Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2010

On Smash Products of Transitive Module Algebras***

Caihong WANG^{*} Shenglin ZHU^{**}

Abstract Let H be a semisimple Hopf algebra over a field of characteristic 0, and A a finite-dimensional transitive H-module algebra with a 1-dimensional ideal. It is proved that the smash product A#H is isomorphic to a full matrix algebra over some right coideal subalgebra N of H. The correspondence between A and such N and the special case A = k(X) of function algebra on a finite set X are considered.

Keywords Semisimple Hopf algebra, Smash product, Transitive module algebra2000 MR Subject Classification 16W30

1 Introduction

Let k be a field, G a finite group and X a finite transitive G-set. Then the group algebra kG is a finite-dimensional Hopf algebra and the function algebra k(X) = Hom(X, k) is a commutative kG-module algebra via the module structure induced by the G action. Harrison [3] showed that the smash product of kG and k(X) is isomorphic to a full matrix algebra over kN, where N is the stabilizer of some $x \in X$. The similar question about smash products over finite dimensional Hopf algebras was also discussed by Blattner and Montgomery, Van den Bergh, and Koppinen. In [1], Blattner and Montgomery showed that $H#H^* \cong \text{End}_kH \cong M_n(k)$ for an n-dimensional Hopf algebra H over k. This result was also proved independently by Van den Bergh [10]. In [5], Koppinen strengthened this result to the case $K#H^* \cong A \otimes \text{End}K$ and $A#H \cong K \otimes \text{End}A$, where A is a right coideal Frobenius subalgebra of H^* of the dual Hopf algebra of a finite-dimensional Hopf algebra H, and $K = (H^*/A^+H^*)^* \subseteq H$. An easy fact is that the module algebras in these results are transitive with a 1-dimensional ideal (see [12]).

It is natural to ask whether the smash product A#H is a full matrix algebra over some right coideal subalgebra of H for a general transitive module algebra. We prove in this paper that the conclusion is also true for H being a semisimple Hopf algebra over a field k of characteristic 0, and A a transitive H-module algebra with a 1-dimensional ideal.

We arrange this paper as follows. Section 2 is devoted to some properties of transitive module algebras. In Section 3, we prove the main theorem (i.e. Theorem 3.1): Let H be a finite-dimensional semisimple Hopf algebra, and A an s-dimensional transitive H-module algebra with a 1-dimensional ideal $k\lambda$. Then the smash product A#H is isomorphic to $M_s(N)$,

E-mail: wwcaihong@yahoo.com.cn

Manuscript received April 15, 2009. Revised January 21, 2010. Published online June 21, 2010.

^{*}School of Mathematical Sciences, Fudan University, Shanghai 200433, China; School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan, China.

^{**}School of Mathematical Sciences, Fudan University, Shanghai 200433, China.

E-mail: mazhusl@fudan.edu.cn

^{***}Project supported by the National Natural Science Foundation of China (No. 10731070).

where $N = \{h \in H \mid h_{(1)} \cdot \lambda \otimes h_{(2)} = \lambda \otimes h\}$. If *H* is not semisimple, a counterexample for the Theorem 3.1 is also given in this section. In Section 4, we apply our result to the case A = k(X), a function algebra on a finite set *X* which has a Hopf algebra action.

Throughout this paper, k will be a field of characteristic 0. And we assume that all algebras and Hopf algebras are finite dimensional over k.

2 Transitive Module Algebras

Let H be a Hopf algebra. An H-module algebra A is an associative algebra with a left H-action such that

$$h \cdot 1_A = \varepsilon(h) 1_A$$
 and $h \cdot (ab) = \sum_{(h)} (h_{(1)} \cdot a) (h_{(2)} \cdot b)$

for any $h \in H$ and $a, b \in A$. An ideal I of A is called an H-ideal if $HI \subseteq I$, i.e., I is invariant under the H-action. A non-zero H-ideal is called minimal if it does not contain proper non-zero H-ideal.

In [12], Zhu gave the definition of transitive action for Hopf algebras.

Definition 2.1 Let H be a Hopf algebra. An H-module algebra A is called transitive if it satisfies the following conditions:

- (C1) $A^H = \{a \in A \mid h \cdot a = \varepsilon(h)a, \forall h \in H\} = k1_A;$
- (C2) A has no non-zero proper H-ideal.

As explained in [12], none of the conditions (C1) and (C2) is superfluous. But for semisimple Hopf algebras and semisimple module algebras with 1-dimensional ideals, (C1) and (C2) are equivalent.

Lemma 2.1 Let H be a Hopf algebra with invertible antipode S, and A be an H-module algebra. If A is semisimple, then

$$A = I_1 \oplus I_2 \oplus \cdots \oplus I_n,$$

where each I_j $(1 \le j \le n)$ is a minimal H-ideal.

