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1 Introduction

Let k be a field, G a finite group and X a finite transitive G-set. Then the group algebra kG is

a finite-dimensional Hopf algebra and the function algebra k(X) = Hom(X, k) is a commutative

kG-module algebra via the module structure induced by the G action. Harrison [3] showed that

the smash product of kG and k(X) is isomorphic to a full matrix algebra over kN, where

N is the stabilizer of some x ∈ X . The similar question about smash products over finite

dimensional Hopf algebras was also discussed by Blattner and Montgomery, Van den Bergh,

and Koppinen. In [1], Blattner and Montgomery showed that H#H∗ ∼= EndkH ∼= Mn(k) for

an n-dimensional Hopf algebra H over k. This result was also proved independently by Van

den Bergh [10]. In [5], Koppinen strengthened this result to the case K#H∗ ∼= A⊗EndK and

A#H ∼= K ⊗ EndA, where A is a right coideal Frobenius subalgebra of H∗ of the dual Hopf

algebra of a finite-dimensional Hopf algebra H , and K = (H∗/A+H∗)∗ ⊆ H . An easy fact is

that the module algebras in these results are transitive with a 1-dimensional ideal (see [12]).

It is natural to ask whether the smash product A#H is a full matrix algebra over some right

coideal subalgebra of H for a general transitive module algebra. We prove in this paper that

the conclusion is also true for H being a semisimple Hopf algebra over a field k of characteristic

0, and A a transitive H-module algebra with a 1-dimensional ideal.

We arrange this paper as follows. Section 2 is devoted to some properties of transitive

module algebras. In Section 3, we prove the main theorem (i.e. Theorem 3.1): Let H be

a finite-dimensional semisimple Hopf algebra, and A an s-dimensional transitive H-module

algebra with a 1-dimensional ideal kλ. Then the smash product A#H is isomorphic to Ms(N),
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where N = {h ∈ H | h(1) · λ ⊗ h(2) = λ ⊗ h}. If H is not semisimple, a counterexample for

the Theorem 3.1 is also given in this section. In Section 4, we apply our result to the case

A = k(X), a function algebra on a finite set X which has a Hopf algebra action.

Throughout this paper, k will be a field of characteristic 0. And we assume that all algebras

and Hopf algebras are finite dimensional over k.

2 Transitive Module Algebras

Let H be a Hopf algebra. An H-module algebra A is an associative algebra with a left

H-action such that

h · 1A = ε(h)1A and h · (ab) =
∑

(h)

(h(1) · a)(h(2) · b)

for any h ∈ H and a, b ∈ A. An ideal I of A is called an H-ideal if HI ⊆ I, i.e., I is invariant

under the H-action. A non-zero H-ideal is called minimal if it does not contain proper non-zero

H-ideal.

In [12], Zhu gave the definition of transitive action for Hopf algebras.

Definition 2.1 Let H be a Hopf algebra. An H-module algebra A is called transitive if it

satisfies the following conditions:

(C1) AH = {a ∈ A | h · a = ε(h)a, ∀h ∈ H} = k1A;

(C2) A has no non-zero proper H-ideal.

As explained in [12], none of the conditions (C1) and (C2) is superfluous. But for semisimple

Hopf algebras and semisimple module algebras with 1-dimensional ideals, (C1) and (C2) are

equivalent.

Lemma 2.1 Let H be a Hopf algebra with invertible antipode S, and A be an H-module

algebra. If A is semisimple, then

A = I1 ⊕ I2 ⊕ · · · ⊕ In,

where each Ij (1 ≤ j ≤ n) is a minimal H-ideal.

For each 1 ≤ j ≤ n,

Ij = Jj,1 ⊕ Jj,2 ⊕ · · · ⊕ Jj,mj
,

where Jj,k (1 ≤ k ≤ mj) are minimal ideals of A such that Ij = HJj,k for any 1 ≤ k ≤ mj.

Proof Let I be any H-ideal of A. Since A is semisimple, there exists an ideal J such that

A = I ⊕ J . We show that J is also an H-ideal. Write 1 = e1 + e2, where e1 and e2 are central

idempotents of A with e1 ∈ I and e2 ∈ J .

For any a ∈ J and h ∈ H , we have

(h · a)e1 =
∑

(h)

h(1) · (a(S(h(2)) · e1)) = 0.

