result was also proved independently by Van
den Bergh [10]. In [5], Koppinen strengthened this result to the case K#H* = A ® EndK and
A#H = K ® EndA, where A is a right coideal Frobenius subalgebra of H* of the dual Hopf
algebra of a finite-dimensional Hopf algebra H, and K = (H*/ATH*)* C H. An easy fact is
that the module algebras in these results are transitive with a 1-dimensional ideal (see [12]).

It is natural to ask whether the smash product A#H is a full matrix algebra over some right
coideal subalgebra of H for a general transitive module algebra. We prove in this paper that
the conclusion is also true for H being a semisimple Hopf algebra over a field k of characteristic
0, and A a transitive H-module algebra with a 1-dimensional ideal.

We arrange this paper as follows. Section 2 is devoted to some properties of transitive
module algebras. In Section 3, we prove the main theorem (i.e. Theorem 3.1): Let H be
a finite-dimensional semisimple Hopf algebra, and A an s-dimensional transitive H-module
algebra with a 1-dimensional ideal kA. Then the smash product A#H is isomorphic to M (N),
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where N = {h € H | hqq)- A® hy = A® h}. If H is not semisimple, a counterexample for
the Theorem 3.1 is also given in this section. In Section 4, we apply our result to the case
A = E(X), a function algebra on a finite set X which has a Hopf algebra action.

Throughout this paper, k& will be a field of characteristic 0. And we assume that all algebras
and Hopf algebras are finite dimensional over k.

2 Transitive Module Algebras

Let H be a Hopf algebra. An H-module algebra A is an associative algebra with a left
H-action such that

h-la=e(m)la and h-(ab) = (hq)-a)(he) D)
(h)

for any h € H and a,b € A. An ideal I of A is called an H-ideal if HI C I, i.e., I is invariant
under the H-action. A non-zero H-ideal is called minimal if it does not contain proper non-zero
H-ideal.

In [12], Zhu gave the definition of transitive action for Hopf algebras.

Definition 2.1 Let H be a Hopf algebra. An H-module algebra A is called transitive if it
satisfies the following conditions:

(C1) Al ={a€ A|h-a=¢e(h)a, Vh € H} =kl a;

(C2) A has no non-zero proper H-ideal.

As explained in [12], none of the conditions (C1) and (C2) is superfluous. But for semisimple
Hopf algebras and semisimple module algebras with 1-dimensional ideals, (C1) and (C2) are

equivalent.

Lemma 2.1 Let H be a Hopf algebra with invertible antipode S, and A be an H-module
algebra. If A is semisimple, then

AzflEBIQEB'-'EBIn,

where each I; (1 < j <n) is a minimal H-ideal.
For each 1 < j <n,

Ii=Ji1®Jj2® & Jjm,,
where J;j i, (1 <k <mj) are minimal ideals of A such that I; = HJ; for any 1 <k < m;.

Proof Let I be any H-ideal of A. Since A is semisimple, there exists an ideal J such that
A=16&J. We show that J is also an H-ideal. Write 1 = e1 + e, where e; and ey are central
idempotents of A with e; € I and es € J.

For any a € J and h € H, we have

(h-a)er =Y hqay- (a(S(he) - €1)) = 0.
(h)

So h-a € J and thus J is an H-ideal of A. Hence the H-ideals of A are completely reducible,
and therefore A= I, ®---DI,.
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Let J be an ideal of A. For any a € A, b€ J and h € H,
alh-b) = he - (S (hqy) -a)b) € HJ,
(h)

(h-b)a="> " hay - (b(S(h) -a)) € HJ.
(h)

So HJ is an H-ideal of A.

If I is a minimal H-ideal of A, then I = J; ®Jo P ---® J,, is a direct sum of minimal ideals
J; of A, Forany 1 < k < m, HJ, C HI = [ is an H-ideal of A. By the minimality of I,
HJ, =1.

Proposition 2.1 Let H be a semisimple Hopf algebra and A be a semisimple H-module
algebra with a 1-dimensional ideal. Then the following conditions are equivalent:

(1) A is a transitive H-module algebra;

(2) AH = kl1g4;

(3) A has no non-zero proper H -ideal.