For each $1 \leq j \leq n$,

$$I_j = J_{j,1} \oplus J_{j,2} \oplus \cdots \oplus J_{j,m_j},$$

where $J_{j,k}$ $(1 \le k \le m_j)$ are minimal ideals of A such that $I_j = HJ_{j,k}$ for any $1 \le k \le m_j$.

Proof Let *I* be any *H*-ideal of *A*. Since *A* is semisimple, there exists an ideal *J* such that $A = I \oplus J$. We show that *J* is also an *H*-ideal. Write $1 = e_1 + e_2$, where e_1 and e_2 are central idempotents of *A* with $e_1 \in I$ and $e_2 \in J$.

For any $a \in J$ and $h \in H$, we have

$$(h \cdot a)e_1 = \sum_{(h)} h_{(1)} \cdot (a(S(h_{(2)}) \cdot e_1)) = 0.$$

So $h \cdot a \in J$ and thus J is an H-ideal of A. Hence the H-ideals of A are completely reducible, and therefore $A = I_1 \oplus I_2 \oplus \cdots \oplus I_n$. Let J be an ideal of A. For any $a \in A$, $b \in J$ and $h \in H$,

$$a(h \cdot b) = \sum_{(h)} h_{(2)} \cdot ((S^{-1}(h_{(1)}) \cdot a)b) \in HJ,$$
$$(h \cdot b)a = \sum_{(h)} h_{(1)} \cdot (b(S(h_{(2)}) \cdot a)) \in HJ.$$

So HJ is an H-ideal of A.

If I is a minimal H-ideal of A, then $I = J_1 \oplus J_2 \oplus \cdots \oplus J_m$ is a direct sum of minimal ideals J_i of A. For any $1 \le k \le m$, $HJ_k \subseteq HI = I$ is an H-ideal of A. By the minimality of I, $HJ_k = I$.

Proposition 2.1 Let H be a semisimple Hopf algebra and A be a semisimple H-module algebra with a 1-dimensional ideal. Then the following conditions are equivalent:

- (1) A is a transitive H-module algebra;
- (2) $A^H = k \mathbf{1}_A;$
- (3) A has no non-zero proper H-ideal.

Proof We only need prove that (2) and (3) are equivalent. Assume that $k\lambda$ is the 1-dimensional ideal of A.

 $(2) \Rightarrow (3)$ Assume $A^H = k \mathbf{1}_A$. Let I be a non-zero H-ideal of A. Suppose $I \neq A$. Then by Lemma 2.1, we get $A = I \oplus J$ for some H-ideal J of A. Write $\mathbf{1}_A = e_1 + e_2$, where $e_1 \in I$ and $e_2 \in J$ are central idempotents of A. Then for any $h \in H$,

$$h \cdot 1_A = h \cdot e_1 + h \cdot e_2 = \varepsilon(h)e_1 + \varepsilon(h)e_2.$$

So $h \cdot e_1 = \varepsilon(h)e_1$ and $h \cdot e_2 = \varepsilon(h)e_2$. Thus $e_1, e_2 \in A^H$ which contradicts the assumption that $A^H = k \mathbf{1}_A$. Hence A has no non-zero proper H-ideal.

 $(3) \Rightarrow (2)$ If A has no non-zero proper H-ideal, then $A = H \cdot \lambda$ by Lemma 2.1. Let t be an integral of H such that $\varepsilon(t) \neq 0$. We have that

$$A^H = t \cdot A = tH \cdot \lambda \subseteq k(t \cdot \lambda)$$

is 1-dimensional.

Lemma 2.2 (see [12, Lemma 2.4]) Let H be a semisimple Hopf algebra and A a transitive H-module algebra. Assume that t is the integral of H with $\varepsilon(t) = (\dim H)1_k$. Then for any $a \in A$, we have

$$t \cdot a = (\dim H \cdot \operatorname{tr}(a) / \dim A) 1_A,$$

where tr(a) denotes the trace of left multiplication of a on A. And A is a semisimple algebra.

If H is a semisimple Hopf algebra and A a transitive H-module algebra, by Lemma 2.2, we have that A is semisimple. Then A has a canonical right H^* -comodule structure deduced from the left H-module structure:

$$h \cdot a = \sum_{(a)} a_{\langle 0 \rangle} \langle h, a_{\langle 1 \rangle} \rangle, \quad \forall h \in H, \ a \in A.$$

For any A-module U and H^* -module V, the H^* -comodule structure map gives $U \otimes V$ and A-module structure:

$$a \cdot (u \otimes v) = \sum_{(a)} a_{\langle 0 \rangle} \cdot u \otimes a_{\langle 1 \rangle} \cdot v, \quad \forall \, a \in A, \ u \in U, \ v \in V.$$

Let M_1, \dots, M_s be the list of isomorphic classes of simple A-modules and e_1, \dots, e_s the corresponding idempotents of A. Suppose that the A-module $M_i \otimes H^*$ (where H^* acts by left multiplication) has the decomposition:

$$M_i \otimes H^* = \bigoplus_{k=1}^s N_i^k M_k, \tag{2.1}$$

where N_i^k is the multiplicity of M_k in $M_i \otimes H^*$. Then $D_k = \operatorname{End}_A M_k$ is a skew field and we have the following result.