So h · a ∈ J and thus J is an H-ideal of A. Hence the H-ideals of A are completely reducible,

and therefore A = I1 ⊕ I2 ⊕ · · · ⊕ In.
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Let J be an ideal of A. For any a ∈ A, b ∈ J and h ∈ H,

a(h · b) =
∑

(h)

h(2) · ((S
−1(h(1)) · a)b) ∈ HJ,

(h · b)a =
∑

(h)

h(1) · (b(S(h(2)) · a)) ∈ HJ.

So HJ is an H-ideal of A.

If I is a minimal H-ideal of A, then I = J1 ⊕J2 ⊕ · · ·⊕Jm is a direct sum of minimal ideals

Ji of A. For any 1 ≤ k ≤ m, HJk ⊆ HI = I is an H-ideal of A. By the minimality of I,

HJk = I.

Proposition 2.1 Let H be a semisimple Hopf algebra and A be a semisimple H-module

algebra with a 1-dimensional ideal. Then the following conditions are equivalent:

(1) A is a transitive H-module algebra;

(2) AH = k1A;

(3) A has no non-zero proper H-ideal.

Proof We only need prove that (2) and (3) are equivalent. Assume that kλ is the 1-

dimensional ideal of A.

(2) ⇒ (3) Assume AH = k1A. Let I be a non-zero H-ideal of A. Suppose I 6= A. Then by

Lemma 2.1, we get A = I ⊕ J for some H-ideal J of A. Write 1A = e1 + e2, where e1 ∈ I and

e2 ∈ J are central idempotents of A. Then for any h ∈ H ,

h · 1A = h · e1 + h · e2 = ε(h)e1 + ε(h)e2.

So h · e1 = ε(h)e1 and h · e2 = ε(h)e2. Thus e1, e2 ∈ AH which contradicts the assumption that

AH = k1A. Hence A has no non-zero proper H-ideal.

(3) ⇒ (2) If A has no non-zero proper H-ideal, then A = H · λ by Lemma 2.1. Let t be an

integral of H such that ε(t) 6= 0. We have that

AH = t · A = tH · λ ⊆ k(t · λ)

is 1-dimensional.

Lemma 2.2 (see [12, Lemma 2.4]) Let H be a semisimple Hopf algebra and A a transitive

H-module algebra. Assume that t is the integral of H with ε(t) = (dimH)1k. Then for any

a ∈ A, we have

t · a = (dimH · tr(a)/ dimA)1A,

where tr(a) denotes the trace of left multiplication of a on A. And A is a semisimple algebra.

If H is a semisimple Hopf algebra and A a transitive H-module algebra, by Lemma 2.2, we

have that A is semisimple. Then A has a canonical right H∗-comodule structure deduced from

the left H-module structure:

h · a =
∑

(a)

a〈0〉〈h, a〈1〉〉, ∀h ∈ H, a ∈ A.
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For any A-module U and H∗-module V , the H∗-comodule structure map gives U ⊗ V an

A-module structure:

a · (u ⊗ v) =
∑

(a)

a〈0〉 · u ⊗ a〈1〉 · v, ∀ a ∈ A, u ∈ U, v ∈ V.

Let M1, · · · , Ms be the list of isomorphic classes of simple A-modules and e1, · · · , es the

corresponding idempotents of A. Suppose that the A-module Mi ⊗ H∗ (where H∗ acts by left

multiplication) has the decomposition:

Mi ⊗ H∗ =

s
⊕

k=1

Nk
i Mk, (2.1)

where Nk
i is the multiplicity of Mk in Mi ⊗ H∗. Then Dk = EndAMk is a skew field and we

have the following result.

Proposition 2.2 Nk
i dim Dk dimA = dimH dimMi dimMk. Hence

(dim Dk dimA) | [dimH(dim Mk)2].

Proof Suppose A =
s

⊕

k=1

nkMk, where nk is the multiplicity of Mk in A. By Lemma 2.2,

we have

t · ek = (dim H · tr(ek)/ dimA)1A = (nk dimH dim Mk/ dimA)1A.

Now we compute the trace of ek on A-module Mi ⊗ H∗:

tr(ek) =
∑

(ek)

tr|Mi
(ek〈0〉)tr|H∗(ek〈1〉) =

∑

(ek)

tr|Mi
(ek〈0〉)〈t, ek〈1〉〉

= tr|Mi
(t · ek) = nk dim H dimMk dimMi/ dimA.

On the other hand, the decomposition (1) implies

tr(ek) = Nk
i dimMk.

Compare the two equations above, we get

Nk
i dimDk dimA = dimH dimMi dimMk.

Let i = k. We have dimH(dimMk)2/ dimDk dimA = Nk
k for each k. Since Nk

k is a positive

integer, the proof is finished.