Proof We only need prove that (2) and (3) are equivalent. Assume that kA is the 1-
dimensional ideal of A.

(2) = (3) Assume A¥ = k14. Let I be a non-zero H-ideal of A. Suppose I # A. Then by
Lemma 2.1, we get A =1 @ J for some H-ideal J of A. Write 14 = e; + ea, where e; € I and
eo € J are central idempotents of A. Then for any h € H,

h' 1A - h'el +h'€2 = E(h)el —|—E(h>€2.

So h-e; =e(h)e; and h- ey = e(h)ea. Thus eq,ea € A¥ which contradicts the assumption that
AP = k1 4. Hence A has no non-zero proper H-ideal.

(3) = (2) If A has no non-zero proper H-ideal, then A = H - XA by Lemma 2.1. Let ¢ be an
integral of H such that £(t) # 0. We have that

A =t A=tH XNCk(t-))

is 1-dimensional.

Lemma 2.2 (see [12, Lemma 2.4]) Let H be a semisimple Hopf algebra and A a transitive
H-module algebra. Assume that t is the integral of H with €(t) = (dim H)1y. Then for any
a € A, we have

t-a=(dimH -tr(a)/dim A)14,

where tr(a) denotes the trace of left multiplication of a on A. And A is a semisimple algebra.

If H is a semisimple Hopf algebra and A a transitive H-module algebra, by Lemma 2.2, we
have that A is semisimple. Then A has a canonical right H*-comodule structure deduced from
the left H-module structure:

h'a:Za<o><h,a<1>>, VheH, ac A
(a)
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For any A-module U and H*-module V, the H*-comodule structure map gives U ® V an

A-module structure:

a-(u®v)=2a<0>-u®a<1>-v, Vae A, ueU, veV.
(a)

Let My, -+, Mg be the list of isomorphic classes of simple A-modules and ey, --- ,es the
corresponding idempotents of A. Suppose that the A-module M; ® H* (where H* acts by left
multiplication) has the decomposition:

M; @ H* = P N} M, (2.1)

where NZ-’C is the multiplicity of M}y in M; ® H*. Then Dy = Enda M is a skew field and we
have the following result.

Proposition 2.2 Nf dim Dy, dim A = dim H dim M; dim M,,. Hence
(dim Dy, dim A) | [dim H (dim My)?].
Proof Suppose A = @ ny My, where ny, is the multiplicity of M}, in A. By Lemma 2.2,

k=1
we have

t-ep = (dim H - tr(e;)/dim A)14 = (ng dim H dim M,/ dim A)1 4
Now we compute the trace of e on A-module M; ® H*:

ZtﬂMl (er))tr|m=(ern ZtrlMl er0)){t, er1y)
ek) (ek)
= tr|ps; (¢ - e) = ny dim H dim My, dim M; / dim A.

On the other hand, the decomposition (1) implies
tr(er) = NF dim My.
Compare the two equations above, we get
NF dim Dy, dim A = dim H dim M; dim Mj,.

Let i = k. We have dim H (dim M},)?/dim Dy dim A = N} for each k. Since N} is a positive
integer, the proof is finished.

By an analogous calculation, the result (see [12, Corollary 2.8]) is still true without the

assumption that k is algebraically closed.

Corollary 2.1 (see [12, Corollary 2.8]) Let A be a transitive module algebra of a semisimple
Hopf algebra H, M be a simple A-module and (A', M') the stabilizer of (A, M) defined in [11].
Then

(dim A)(dim A’) = (dim M)? dim H.
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3 Main Results

Throughout this section, unless otherwise specified, H is a finite-dimensional semisimple
Hopf algebra with antipode S over the field k (thus S% = 1, see [6]), and A is an s-dimensional
transitive H-module algebra with a 1-dimensional ideal kX where A is a central idempotent in
A. Then A = HA by Lemma 2.1 and A is semisimple by Lemma 2.2.