Proposition 2.2 $N_i^k \dim D_k \dim A = \dim H \dim M_i \dim M_k$. Hence

$$(\dim D_k \dim A) \mid [\dim H(\dim M_k)^2]$$

Proof Suppose $A = \bigoplus_{k=1}^{s} n_k M_k$, where n_k is the multiplicity of M_k in A. By Lemma 2.2, we have

$$t \cdot e_k = (\dim H \cdot \operatorname{tr}(e_k) / \dim A) \mathbf{1}_A = (n_k \dim H \dim M_k / \dim A) \mathbf{1}_A$$

Now we compute the trace of e_k on A-module $M_i \otimes H^*$:

$$\operatorname{tr}(e_k) = \sum_{(e_k)} \operatorname{tr}|_{M_i}(e_{k\langle 0\rangle}) \operatorname{tr}|_{H^*}(e_{k\langle 1\rangle}) = \sum_{(e_k)} \operatorname{tr}|_{M_i}(e_{k\langle 0\rangle}) \langle t, e_{k\langle 1\rangle} \rangle$$
$$= \operatorname{tr}|_{M_i}(t \cdot e_k) = n_k \dim H \dim M_k \dim M_i / \dim A.$$

On the other hand, the decomposition (1) implies

$$\operatorname{tr}(e_k) = N_i^k \dim M_k.$$

Compare the two equations above, we get

 $N_i^k \dim D_k \dim A = \dim H \dim M_i \dim M_k.$

Let i = k. We have dim $H(\dim M_k)^2 / \dim D_k \dim A = N_k^k$ for each k. Since N_k^k is a positive integer, the proof is finished.

By an analogous calculation, the result (see [12, Corollary 2.8]) is still true without the assumption that k is algebraically closed.

Corollary 2.1 (see [12, Corollary 2.8]) Let A be a transitive module algebra of a semisimple Hopf algebra H, M be a simple A-module and (A', M') the stabilizer of (A, M) defined in [11]. Then

$$(\dim A)(\dim A') = (\dim M)^2 \dim H.$$

3 Main Results

Throughout this section, unless otherwise specified, H is a finite-dimensional semisimple Hopf algebra with antipode S over the field k (thus $S^2 = 1$, see [6]), and A is an s-dimensional transitive H-module algebra with a 1-dimensional ideal $k\lambda$ where λ is a central idempotent in A. Then $A = H\lambda$ by Lemma 2.1 and A is semisimple by Lemma 2.2.

Define

$$N = \Big\{ h \in H \,\Big| \, \sum_{(h)} h_{(1)} \cdot \lambda \otimes h_{(2)} = \lambda \otimes h \Big\}.$$

Clearly, N is a right coideal subalgebra of $H, 1_H \in N$ and

$$N = \Big\{ h \in H \,\Big|\, \sum_{(h)} S(h_{(1)}) \cdot \lambda \otimes h_{(2)} = \lambda \otimes h \Big\}.$$

In this section, we prove the main result of this paper.

Theorem 3.1 Let H be a finite-dimensional semisimple Hopf algebra and A be an sdimensional transitive H-module algebra with a 1-dimensional ideal $k\lambda$. Then the smash product A#H is isomorphic to $M_s(N)$, where $N = \left\{h \in H \mid \sum_{(h)} h_{(1)} \cdot \lambda \otimes h_{(2)} = \lambda \otimes h\right\}$.

The theorem will be proved by first showing that H is free as both left and right N-module. Since $k\lambda$ is a 1-dimensional ideal of A, we can define a map θ from H to N via

$$\sum_{(h)} (S(h_{(1)}) \cdot \lambda) \lambda \otimes h_{(2)} = \lambda \otimes \theta(h), \quad \forall h \in H$$

Lemma 3.1 (1) Let t be the integral of H such that $\varepsilon(t) = 1$. Then $t \cdot \lambda = k_t \mathbf{1}_A \neq 0$ with $k_t \in k$;

- (2) $\sum_{(h)} (h_{(1)} \cdot \lambda) \lambda \otimes h_{(2)} = \sum_{(h)} h_{(1)} \cdot \lambda \otimes \theta(h_{(2)}) = \lambda \otimes \theta(h);$
- (3) $\theta(H) \subseteq N$ and θ is a right *H*-comodule projection;
- (4) $(h \cdot \lambda)\lambda = \varepsilon(\theta(h))\lambda = \theta(h) \cdot \lambda;$
- (5) θ is both left and right N-module morphism.

Proof (1) $k1_A = A^H = t \cdot A = tH \cdot \lambda \subseteq kt \cdot \lambda$, so $0 \neq t \cdot \lambda \in A^H = k1_A$. The conclusion is clear.