By an analogous calculation, the result (see [12, Corollary 2.8]) is still true without the

assumption that k is algebraically closed.

Corollary 2.1 (see [12, Corollary 2.8]) Let A be a transitive module algebra of a semisimple

Hopf algebra H, M be a simple A-module and (A′, M ′) the stabilizer of (A, M) defined in [11].

Then

(dim A)(dim A′) = (dimM)2 dimH.
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3 Main Results

Throughout this section, unless otherwise specified, H is a finite-dimensional semisimple

Hopf algebra with antipode S over the field k (thus S2 = 1, see [6]), and A is an s-dimensional

transitive H-module algebra with a 1-dimensional ideal kλ where λ is a central idempotent in

A. Then A = Hλ by Lemma 2.1 and A is semisimple by Lemma 2.2.

Define

N =
{

h ∈ H
∣

∣

∣

∑

(h)

h(1) · λ ⊗ h(2) = λ ⊗ h
}

.

Clearly, N is a right coideal subalgebra of H , 1H ∈ N and

N =
{

h ∈ H
∣

∣

∣

∑

(h)

S(h(1)) · λ ⊗ h(2) = λ ⊗ h
}

.

In this section, we prove the main result of this paper.

Theorem 3.1 Let H be a finite-dimensional semisimple Hopf algebra and A be an s-

dimensional transitive H-module algebra with a 1-dimensional ideal kλ. Then the smash product

A#H is isomorphic to Ms(N), where N =
{

h ∈ H
∣

∣

∣

∑

(h)

h(1) · λ ⊗ h(2) = λ ⊗ h
}

.

The theorem will be proved by first showing that H is free as both left and right N -module.

Since kλ is a 1-dimensional ideal of A, we can define a map θ from H to N via

∑

(h)

(S(h(1)) · λ)λ ⊗ h(2) = λ ⊗ θ(h), ∀h ∈ H.

Lemma 3.1 (1) Let t be the integral of H such that ε(t) = 1. Then t · λ = kt1A 6= 0 with

kt ∈ k;

(2)
∑

(h)

(h(1) · λ)λ ⊗ h(2) =
∑

(h)

h(1) · λ ⊗ θ(h(2)) = λ ⊗ θ(h);

(3) θ(H) ⊆ N and θ is a right H-comodule projection;

(4) (h · λ)λ = ε(θ(h))λ = θ(h) · λ;

(5) θ is both left and right N -module morphism.

Proof (1) k1A = AH = t · A = tH · λ ⊆ kt · λ, so 0 6= t · λ ∈ AH = k1A. The conclusion is

clear.

(2) For any h ∈ H, by the definition of θ,

∑

(h)

h(1) ⊗ (S(h(2)) · λ)λ ⊗ h(3) =
∑

(h)

h(1) ⊗ λ ⊗ θ(h(2)).

So

∑

(h)

h(1) · ((S(h(2)) · λ)λ) ⊗ h(3) =
∑

(h)

h(1) · λ ⊗ θ(h(2)).

Since λ is central in A,

∑

(h)

h(1) · ((S(h(2)) · λ)λ) =
∑

(h)

h(1) · (λ(S(h(2)) · λ)) = (h · λ)λ
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for any h ∈ H. Thus
∑

(h)

(h(1) ·λ)λ⊗h(2) =
∑

(h)

h(1) ·λ⊗θ(h(2)). Assume
∑

(h)

h(1) ·λ⊗θ(h(2)) = λ⊗g

for some g ∈ H . Then
∑

(h)

t · (h(1) · λ) ⊗ θ(h(2)) = t · λ ⊗ θ(h) = t · λ ⊗ g. So g = θ(h) and (2) is

proved.

(3) For any h ∈ H , by definition,

∑

(h)

θ(h)(1) · λ ⊗ θ(h)(2) =
∑

(h)

h(2)(1) · ((S(h(1)) · λ)λ) ⊗ h(2)(2)

=
∑

(h)

h(2) · ((S(h(1)) · λ)λ) ⊗ h(3)

=
∑

(h)

λ(h(1) · λ) ⊗ h(2) = λ ⊗ θ(h).

Hence θ(h) ∈ N . Then θ is a right H-comodule projection from the definitions of θ and N .

(4) Apply id ⊗ ε to both sides of the equation
∑

(h)

(h(1) · λ)λ ⊗ h(2) = λ ⊗ θ(h) in (2), we get

(h · λ)λ = ε(θ(h))λ. Since θ(h) ∈ N , we have ε(θ(h))λ =
∑

(h)

(θ(h)(1) · λ)ε(θ(h)(2)) = θ(h) · λ.