Define

N={neH|Y hay-r&he=rah}.
)

Clearly, N is a right coideal subalgebra of H, 1 € N and
—{ner|> Stha)-rehe =ren}.
()
In this section, we prove the main result of this paper.
Theorem 3.1 Let H be a finite-dimensional semisimple Hopf algebra and A be an s-

dimensional transitive H-module algebra with a 1-dimensional ideal kA. Then the smash product

A#H is isomorphic to Ms(N), where N = {h € H‘ Y hay  A®hig =A® h}.
(h)

The theorem will be proved by first showing that H is free as both left and right N-module.
Since kA is a 1-dimensional ideal of A, we can define a map 0 from H to N via

> (S(h) - MA@ hoy =A®0(h), VheH.
(h)
Lemma 3.1 (1) Lett be the integral of H such that (t) = 1. Then t -\ = k14 # 0 with
ki € k
) Z(h(l) CAA® h(g) = (z; h(l) A® 9(/1(2)) =A®0(h);
h
( ) € N and 0 is a right H-comodule projection;

)
) (h-MA=e(@(h)A =0(h) - X;
) 0

is both leﬁ and right N-module morphism.

(2
(3
(4
(5

Proof (1)klp=A" =t-A=tH-XCkt-\,s00#t-\& A7 =Ekl,. The conclusion is
clear.
(2) For any h € H, by the definition of 0,

> hay @ (S(hez) - MA@ bz = Y hay @ A@ 0(h).
(h) (h)

So

> hay - ((S(he) - MA) @ hes) = Zh (1) - A® 0(hz).
(h)
Since A is central in A,

D by - (S(h) - MDA =D hay - (A(S(h) - A) = (b= A
(h) (h
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for any h € H. Thus Z(h(l)'/\)/\@)h(g) =3 h(l)'/\®9(h(2)). Assume Y h(l) ')\®9(h(2)) =A®g
(h) (h) (h)
for some g € H. Then Y t- (k1) - A) @ 0(hg) =t-A@0(h) =t-A®g. So g=0(h) and (2) is
(h)
proved.
(3) For any h € H, by definition,
D 0(h) ) - A@0(h) ) =Y haya) - (S(hy) - AA) @ hezy)
(h) (h)
=D hy - (Shay) - MA) © hes
(h)

=Y Ahqy - A\) @ hy = A®0(h).
(")

Hence 6(h) € N. Then 6 is a right H-comodule projection from the definitions of § and N.
(4) Apply id ® € to both sides of the equation ) (A1) - M)A ® by = A®@ 0(h) in (2), we get
(h)

(- M)A = e(8(h))\. Since 6(h) € N, we have e(0(h)A = S2(0(h) 1) - Ne(0(h)2)) = 0(h) - \.
(R)
(5) For any h € H, n € N,
A®O(hn) = > (hayna) - MA@ hayn) = Y _(ha) - VA ® hayn = A @ 0(h)n.
(h,m) (h)

So O(hn) = O(h)n and 0 is a right N-module morphism.
Next, we show that 6 is a left N-module morphism. One has

Z S(n(l)) & (n(g)h(l) AA® n(3)h(2) = Z S(n(l)) RA® 9(n(2)h).
(h,n) (n)
Then
> S - (nayhay - MA) @ g hey = > S(na)) - A @ 0(n)h),
(h.n) (n)

> (hay - MAS () - MA@ gy by = D (S(n)) - A @ O(na)h).
(h,n) (n)

Thus
A@nb(h) =A®0(0(n)h) = A 0(nh).

So §(nh) = nB(h) and @ is also a left N-module morphism.

Lemma 3.2 Let H be a finite-dimensional (not necessarily semisimple) Hopf algebra, L be
a right coideal subalgebra of H and 1 € L. If L is a direct summand of H in pM*, then L is

a Frobenius algebra.

Proof Since L is a left L-module direct summand of H, —®r, H is faithful. By [7, Lemma
2.2], L is a simple object in M.

Let T be a right integral of H* and t a left integral of H such that T'(¢t) = T(S(¢t)) = 1.
Assume that H = L & M in (M7, Write t = t; +ty for t; € L, to € M. By [9, Section
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5.1] and [8, Proposition 3], (H*, —) is a free left H-module with basis T', and (H,~) is a free
right H*-module with basis t. Since S(h — T) — t = h for any h € H and L, M are right
H-comodules, one has

So S(1=T)—t;=1and 1 =¢(1) =T(S(t1)) # 0. By [7, Lemma 3.5], L is a Frobenius
algebra.
By the two lemmas above, N is a Frobenius algebra. Thus we get the following proposition

easily.
Proposition 3.1 H is free as right and left N-module.