(2) For any $h \in H$, by the definition of θ ,

$$\sum_{(h)} h_{(1)} \otimes (S(h_{(2)}) \cdot \lambda) \lambda \otimes h_{(3)} = \sum_{(h)} h_{(1)} \otimes \lambda \otimes \theta(h_{(2)}).$$

So

$$\sum_{(h)} h_{(1)} \cdot \left((S(h_{(2)}) \cdot \lambda) \lambda \right) \otimes h_{(3)} = \sum_{(h)} h_{(1)} \cdot \lambda \otimes \theta(h_{(2)}).$$

Since λ is central in A,

$$\sum_{(h)} h_{(1)} \cdot \left((S(h_{(2)}) \cdot \lambda) \lambda \right) = \sum_{(h)} h_{(1)} \cdot \left(\lambda (S(h_{(2)}) \cdot \lambda) \right) = (h \cdot \lambda) \lambda$$

for any $h \in H$. Thus $\sum_{(h)} (h_{(1)} \cdot \lambda) \lambda \otimes h_{(2)} = \sum_{(h)} h_{(1)} \cdot \lambda \otimes \theta(h_{(2)})$. Assume $\sum_{(h)} h_{(1)} \cdot \lambda \otimes \theta(h_{(2)}) = \lambda \otimes g$ for some $g \in H$. Then $\sum_{(h)} t \cdot (h_{(1)} \cdot \lambda) \otimes \theta(h_{(2)}) = t \cdot \lambda \otimes \theta(h) = t \cdot \lambda \otimes g$. So $g = \theta(h)$ and (2) is proved.

(3) For any $h \in H$, by definition,

$$\sum_{(h)} \theta(h)_{(1)} \cdot \lambda \otimes \theta(h)_{(2)} = \sum_{(h)} h_{(2)(1)} \cdot ((S(h_{(1)}) \cdot \lambda)\lambda) \otimes h_{(2)(2)}$$
$$= \sum_{(h)} h_{(2)} \cdot ((S(h_{(1)}) \cdot \lambda)\lambda) \otimes h_{(3)}$$
$$= \sum_{(h)} \lambda(h_{(1)} \cdot \lambda) \otimes h_{(2)} = \lambda \otimes \theta(h).$$

Hence $\theta(h) \in N$. Then θ is a right *H*-comodule projection from the definitions of θ and *N*.

(4) Apply id $\otimes \varepsilon$ to both sides of the equation $\sum_{(h)} (h_{(1)} \cdot \lambda) \lambda \otimes h_{(2)} = \lambda \otimes \theta(h)$ in (2), we get $(h \cdot \lambda) \lambda = \varepsilon(\theta(h)) \lambda$. Since $\theta(h) \in N$, we have $\varepsilon(\theta(h)) \lambda = \sum_{(h)} (\theta(h)_{(1)} \cdot \lambda) \varepsilon(\theta(h)_{(2)}) = \theta(h) \cdot \lambda$.

(5) For any $h \in H$, $n \in N$,

$$\lambda \otimes \theta(hn) = \sum_{(h,n)} (h_{(1)}n_{(1)} \cdot \lambda) \lambda \otimes h_{(2)}n_{(2)} = \sum_{(h)} (h_{(1)} \cdot \lambda) \lambda \otimes h_{(2)}n = \lambda \otimes \theta(h)n.$$

So $\theta(hn) = \theta(h)n$ and θ is a right N-module morphism.

Next, we show that θ is a left N-module morphism. One has

$$\sum_{(h,n)} S(n_{(1)}) \otimes (n_{(2)}h_{(1)} \cdot \lambda) \lambda \otimes n_{(3)}h_{(2)} = \sum_{(n)} S(n_{(1)}) \otimes \lambda \otimes \theta(n_{(2)}h)$$

Then

$$\sum_{(h,n)} S(n_{(1)}) \cdot ((n_{(2)}h_{(1)} \cdot \lambda)\lambda) \otimes n_{(3)}h_{(2)} = \sum_{(n)} S(n_{(1)}) \cdot \lambda \otimes \theta(n_{(2)}h),$$
$$\sum_{(h,n)} (h_{(1)} \cdot \lambda)\lambda(S(n_{(1)}) \cdot \lambda)\lambda \otimes n_{(2)}h_{(2)} = \sum_{(n)} (S(n_{(1)}) \cdot \lambda)\lambda \otimes \theta(n_{(2)}h)$$

Thus

$$\lambda \otimes n\theta(h) = \lambda \otimes \theta(\theta(n)h) = \lambda \otimes \theta(nh).$$

So $\theta(nh) = n\theta(h)$ and θ is also a left N-module morphism.

Lemma 3.2 Let H be a finite-dimensional (not necessarily semisimple) Hopf algebra, L be a right coideal subalgebra of H and $1 \in L$. If L is a direct summand of H in ${}_{L}M^{H}$, then L is a Frobenius algebra.

Proof Since L is a left L-module direct summand of H, $-\otimes_L H$ is faithful. By [7, Lemma 2.2], L is a simple object in ${}_L M^H$.