(5) For any h ∈ H, n ∈ N ,

λ ⊗ θ(hn) =
∑

(h,n)

(h(1)n(1) · λ)λ ⊗ h(2)n(2) =
∑

(h)

(h(1) · λ)λ ⊗ h(2)n = λ ⊗ θ(h)n.

So θ(hn) = θ(h)n and θ is a right N -module morphism.

Next, we show that θ is a left N -module morphism. One has

∑

(h,n)

S(n(1)) ⊗ (n(2)h(1) · λ)λ ⊗ n(3)h(2) =
∑

(n)

S(n(1)) ⊗ λ ⊗ θ(n(2)h).

Then

∑

(h,n)

S(n(1)) · ((n(2)h(1) · λ)λ) ⊗ n(3)h(2) =
∑

(n)

S(n(1)) · λ ⊗ θ(n(2)h),

∑

(h,n)

(h(1) · λ)λ(S(n(1)) · λ)λ ⊗ n(2)h(2) =
∑

(n)

(S(n(1)) · λ)λ ⊗ θ(n(2)h).

Thus

λ ⊗ nθ(h) = λ ⊗ θ(θ(n)h) = λ ⊗ θ(nh).

So θ(nh) = nθ(h) and θ is also a left N -module morphism.

Lemma 3.2 Let H be a finite-dimensional (not necessarily semisimple) Hopf algebra, L be

a right coideal subalgebra of H and 1 ∈ L. If L is a direct summand of H in LMH , then L is

a Frobenius algebra.

Proof Since L is a left L-module direct summand of H , −⊗LH is faithful. By [7, Lemma

2.2], L is a simple object in LMH .

Let T be a right integral of H∗ and t a left integral of H such that T (t) = T (S(t)) = 1.

Assume that H = L ⊕ M in LMH . Write t = t1 + t2 for t1 ∈ L, t2 ∈ M . By [9, Section
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5.1] and [8, Proposition 3], (H∗, ⇀) is a free left H-module with basis T , and (H, ↽) is a free

right H∗-module with basis t. Since S(h ⇀ T ) ⇀ t = h for any h ∈ H and L, M are right

H-comodules, one has

g = S(g ⇀ T ) ⇀ t = S(g ⇀ T ) ⇀ t1, ∀ g ∈ L.

So S(1 ⇀ T ) ⇀ t1 = 1 and 1 = ε(1) = T (S(t1)) 6= 0. By [7, Lemma 3.5], L is a Frobenius

algebra.

By the two lemmas above, N is a Frobenius algebra. Thus we get the following proposition

easily.

Proposition 3.1 H is free as right and left N -module.

Next, we calculate the order of H as free N -module. Obviously, I = kλ is a simple A-module.

Let (A′, I ′) be the stabilizer of (A, I). By calculation, A′ =
{

h ∈ H
∣

∣

∣

∑

(h)

(h(2) · a)λ ⊗ h(1) =

aλ ⊗ h, ∀ a ∈ A
}

.

Lemma 3.3 S(A′) =
{

h ∈ H
∣

∣

∣

∑

(h)

(h(1) · a)λ ⊗ h(2) = aλ ⊗ h, ∀ a ∈ A
}

= N .

Proof Firstly, we prove S(A′) ⊆ N . For any h ∈ S(A′),
∑

(h)

(h(1) · λ)λ ⊗ h(2) = λ ⊗ h. By

Lemma 3.1(2),

λ ⊗ θ(h) =
∑

(h)

(h(1) · λ)λ ⊗ h(2).

So h = θ(h) ∈ N and S(A′) ⊆ N .

Conversely, for any g ∈ N and a ∈ A, we have aλ = kaλ for some ka ∈ k. Thus

aλ ⊗ g = kaλ ⊗ g =
∑

(g)

kag(1) · λ ⊗ g(2) =
∑

(g)

g(1) · (λa) ⊗ g(2) =
∑

(g)

λ(g(1) · a) ⊗ g(2).

So g ∈ S(A′) and N ⊆ S(A′). Therefore, S(A′) = N .

Since dimAdimA′ = dimH by Corollary 2.1 and S is bijective, dimAdimN = dimH . Let

dimA = s. Then there exist h1, · · · , hs ∈ H such that

H = h1N ⊕ · · · ⊕ hsN.

Obviously, ai = hi · λ (i = 1, · · · , s) is a k-basis of A.

We are now in a position to prove our main theorem.