Next, we calculate the order of H as free N-module. Obviously, I = k) is a simple A-module.
Let (A’,I") be the stabilizer of (A4,I). By calculation, A’ = {h € H‘ (@) - a)A @ hqy =
()

aA®@hVae A}.
Lemma 3.3 S(A') = {h eH| Y(hay - a)A@ho =ar@h, Va e A} =N.
"

Proof Firstly, we prove S(A’) € N. For any h € S(A"), > (ha) - MA® hp) = A® h. By
(n)
Lemma 3.1(2),

A@O(h) = (hay MA@ D).
(")

Soh =46(h) € N and S(A") C N.

Conversely, for any g € N and a € A, we have a\ = kA for some k, € k. Thus

aAN® g =kaA® g = Z kagy - A ® g(2) = 29(1) (M) ® g(2) = Z Mgy - a) @ gay-
(9) (9) (9)

So g€ S(A") and N C S(A’). Therefore, S(A’) = N.
Since dim A dim A’ = dim H by Corollary 2.1 and S is bijective, dim Adim N = dim H. Let
dim A = s. Then there exist hy,--- ,hs € H such that

H=hN&---®hsN.

Obviously, a; = h; - A (i =1,---,s) is a k-basis of A.

We are now in a position to prove our main theorem.

Proof of Theorem 3.1 Define a map
p: A#H — Endy H

by @(h - A#R) (1) = 3 h1y0(S (ha))h'l) for any h,h',1 € H.
(1)
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Since for any n € N,

plhn - MR (1) = Y hiyny8(S(n(z)S(hz))h'l)
(h.n)
(h,n)

—Z )h)0(S(h2))h'l)
25( Jp(h - MER)(1)

and H is free as right N-module, the definition of ¢ is reasonable. To prove the theorem, we
need only prove that ¢ is an algebra isomorphism.

We first show that ¢ is an algebra morphism.

For any h,h',q,q9',1 € H,

o(h- MR )p(g - Mg (1) =D p(h - MER ) (9(1)0(S(9(2))9'D)

@
= 3 hy8(S () 901)0(S(902))9'D);
(h,g)
P((h- AR (g - Mg (1) = D @y - (AS(he)hinyg - N))#h(z ') (1)
(hoh")
= Y e(0(S(he2))h(y9))e(hy - Mthing")(1)
(hoh")
= (Z)f(9<8<h<s>>h’<1>g>>h<1>9<8<h<2>)h’@)g’z)
bk
= Z E(H(S(h(B))hl(l)g(l))) 1)9(5(h(2 )h(z)g 2)5( 3))9/1)
(hoh'.9)
=3 hy0(S ) 901)0(S (92))9'D)-
(h,g)

This shows that o(h - A#R )o(g - M) = o((h - A\#R')(g - AM#g')), as desired.
Next, we prove that ¢ is bijective. Since dim (A#H) = dim(EndyH) < oo, it suffices to
prove that ¢ is injective. If o(>_ h;-A#g;) =0, i.e., o> hi-A#g:) (1) = Z hi(1y0(S(hi2y)gil) =

0 for any [ € H, we get

Z(hi(1)9(5(hi(2))gz Ny - AE(hi)0(S (hi2))gil)) 2)

(hi)
= Y hi@8(S(hi)giwlay) - MEhie) S (his)gie)le)
(hl,q“ )
Z hz(l 2))91(1 ) )\#91(2
(hz Gi, )
Z hi(l) - (A(S( 1(2))91(1)1(1 ))#Qz )1(2
(hi,gisl)

=Y (hi - Ngilay - V#gi)le)
(gi,0)
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= (hi - Mgi) () - M (2)
D)
=0.

Since H - A = A, we may choose [ € H such that [ - A\ =14. Then

Z hi - A\#gi = Z(hi M) (L) - MEl2)) (A #£S(L3))) = 0.
@)

This means that ¢ is injective.