Let T be a right integral of H^* and t a left integral of H such that T(t) = T(S(t)) = 1. Assume that $H = L \oplus M$ in ${}_{L}M^{H}$. Write $t = t_1 + t_2$ for $t_1 \in L$, $t_2 \in M$. By [9, Section 5.1] and [8, Proposition 3], (H^*, \rightharpoonup) is a free left *H*-module with basis *T*, and (H, \leftarrow) is a free right H^* -module with basis *t*. Since $S(h \rightharpoonup T) \rightharpoonup t = h$ for any $h \in H$ and *L*, *M* are right *H*-comodules, one has

$$g = S(g \rightharpoonup T) \rightharpoonup t = S(g \rightharpoonup T) \rightharpoonup t_1, \quad \forall g \in L.$$

So $S(1 \rightarrow T) \rightarrow t_1 = 1$ and $1 = \varepsilon(1) = T(S(t_1)) \neq 0$. By [7, Lemma 3.5], L is a Frobenius algebra.

By the two lemmas above, N is a Frobenius algebra. Thus we get the following proposition easily.

Proposition 3.1 *H is free as right and left N-module.*

Next, we calculate the order of H as free N-module. Obviously, $I = k\lambda$ is a simple A-module. Let (A', I') be the stabilizer of (A, I). By calculation, $A' = \left\{h \in H \mid \sum_{(h)} (h_{(2)} \cdot a)\lambda \otimes h_{(1)} = 0\right\}$

 $a\lambda \otimes h, \forall a \in A \Big\}.$

Lemma 3.3
$$S(A') = \left\{ h \in H \mid \sum_{(h)} (h_{(1)} \cdot a) \lambda \otimes h_{(2)} = a\lambda \otimes h, \ \forall a \in A \right\} = N$$

Proof Firstly, we prove $S(A') \subseteq N$. For any $h \in S(A')$, $\sum_{(h)} (h_{(1)} \cdot \lambda) \lambda \otimes h_{(2)} = \lambda \otimes h$. By Lemma 3.1(2),

$$\lambda \otimes \theta(h) = \sum_{(h)} (h_{(1)} \cdot \lambda) \lambda \otimes h_{(2)}.$$

So $h = \theta(h) \in N$ and $S(A') \subseteq N$.

Conversely, for any $g \in N$ and $a \in A$, we have $a\lambda = k_a\lambda$ for some $k_a \in k$. Thus

$$a\lambda \otimes g = k_a\lambda \otimes g = \sum_{(g)} k_a g_{(1)} \cdot \lambda \otimes g_{(2)} = \sum_{(g)} g_{(1)} \cdot (\lambda a) \otimes g_{(2)} = \sum_{(g)} \lambda(g_{(1)} \cdot a) \otimes g_{(2)}.$$

So $g \in S(A')$ and $N \subseteq S(A')$. Therefore, S(A') = N.

Since dim $A \dim A' = \dim H$ by Corollary 2.1 and S is bijective, dim $A \dim N = \dim H$. Let dim A = s. Then there exist $h_1, \dots, h_s \in H$ such that

$$H = h_1 N \oplus \cdots \oplus h_s N.$$

Obviously, $a_i = h_i \cdot \lambda$ $(i = 1, \dots, s)$ is a k-basis of A.

We are now in a position to prove our main theorem.

Proof of Theorem 3.1 Define a map

$$\varphi: A \# H \to \operatorname{End}_N H$$

by $\varphi(h \cdot \lambda \# h')(l) = \sum_{(h)} h_{(1)} \theta(S(h_{(2)})h'l)$ for any $h, h', l \in H$.

Since for any $n \in N$,

$$\varphi(hn \cdot \lambda \# h')(l) = \sum_{(h,n)} h_{(1)}n_{(1)}\theta(S(n_{(2)})S(h_{(2)})h'l)$$

= $\sum_{(h,n)} h_{(1)}\theta(n_{(1)}S(n_{(2)})S(h_{(2)})h'l)$
= $\sum_{(h)} \varepsilon(n)h_{(1)}\theta(S(h_{(2)})h'l)$
= $\varepsilon(n)\varphi(h \cdot \lambda \# h')(l)$

and H is free as right N-module, the definition of φ is reasonable. To prove the theorem, we need only prove that φ is an algebra isomorphism.

We first show that φ is an algebra morphism.