Proof of Theorem 3.1 Define a map

ϕ : A#H → EndNH

by ϕ(h · λ#h′)(l) =
∑

(h)

h(1)θ(S(h(2))h
′l) for any h, h′, l ∈ H .
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Since for any n ∈ N ,

ϕ(hn · λ#h′)(l) =
∑

(h,n)

h(1)n(1)θ(S(n(2))S(h(2))h
′l)

=
∑

(h,n)

h(1)θ(n(1)S(n(2))S(h(2))h
′l)

=
∑

(h)

ε(n)h(1)θ(S(h(2))h
′l)

= ε(n)ϕ(h · λ#h′)(l)

and H is free as right N -module, the definition of ϕ is reasonable. To prove the theorem, we

need only prove that ϕ is an algebra isomorphism.

We first show that ϕ is an algebra morphism.

For any h, h′, g, g′, l ∈ H ,

ϕ(h · λ#h′)ϕ(g · λ#g′)(l) =
∑

(g)

ϕ(h · λ#h′)(g(1)θ(S(g(2))g
′l))

=
∑

(h,g)

h(1)θ(S(h(2))h
′g(1))θ(S(g(2))g

′l),

ϕ((h · λ#h′)(g · λ#g′))(l) =
∑

(h,h′)

ϕ(h(1) · (λ(S(h(2))h
′
(1)g · λ))#h′

(2)g
′)(l)

=
∑

(h,h′)

ε(θ(S(h(2))h
′
(1)g))ϕ(h(1) · λ#h′

(2)g
′)(l)

=
∑

(h,h′)

ε(θ(S(h(3))h
′
(1)g))h(1)θ(S(h(2))h

′
(2)g

′l)

=
∑

(h,h′,g)

ε(θ(S(h(3))h
′
(1)g(1)))h(1)θ(S(h(2))h

′
(2)g(2)S(g(3))g

′l)

=
∑

(h,g)

h(1)θ(S(h(2))h
′g(1))θ(S(g(2))g

′l).

This shows that ϕ(h · λ#h′)ϕ(g · λ#g′) = ϕ((h · λ#h′)(g · λ#g′)), as desired.

Next, we prove that ϕ is bijective. Since dim (A#H) = dim(EndNH) < ∞, it suffices to

prove that ϕ is injective. If ϕ(
∑

hi ·λ#gi) = 0, i.e., ϕ(
∑

hi ·λ#gi)(l) =
∑

(hi)

hi(1)θ(S(hi(2))gil) =

0 for any l ∈ H , we get
∑

(hi)

(hi(1)θ(S(hi(2))gil))(1) · λ#(hi(1)θ(S(hi(2))gil))(2)

=
∑

(hi,gi,l)

hi(1)θ(S(hi(4))gi(1)l(1)) · λ#hi(2)S(hi(3))gi(2)l(2)

=
∑

(hi,gi,l)

hi(1)θ(S(hi(2))gi(1)l(1)) · λ#gi(2)l(2)

=
∑

(hi,gi,l)

hi(1) · (λ(S(hi(2))gi(1)l(1) · λ))#gi(2)l(2)

=
∑

(gi,l)

(hi · λ)(gi(1)l(1) · λ)#gi(2)l(2)
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=
∑

(l)

(hi · λ#gi)(l(1) · λ#l(2))

=0.

Since H · λ = A, we may choose l ∈ H such that l · λ = 1A. Then

∑

hi · λ#gi =
∑

(l)

(hi · λ#gi)(l(1) · λ#l(2))(λ#S(l(3))) = 0.

This means that ϕ is injective.

Let H be a finite-dimensional Hopf algebra and B a right coideal subalgebra of H . As in

the case of Hopf algebras (see [9]), an element x ∈ B is called a left integral in B if bx = ε(b)x

for all b ∈ B. Similarly, right and two-sided integrals in B are defined. Let H be a semisimple

Hopf algebra, and A an s-dimensional Frobenius right coideal subalgebra of H∗. Then A is

separable by [7]. By [5], A contains a two-sided integral x∗ such that ε(x∗) = 1. Hence kx∗ is a

1-dimensional ideal of A. We view A as a left H-module algebra in a natural way. One checks

that AH = k1A. So we get the following conclusion.

Corollary 3.1 Let H be a semisimple Hopf algebra and A an s-dimensional Frobenius right

coideal subalgebra of H∗. Then

(1) A is a transitive H-module algebra;

(2) A has an integral T such that T (1) = 1. Then the smash product of A and H is

isomorphic to Ms(N) as algebras, where N =
{

h ∈ H
∣

∣

∣

∑

(h)

h(1) ⇀ T ⊗ h(2) = T ⊗ h
}

.