Let H be a finite-dimensional Hopf algebra and B a right coideal subalgebra of H. As in
the case of Hopf algebras (see [9]), an element = € B is called a left integral in B if bz = e(b)x
for all b € B. Similarly, right and two-sided integrals in B are defined. Let H be a semisimple
Hopf algebra, and A an s-dimensional Frobenius right coideal subalgebra of H*. Then A is
separable by [7]. By [5], A contains a two-sided integral z* such that e(z*) = 1. Hence kx* is a
1-dimensional ideal of A. We view A as a left H-module algebra in a natural way. One checks
that A" = k14. So we get the following conclusion.

Corollary 3.1 Let H be a semisimple Hopf algebra and A an s-dimensional Frobenius right
coideal subalgebra of H*. Then
(1) A s a transitive H-module algebra;
(2) A has an integral T such that T(1) = 1. Then the smash product of A and H ‘s
isomorphic to Ms(N) as algebras, where N = {h €eH ’ Yha)y =~ Tohe=T® h}.
(h)

In [5], Koppinen proved that if H is a finite-dimensional Hopf algebra, A a right coideal
Frobenius subalgebra of H*, and K = (H*/ATH*)* C H, then K#H* = A ® EndK and
A#H = K ® EndA as algebras. If H is also semisimple, we have K = N with N defined
as in Corollary 3.1. However, without the assumption that H is semisimple, for a transitive
H-module algebra A with a 1-dimensional ideal even if it is semisimple, this is false in general,
as the following example shows.

Example 3.1 Let H; be the Sweedler’s 4-dimensional Hopf algebra. As an algebra, it is
generated by x and g subject to the relations

rg=—gxr, x°=0 and g¢?=1.
Its coalgebra structure is determined by
Alg)=9g®g and A(z)=z®g+1®@ux.
Let A = k{p1,p2}. Then A is semisimple obviously. The action of Hy on A is determined by
g p1=p2, g-p2=p1; T-pr=apr+p), z-p2=—a(p1+p2)

where o € k. One checks that the action is transitive. But when o # 0, N = k{ly}. By
considering the dimension A#H and My(N), they are not isomorphic.
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Under the hypotheses in Theorem 3.1, for A, we can find a right coideal Frobenius subalgebra
N C H such that A#H = My(N). Let A’ = (H/(NTH))* C H*. Then A’ is a transitive H-
module algebra with a 1-dimensional ideal kx*. By a simple calculation, we get

(h)
So A'#H = M,(N).

Example 3.2 We use [4, Example 15]. Let H be a Hopf algebra such that H = kM as
algebras, where kM is a group algebra with the group M defined by

M = {(a,b,g|a* =e, b* =a? ba=a"'b, ag=ga, bg=gb, g°> =e).

The coalgebra structure of H is given as follows:

1
A(a)z§(a®a+ag®a+a®b—ag®b),

1
A(b) = §(b®b+bg®b+b®a—bg®a),
Alg)=g®g, S(g) =y,
1
S(a) = 5((13 +a®g + a®b — a’byg),
1
am:§W+wyw%—#wy
e(a) =e(b) =e(g) = 1.
Then H is semisimple and has an integral ¢t = (e + g)(e + b)(e + a + a® + a®). Let A =
k{p1,--- ,ps | pip; = d;jpi}. An action of H on A is given by
9 Pi = Pis
a-p1r=p2, a-p2=p3, @ pP3=p4, a-pPs=Dp1,
a-ps =pe, G- pe=pPr, a-pPr=0ps, a-Pg=Ps;
b-pr=ps, b-ps=p3, b-ps=p7, b-pr=pi,
b-po=ps, b-ps=ps, b-pi=ps, b-ps=ps.
Then A is a transitive H-module algebra. One can verify that N = k{e, g} and

A= k{Ie + g, In+1ga, Ip+ Igp, Ip2 + Igaz,
Ia3 + Iga37 Ib3 + Igb37 Ipa + Igbau Iba3 + Igba3} c H*a

where I, (z € M) denotes the k-valued function I, (y) = 0,y -

We note that A’ is isomorphic to A as algebras in the above example. However, in general,
A and A’ are not isomorphic as algebras such as the following example.