For any $h, h', g, g', l \in H$,

$$\begin{split} \varphi(h \cdot \lambda \# h')\varphi(g \cdot \lambda \# g')(l) &= \sum_{(g)} \varphi(h \cdot \lambda \# h')(g_{(1)}\theta(S(g_{(2)})g'l)) \\ &= \sum_{(h,g)} h_{(1)}\theta(S(h_{(2)})h'g_{(1)})\theta(S(g_{(2)})g'l), \\ \varphi((h \cdot \lambda \# h')(g \cdot \lambda \# g'))(l) &= \sum_{(h,h')} \varphi(h_{(1)} \cdot (\lambda(S(h_{(2)})h'_{(1)}g \cdot \lambda))\#h'_{(2)}g')(l) \\ &= \sum_{(h,h')} \varepsilon(\theta(S(h_{(2)})h'_{(1)}g))\varphi(h_{(1)} \cdot \lambda \# h'_{(2)}g')(l) \\ &= \sum_{(h,h')} \varepsilon(\theta(S(h_{(3)})h'_{(1)}g))h_{(1)}\theta(S(h_{(2)})h'_{(2)}g'l) \\ &= \sum_{(h,h',g)} \varepsilon(\theta(S(h_{(3)})h'_{(1)}g_{(1)}))h_{(1)}\theta(S(h_{(2)})h'_{(2)}g_{(2)}S(g_{(3)})g'l) \\ &= \sum_{(h,g)} h_{(1)}\theta(S(h_{(2)})h'g_{(1)})\theta(S(g_{(2)})g'l). \end{split}$$

This shows that $\varphi(h \cdot \lambda \# h')\varphi(g \cdot \lambda \# g') = \varphi((h \cdot \lambda \# h')(g \cdot \lambda \# g'))$, as desired.

Next, we prove that φ is bijective. Since dim $(A \# H) = \dim(\operatorname{End}_N H) < \infty$, it suffices to prove that φ is injective. If $\varphi(\sum h_i \cdot \lambda \# g_i) = 0$, i.e., $\varphi(\sum h_i \cdot \lambda \# g_i)(l) = \sum_{(h_i)} h_{i(1)} \theta(S(h_{i(2)})g_i l) = 0$ for any $l \in H$, we get

$$\sum_{(h_i)} (h_{i(1)}\theta(S(h_{i(2)})g_il))_{(1)} \cdot \lambda \# (h_{i(1)}\theta(S(h_{i(2)})g_il))_{(2)}$$

$$= \sum_{(h_i,g_i,l)} h_{i(1)}\theta(S(h_{i(4)})g_{i(1)}l_{(1)}) \cdot \lambda \# h_{i(2)}S(h_{i(3)})g_{i(2)}l_{(2)}$$

$$= \sum_{(h_i,g_i,l)} h_{i(1)}\theta(S(h_{i(2)})g_{i(1)}l_{(1)}) \cdot \lambda \# g_{i(2)}l_{(2)}$$

$$= \sum_{(h_i,g_i,l)} h_{i(1)} \cdot (\lambda(S(h_{i(2)})g_{i(1)}l_{(1)} \cdot \lambda)) \# g_{i(2)}l_{(2)}$$

$$= \sum_{(g_i,l)} (h_i \cdot \lambda)(g_{i(1)}l_{(1)} \cdot \lambda) \# g_{i(2)}l_{(2)}$$

$$= \sum_{(l)} (h_i \cdot \lambda \# g_i) (l_{(1)} \cdot \lambda \# l_{(2)})$$
$$= 0.$$

Since $H \cdot \lambda = A$, we may choose $l \in H$ such that $l \cdot \lambda = 1_A$. Then

$$\sum h_i \cdot \lambda \# g_i = \sum_{(l)} (h_i \cdot \lambda \# g_i) (l_{(1)} \cdot \lambda \# l_{(2)}) (\lambda \# S(l_{(3)})) = 0.$$

This means that φ is injective.

Let H be a finite-dimensional Hopf algebra and B a right coideal subalgebra of H. As in the case of Hopf algebras (see [9]), an element $x \in B$ is called a left integral in B if $bx = \varepsilon(b)x$ for all $b \in B$. Similarly, right and two-sided integrals in B are defined. Let H be a semisimple Hopf algebra, and A an s-dimensional Frobenius right coideal subalgebra of H^* . Then A is separable by [7]. By [5], A contains a two-sided integral x^* such that $\varepsilon(x^*) = 1$. Hence kx^* is a 1-dimensional ideal of A. We view A as a left H-module algebra in a natural way. One checks that $A^H = k \mathbf{1}_A$. So we get the following conclusion.

Corollary 3.1 Let H be a semisimple Hopf algebra and A an s-dimensional Frobenius right coideal subalgebra of H^* . Then

(1) A is a transitive H-module algebra;

(2) A has an integral T such that T(1) = 1. Then the smash product of A and H is isomorphic to $M_s(N)$ as algebras, where $N = \left\{ h \in H \mid \sum_{(h)} h_{(1)} \rightharpoonup T \otimes h_{(2)} = T \otimes h \right\}$.

In [5], Koppinen proved that if H is a finite-dimensional Hopf algebra, A a right coideal Frobenius subalgebra of H^* , and $K = (H^*/A^+H^*)^* \subseteq H$, then $K \# H^* \cong A \otimes \text{End}K$ and $A \# H \cong K \otimes \text{End}A$ as algebras. If H is also semisimple, we have K = N with N defined as in Corollary 3.1. However, without the assumption that H is semisimple, for a transitive H-module algebra A with a 1-dimensional ideal even if it is semisimple, this is false in general, as the following example shows.