In [5], Koppinen proved that if H is a finite-dimensional Hopf algebra, A a right coideal

Frobenius subalgebra of H∗, and K = (H∗/A+H∗)∗ ⊆ H , then K#H∗ ∼= A ⊗ EndK and

A#H ∼= K ⊗ EndA as algebras. If H is also semisimple, we have K = N with N defined

as in Corollary 3.1. However, without the assumption that H is semisimple, for a transitive

H-module algebra A with a 1-dimensional ideal even if it is semisimple, this is false in general,

as the following example shows.

Example 3.1 Let H4 be the Sweedler’s 4-dimensional Hopf algebra. As an algebra, it is

generated by x and g subject to the relations

xg = −gx, x2 = 0 and g2 = 1.

Its coalgebra structure is determined by

∆(g) = g ⊗ g and ∆(x) = x ⊗ g + 1 ⊗ x.

Let A = k{p1, p2}. Then A is semisimple obviously. The action of H4 on A is determined by

g · p1 = p2, g · p2 = p1; x · p1 = α(p1 + p2), x · p2 = −α(p1 + p2),

where α ∈ k. One checks that the action is transitive. But when α 6= 0, N = k{1H}. By

considering the dimension A#H and M2(N), they are not isomorphic.
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Under the hypotheses in Theorem 3.1, for A, we can find a right coideal Frobenius subalgebra

N ⊆ H such that A#H ∼= Ms(N). Let A′ = (H/(N+H))∗ ⊆ H∗. Then A′ is a transitive H-

module algebra with a 1-dimensional ideal kx∗. By a simple calculation, we get
{

h ∈ H
∣

∣

∣

∑

(h)

h(1) ⇀ x∗ ⊗ h(2) = x∗ ⊗ h
}

= (H∗/A′+H∗)∗ = N.

So A′#H ∼= Ms(N).

Example 3.2 We use [4, Example 15]. Let H be a Hopf algebra such that H ∼= kM as

algebras, where kM is a group algebra with the group M defined by

M = 〈a, b, g | a4 = e, b2 = a2, ba = a−1b, ag = ga, bg = gb, g2 = e〉.

The coalgebra structure of H is given as follows:

∆(a) =
1

2
(a ⊗ a + ag ⊗ a + a ⊗ b − ag ⊗ b),

∆(b) =
1

2
(b ⊗ b + bg ⊗ b + b ⊗ a − bg ⊗ a),

∆(g) = g ⊗ g, S(g) = g,

S(a) =
1

2
(a3 + a3g + a2b − a2bg),

S(b) =
1

2
(b3 + b3g + b2a − b2ag),

ε(a) = ε(b) = ε(g) = 1.

Then H is semisimple and has an integral t = (e + g)(e + b)(e + a + a2 + a3). Let A =

k{p1, · · · , p8 | pipj = δijpi}. An action of H on A is given by

g · pi = pi;

a · p1 = p2, a · p2 = p3, a · p3 = p4, a · p4 = p1,

a · p5 = p6, a · p6 = p7, a · p7 = p8, a · p8 = p5;

b · p1 = p5, b · p5 = p3, b · p3 = p7, b · p7 = p1,

b · p2 = p8, b · p8 = p4, b · p4 = p6, b · p6 = p2.

Then A is a transitive H-module algebra. One can verify that N = k{e, g} and

A′ = k{Ie + Ig, Ia + Iga, Ib + Igb, Ia2 + Iga2 ,

Ia3 + Iga3 , Ib3 + Igb3 , Iba + Igba, Iba3 + Igba3} ⊆ H∗,

where Ix (x ∈ M) denotes the k-valued function Ix(y) = δx,y.

We note that A′ is isomorphic to A as algebras in the above example. However, in general,

A and A′ are not isomorphic as algebras such as the following example.

Example 3.3 Let H be a finite-dimensional Hopf algebra such that dim H = n < ∞ and

k#σH∗ a crossed product. Then A = k#σH∗ is a transitive H-module algebra via h · (k#f) =

k#h ⇀ f . It is easy to see N = k and A′ = H∗. By [2], A#H ∼= Mn(k) ∼= A′#H , but A and

A′ are not isomorphic as algebras generally even if H is semisimple.
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4 Application to Function Algebra A = k(X)

In this section, we apply our result to the function algebra A = k(X). Let X be a finite set.