Example 3.3 Let H be a finite-dimensional Hopf algebra such that dim H = n < oo and
k#,H* a crossed product. Then A = k#,H* is a transitive H-module algebra via h- (k#f) =
k#h — f. Tt is easy to see N = k and A’ = H*. By [2], A#H = M, (k) = A’/#H, but A and
A’ are not isomorphic as algebras generally even if H is semisimple.
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4 Application to Function Algebra A = k(X)

In this section, we apply our result to the function algebra A = k(X). Let X be a finite set.
We define k(X) to be the vector space with basis {p, | z € X} and a multiplication on k(X) is
defined as

PaPy = O yDz, V,y € X. (4.1)

Then A = k(X) is a semisimple algebra and kp, (z € X) are all the minimal ideals of A.
For simplicity, we write X = {1,2,--- ,n}.
We apply our main theorem to the case that A = k(X).

Theorem 4.1 Let H be a semisimple Hopf algebra, and A = k(X) be a transitive H -
module algebra. Then the smash product of A and H is isomorphic to M,(N11) as algebras,

where N1 = {h €EH Z h(l) P11 & h(g) =7 & h}.
(h)

A more detail structure of A#H is presented as follows.

Lemma 4.1 Let H be a semisimple Hopf algebra, and A = k(X)) be a transitive H-module
algebra. Let t be the integral of H such that e(t) = 1. Then

t'pi:ailx‘h i:1,---,n

for some 0 # o; € k with >, a; = 1.
i=1

Proof Since the action is transitive, for any pi, H - -p; = A and t - pi € AH, we have
t-p; = a;14 for some «; € k. Note that 14 = sz,sot 14 = Zt pi = ZallA, Zal—l
=1 i=1 i=1
Because 14 €t-A=tH -p; Ckt-p; = kaZIA, ozl = 0 for each 1.

For non-zero ay,---,ay, € k in Lemma 4.1, define N;; = {h € H’ Y ha)y pj ®he) =
(h)

& Z_ih} Then N;; € N, M N Mﬁjj and Nii,---, Ny, are subalgebras of H as well. We

n
also get N;jN;i C N;j. By the definition of N;j, the sum Y N;; is a direct sum.
=1

Proposition 4.1 Let H be a semisimple Hopf algebra. If the action of H on A = k(X) is
transitive, then

(l)H:Nﬂ@"'@Nm, t=1,---,m

(2) e(Nij) # 0 for any i, j (1 <i,j <n);
(3) Ny is a Frobenius algebra for each i (1 <i <n).

Proof (1) For any h € H, we suppose

ZS (h(ry) Pi@hey=p1@h1+-+p, ®h, € A® H. (4.2)

Since a; # 0 for any ¢, in a similar way as in Lemma 3.1(2), we get h; € N;;. By equation
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(4.2), we have

pi @ h = Z hi1y - p1 @ hi@y + -+ hpa) P @ hya)
(h1, ha)
! an
=pi @ —hi+ 4D ®

(673 (67}

Thus h = %hl + -+ %hn € Nj1 @ --- D Nyp,. Therefore H = N;j1 D -+ D Ny,
(2) For a fixed i, if €(N;;) = 0 for some j, act id ® ¢ on both sides of equation (4.2). We

have

S7HR) - pi = e(h)p1 + -+ + e(hj—1)pj—1 + e(hjs1)pjs1 + -+ + e(hn)Pn,
which means
H-p;i Ckpr+--+kpj—1+kpjt1+ -+ kpn.

But A = H - p; and this is a contradiction, so ¢(NN;;) # 0.
(3) follows from Lemma 3.2 and part (1).

Suppose that the action of H on A is transitive and H = N;; @& - - - @& N;,. By Proposition
4.1(3), for any i, N;; is a Frobenius algebra. Define two maps

Nij®n,,; Nji = Nii,  Nji®n,, Nij — Nyj (4.3)

by the multiplication of H.