Example 3.1 Let H_4 be the Sweedler's 4-dimensional Hopf algebra. As an algebra, it is generated by x and g subject to the relations

$$xg = -gx, \quad x^2 = 0 \quad \text{and} \quad g^2 = 1$$

Its coalgebra structure is determined by

$$\Delta(g) = g \otimes g$$
 and $\Delta(x) = x \otimes g + 1 \otimes x$.

Let $A = k\{p_1, p_2\}$. Then A is semisimple obviously. The action of H_4 on A is determined by

$$g \cdot p_1 = p_2, \quad g \cdot p_2 = p_1; \quad x \cdot p_1 = \alpha(p_1 + p_2), \quad x \cdot p_2 = -\alpha(p_1 + p_2),$$

where $\alpha \in k$. One checks that the action is transitive. But when $\alpha \neq 0$, $N = k\{1_H\}$. By considering the dimension A # H and $M_2(N)$, they are not isomorphic.

Under the hypotheses in Theorem 3.1, for A, we can find a right coideal Frobenius subalgebra $N \subseteq H$ such that $A \# H \cong M_s(N)$. Let $A' = (H/(N^+H))^* \subseteq H^*$. Then A' is a transitive H-module algebra with a 1-dimensional ideal kx^* . By a simple calculation, we get

$$\left\{h \in H \mid \sum_{(h)} h_{(1)} \rightharpoonup x^* \otimes h_{(2)} = x^* \otimes h\right\} = (H^*/A'^+H^*)^* = N.$$

So $A' \# H \cong M_s(N)$.

Example 3.2 We use [4, Example 15]. Let H be a Hopf algebra such that $H \cong kM$ as algebras, where kM is a group algebra with the group M defined by

 $M = \langle a, b, g \mid a^4 = e, \ b^2 = a^2, \ ba = a^{-1}b, \ ag = ga, \ bg = gb, \ g^2 = e \rangle.$

The coalgebra structure of H is given as follows:

$$\begin{split} \Delta(a) &= \frac{1}{2}(a \otimes a + ag \otimes a + a \otimes b - ag \otimes b),\\ \Delta(b) &= \frac{1}{2}(b \otimes b + bg \otimes b + b \otimes a - bg \otimes a),\\ \Delta(g) &= g \otimes g, \quad S(g) = g,\\ S(a) &= \frac{1}{2}(a^3 + a^3g + a^2b - a^2bg),\\ S(b) &= \frac{1}{2}(b^3 + b^3g + b^2a - b^2ag),\\ \varepsilon(a) &= \varepsilon(b) = \varepsilon(g) = 1. \end{split}$$

Then *H* is semisimple and has an integral $t = (e+g)(e+b)(e+a+a^2+a^3)$. Let $A = k\{p_1, \dots, p_8 \mid p_i p_j = \delta_{ij} p_i\}$. An action of *H* on *A* is given by

$$\begin{array}{ll} g \cdot p_i = p_i; \\ a \cdot p_1 = p_2, & a \cdot p_2 = p_3, & a \cdot p_3 = p_4, & a \cdot p_4 = p_1, \\ a \cdot p_5 = p_6, & a \cdot p_6 = p_7, & a \cdot p_7 = p_8, & a \cdot p_8 = p_5; \\ b \cdot p_1 = p_5, & b \cdot p_5 = p_3, & b \cdot p_3 = p_7, & b \cdot p_7 = p_1, \\ b \cdot p_2 = p_8, & b \cdot p_8 = p_4, & b \cdot p_4 = p_6, & b \cdot p_6 = p_2. \end{array}$$

Then A is a transitive H-module algebra. One can verify that $N = k\{e, g\}$ and

$$\begin{aligned} A' &= k \{ I_e + I_g, \ I_a + I_{ga}, \ I_b + I_{gb}, \ I_{a^2} + I_{ga^2}, \\ I_{a^3} + I_{ga^3}, \ I_{b^3} + I_{gb^3}, \ I_{ba} + I_{gba}, \ I_{ba^3} + I_{gba^3} \} \subseteq H^*, \end{aligned}$$

where $I_x \ (x \in M)$ denotes the k-valued function $I_x(y) = \delta_{x,y}$.

We note that A' is isomorphic to A as algebras in the above example. However, in general, A and A' are not isomorphic as algebras such as the following example.

Example 3.3 Let H be a finite-dimensional Hopf algebra such that dim $H = n < \infty$ and $k \#_{\sigma} H^*$ a crossed product. Then $A = k \#_{\sigma} H^*$ is a transitive H-module algebra via $h \cdot (k \# f) = k \# h \rightharpoonup f$. It is easy to see N = k and $A' = H^*$. By [2], $A \# H \cong M_n(k) \cong A' \# H$, but A and A' are not isomorphic as algebras generally even if H is semisimple.