We define k(X) to be the vector space with basis {px | x ∈ X} and a multiplication on k(X) is

defined as

pxpy = δx,ypx, ∀x, y ∈ X. (4.1)

Then A = k(X) is a semisimple algebra and kpx (x ∈ X) are all the minimal ideals of A.

For simplicity, we write X = {1, 2, · · · , n}.

We apply our main theorem to the case that A = k(X).

Theorem 4.1 Let H be a semisimple Hopf algebra, and A = k(X) be a transitive H-

module algebra. Then the smash product of A and H is isomorphic to Mn(N11) as algebras,

where N11 =
{

h ∈ H
∣

∣

∣

∑

(h)

h(1) · p1 ⊗ h(2) = p1 ⊗ h
}

.

A more detail structure of A#H is presented as follows.

Lemma 4.1 Let H be a semisimple Hopf algebra, and A = k(X) be a transitive H-module

algebra. Let t be the integral of H such that ε(t) = 1. Then

t · pi = αi1A, i = 1, · · · , n

for some 0 6= αi ∈ k with
n
∑

i=1

αi = 1.

Proof Since the action is transitive, for any pi, H · pi = A and t · pi ∈ AH , we have

t · pi = αi1A for some αi ∈ k. Note that 1A =
n
∑

i=1

pi, so t · 1A =
n
∑

i=1

t · pi =
n
∑

i=1

αi1A,
n
∑

i=1

αi = 1.

Because 1A ∈ t · A = tH · pi ⊂ kt · pi = kαi1A, αi 6= 0 for each i.

For non-zero α1, · · · , αn ∈ k in Lemma 4.1, define Nij =
{

h ∈ H
∣

∣

∣

∑

(h)

h(1) · pj ⊗ h(2) =

pi ⊗
αj

αi
h
}

. Then Nij ∈ Nii
MH ∩ MH

Njj
and N11, · · · , Nnn are subalgebras of H as well. We

also get NijNjk ⊆ Nik. By the definition of Nij , the sum
n
∑

j=1

Nij is a direct sum.

Proposition 4.1 Let H be a semisimple Hopf algebra. If the action of H on A = k(X) is

transitive, then

(1) H = Ni1 ⊕ · · · ⊕ Nin, i = 1, · · · , n;

(2) ε(Nij) 6= 0 for any i, j (1 ≤ i, j ≤ n);

(3) Nii is a Frobenius algebra for each i (1 ≤ i ≤ n).

Proof (1) For any h ∈ H , we suppose

∑

(h)

S−1(h(1)) · pi ⊗ h(2) = p1 ⊗ h1 + · · · + pn ⊗ hn ∈ A ⊗ H. (4.2)

Since αi 6= 0 for any i, in a similar way as in Lemma 3.1(2), we get hj ∈ Nij . By equation
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(4.2), we have

pi ⊗ h =
∑

(h1,··· ,hn)

h1(1) · p1 ⊗ h1(2) + · · · + hn(1) · pn ⊗ hn(2)

= pi ⊗
α1

αi

h1 + · · · + pi ⊗
αn

αi

hn.

Thus h = α1

αi
h1 + · · · + αn

αi
hn ∈ Ni1 ⊕ · · · ⊕ Nin. Therefore H = Ni1 ⊕ · · · ⊕ Nin.

(2) For a fixed i, if ε(Nij) = 0 for some j, act id ⊗ ε on both sides of equation (4.2). We

have

S−1(h) · pi = ε(h1)p1 + · · · + ε(hj−1)pj−1 + ε(hj+1)pj+1 + · · · + ε(hn)pn,

which means

H · pi ⊆ kp1 + · · · + kpj−1 + kpj+1 + · · · + kpn.

But A = H · pi and this is a contradiction, so ε(Nij) 6= 0.

(3) follows from Lemma 3.2 and part (1).

Suppose that the action of H on A is transitive and H = Ni1 ⊕ · · · ⊕ Nin. By Proposition

4.1(3), for any i, Nii is a Frobenius algebra. Define two maps

Nij⊗Njj
Nji → Nii, Nji⊗Nii

Nij → Njj (4.3)

by the multiplication of H .

Since Nij ∈ Nii
MH and Nij ∈ MH

Njj
, we see that Nij is free left Nii-module and free right

Njj-module. NijNji(⊆ Nii) is also in Nii
MH , so it is free left Nii-module. By Proposition

4.1(2), ε(Nij) 6= 0 and ε(Nji) 6= 0, so NijNji 6= 0 and NijNji = Nii. Similarly, NjiNij = Njj .