Since N;; € N, M and N;; € Mﬁjj, we see that Nj; is free left Nj-module and free right
Njj-module. N;;N;;(C N;;) is also in N, M* | so it is free left N;-module. By Proposition
4.1(2), e(Ny;) # 0 and £(N;;) # 0, so Ni;Nj; # 0 and Ny;Nj; = Ny;. Similarly, N;;Ny; = N;;.
So the maps defined by (4.3) are surjective, hence N;; and N;; are Morita equivalent. By Morita
equivalent theory, the dimensions of all N;; are the same. Pick h;; € N;1 such that e(h;) =1
and Nil = hilNll' Then

NiH=Ny(N1®--®Nip) =Na®--- PN,y = H.
On the other hand,
NioH =hayNiuy(Ni1 & -+ @ Nip) = ha H.

So h;1H = H, then there exists hy; € H such that h;1h;; = 1. Since H is finite dimensional,
hi1 is the inverse of hy;. We get hy; € Hyy, so Ni; = hi;N11 and Ny = Njyt N1y = hjt Niihyj.

Let G be the group generated by h;1,h1;, ¢ = 1,2,---n. Then G C H. But the group G is
not contained in the set G(H) of group-like elements of H in general. In Example 3.2, A is an
H-module algebra and the action is transitive. But one can verify that N;; = {e, g} for any ¢
and G = {e,a®, a? a, b, ba,b,ba*} & G(H).

Let M, (N11) be the algebra of all n by n matrices over Ny;. This algebra is the free
Nii-module with basis {e;; | 1 <i,7 < n} and the multiplication is given by

(hieij)(hoerr) = 5 rhihoeq
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for any hl, ho € Ni1.
Now we prove Theorem 4.1.

Proof of Theorem 4.1 By Proposition 4.1, H = Nj; & - - - & N;,, for each i. Define a map
® from M,,(N11) to A#H as

;
O(h-ei;) = —pi#thithhy;
a;
for any h € N11 and hy1, hy; € G defined above. For any h, h’ € Nq1, we have

(pi#hihhay)(pj##hjh' har)

= Z pilhayhyhiray - pj)#hieyh b hjih ha
(hi1,h,hir)

Z hivayhyhieqy - (Prps)#hit2) heyhiwe)hjh by
(hi1,h,har)

a
Okj fpi#hil hh'hy.

So @ is an algebra homomorphism. One may check that ¢ is surjective. And by dimension
considerations, ® is an algebra isomorphism.

Theorem 4.2 Let H be a semisimple Hopf algebra and A = k{ps,x € X | paDy = 02,40z}
be an H-module algebra. Then the smash product A#H is isomorphic to a direct sum of full

matrix algebras over some right coideal subalgebras of H.

Proof By Lemma 2.1,
A=Lo Lo Dl

is a direct sum of minimal H-ideals of A. For any 1 < i < m, let X; = {z | p.I; # 0} C X.
Then I; = k{p. | * € X;} and X equals the disjoint union of Xy, -, X,,,. One may check that

A#H 2 L#HO L#H S - & L, #H.

The action of H on each I; is transitive by Proposition 2.1. Let n; = |X;| and N; = {h S
H|> hay-pe @hig) = pe ® h} for some z € X;. Then L;#H = M,,(N;) by Theorem 4.1.

(h)
Hence the conclusion holds.

When H is not semisimple, the result in Proposition 4.1 is false in general, as the Example
3.1 shows. In Example 3.1, if a # 0, then

Ny =k{1g}, Nio=k{g}.
However,
H = Ny + Nio + k{x, gz}
But we have the following result.

Proposition 4.2 Let H be a finite-dimensional Hopf algebra, and A = k(X) be a transitive
H-module algebra. If H = N1 +- - -+ Ny, for some i and €(Nj;) # 0, then H = Nj1+-- -+ Nj,.
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Proof Suppose that t is a non-zero left integral of H. Then t = t; + -+ + t,, tx € Nix
for H = Nj1 + -+ + Nip. Pick a € Nj; such that e(a) = 1. We get t = at = at1 +--- +at,, €
Nji1+ -+ Njy,. Since Nji1 +---+ Nj, € H is a right H-comodule, then H = Nj; +--- 4 Njj,.
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