So the maps defined by (4.3) are surjective, hence Nii and Njj are Morita equivalent. By Morita

equivalent theory, the dimensions of all Nij are the same. Pick hi1 ∈ Ni1 such that ε(hi1) = 1

and Ni1 = hi1N11. Then

Ni1H = Ni1(N11 ⊕ · · · ⊕ N1n) = Ni1 ⊕ · · · ⊕ Nin = H.

On the other hand,

Ni1H = hi1N11(N11 ⊕ · · · ⊕ N1n) = hi1H.

So hi1H = H , then there exists h1i ∈ H such that hi1hi1 = 1. Since H is finite dimensional,

hi1 is the inverse of h1i. We get h1i ∈ H1i, so N1i = h1iN11 and Nij = Ni1N1i = hi1N11h1j .

Let G be the group generated by hi1, h1i, i = 1, 2, · · ·n. Then G ⊆ H . But the group G is

not contained in the set G(H) of group-like elements of H in general. In Example 3.2, A is an

H-module algebra and the action is transitive. But one can verify that Nii = {e, g} for any i

and G = {e, a3, a2, a, b3, ba, b, ba3}  G(H).

Let Mn(N11) be the algebra of all n by n matrices over N11. This algebra is the free

N11-module with basis {eij | 1 ≤ i, j ≤ n} and the multiplication is given by

(h1eij)(h2ekl) = δj,kh1h2eil
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for any h1, h2 ∈ N11.

Now we prove Theorem 4.1.

Proof of Theorem 4.1 By Proposition 4.1, H = Ni1 ⊕ · · ·⊕Nin for each i. Define a map

Φ from Mn(N11) to A#H as

Φ(h · eij) =
αi

αj

pi#hi1hh1j

for any h ∈ N11 and hi1, h1j ∈ G defined above. For any h, h′ ∈ N11, we have

(pi#hi1hh1k)(pj#hj1h
′h1l)

=
∑

(hi1,h,h1k)

pi(hi1(1)h(1)h1k(1) · pj)#hi1(2)h(2)h1k(2)hj1h
′h1l

=
∑

(hi1,h,h1k)

hi1(1)h(1)h1k(1) · (pkpj)#hi1(2)h(2)h1k(2)hj1h
′h1l

= δkj

αk

αi

pi#hi1hh′h1l.

So Φ is an algebra homomorphism. One may check that Φ is surjective. And by dimension

considerations, Φ is an algebra isomorphism.

Theorem 4.2 Let H be a semisimple Hopf algebra and A = k{px, x ∈ X | pxpy = δx,ypx}

be an H-module algebra. Then the smash product A#H is isomorphic to a direct sum of full

matrix algebras over some right coideal subalgebras of H.

Proof By Lemma 2.1,

A = I1 ⊕ I2 ⊕ · · · ⊕ Im

is a direct sum of minimal H-ideals of A. For any 1 ≤ i ≤ m, let Xi = {x | pxIi 6= 0} ⊆ X .

Then Ii = k{px | x ∈ Xi} and X equals the disjoint union of X1, · · · , Xm. One may check that

A#H ∼= I1#H ⊕ I2#H ⊕ · · · ⊕ Im#H.

The action of H on each Ii is transitive by Proposition 2.1. Let ni = |Xi| and Ni =
{

h ∈

H
∣

∣

∣

∑

(h)

h(1) · px ⊗ h(2) = px ⊗ h
}

for some x ∈ Xi. Then Ii#H ∼= Mni
(Ni) by Theorem 4.1.

Hence the conclusion holds.

When H is not semisimple, the result in Proposition 4.1 is false in general, as the Example

3.1 shows. In Example 3.1, if α 6= 0, then

N11 = k{1H}, N12 = k{g}.

However,

H = N11 + N12 + k{x, gx}.

But we have the following result.

Proposition 4.2 Let H be a finite-dimensional Hopf algebra, and A = k(X) be a transitive

H-module algebra. If H = Ni1+ · · ·+Nin for some i and ε(Nji) 6= 0, then H = Nj1+ · · ·+Njn.
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Proof Suppose that t is a non-zero left integral of H . Then t = t1 + · · · + tn, tk ∈ Nik

for H = Ni1 + · · · + Nin. Pick a ∈ Nji such that ε(a) = 1. We get t = at = at1 + · · · + atn ∈

Nj1 + · · ·+ Njn. Since Nj1 + · · ·+ Njn ⊆ H is a right H-comodule, then H = Nj1 + · · ·+ Njn.
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