4 Application to Function Algebra A = k(X)

In this section, we apply our result to the function algebra A = k(X). Let X be a finite set. We define k(X) to be the vector space with basis $\{p_x \mid x \in X\}$ and a multiplication on k(X) is defined as

$$p_x p_y = \delta_{x,y} p_x, \quad \forall x, y \in X.$$

$$(4.1)$$

Then A = k(X) is a semisimple algebra and kp_x ($x \in X$) are all the minimal ideals of A.

For simplicity, we write $X = \{1, 2, \dots, n\}$.

We apply our main theorem to the case that A = k(X).

Theorem 4.1 Let *H* be a semisimple Hopf algebra, and A = k(X) be a transitive *H*-module algebra. Then the smash product of *A* and *H* is isomorphic to $M_n(N_{11})$ as algebras, where $N_{11} = \left\{ h \in H \mid \sum_{(h)} h_{(1)} \cdot p_1 \otimes h_{(2)} = p_1 \otimes h \right\}$.

A more detail structure of A # H is presented as follows.

Lemma 4.1 Let H be a semisimple Hopf algebra, and A = k(X) be a transitive H-module algebra. Let t be the integral of H such that $\varepsilon(t) = 1$. Then

$$t \cdot p_i = \alpha_i 1_A, \quad i = 1, \cdots, n$$

for some $0 \neq \alpha_i \in k$ with $\sum_{i=1}^n \alpha_i = 1$.

Proof Since the action is transitive, for any p_i , $H \cdot p_i = A$ and $t \cdot p_i \in A^H$, we have $t \cdot p_i = \alpha_i 1_A$ for some $\alpha_i \in k$. Note that $1_A = \sum_{i=1}^n p_i$, so $t \cdot 1_A = \sum_{i=1}^n t \cdot p_i = \sum_{i=1}^n \alpha_i 1_A$, $\sum_{i=1}^n \alpha_i = 1$. Because $1_A \in t \cdot A = tH \cdot p_i \subset kt \cdot p_i = k\alpha_i 1_A$, $\alpha_i \neq 0$ for each i.

For non-zero $\alpha_1, \dots, \alpha_n \in k$ in Lemma 4.1, define $N_{ij} = \left\{ h \in H \mid \sum_{(h)} h_{(1)} \cdot p_j \otimes h_{(2)} = \right\}$

 $p_i \otimes \frac{\alpha_i}{\alpha_i}h$. Then $N_{ij} \in N_{ii}M^H \cap M^H_{N_{jj}}$ and N_{11}, \dots, N_{nn} are subalgebras of H as well. We also get $N_{ij}N_{jk} \subseteq N_{ik}$. By the definition of N_{ij} , the sum $\sum_{i=1}^n N_{ij}$ is a direct sum.

Proposition 4.1 Let H be a semisimple Hopf algebra. If the action of H on A = k(X) is transitive, then

- (1) $H = N_{i1} \oplus \cdots \oplus N_{in}, i = 1, \cdots, n;$
- (2) $\varepsilon(N_{ij}) \neq 0$ for any $i, j \ (1 \leq i, j \leq n);$
- (3) N_{ii} is a Frobenius algebra for each $i \ (1 \le i \le n)$.

Proof (1) For any $h \in H$, we suppose

$$\sum_{(h)} S^{-1}(h_{(1)}) \cdot p_i \otimes h_{(2)} = p_1 \otimes h_1 + \dots + p_n \otimes h_n \in A \otimes H.$$

$$(4.2)$$

Since $\alpha_i \neq 0$ for any *i*, in a similar way as in Lemma 3.1(2), we get $h_j \in N_{ij}$. By equation

(4.2), we have

$$p_i \otimes h = \sum_{(h_1, \dots, h_n)} h_{1(1)} \cdot p_1 \otimes h_{1(2)} + \dots + h_{n(1)} \cdot p_n \otimes h_{n(2)}$$
$$= p_i \otimes \frac{\alpha_1}{\alpha_i} h_1 + \dots + p_i \otimes \frac{\alpha_n}{\alpha_i} h_n.$$

Thus $h = \frac{\alpha_1}{\alpha_i}h_1 + \dots + \frac{\alpha_n}{\alpha_i}h_n \in N_{i1} \oplus \dots \oplus N_{in}$. Therefore $H = N_{i1} \oplus \dots \oplus N_{in}$.

(2) For a fixed *i*, if $\varepsilon(N_{ij}) = 0$ for some *j*, act id $\otimes \varepsilon$ on both sides of equation (4.2). We have

$$S^{-1}(h) \cdot p_i = \varepsilon(h_1)p_1 + \dots + \varepsilon(h_{j-1})p_{j-1} + \varepsilon(h_{j+1})p_{j+1} + \dots + \varepsilon(h_n)p_n,$$

which means

$$H \cdot p_i \subseteq kp_1 + \dots + kp_{j-1} + kp_{j+1} + \dots + kp_n.$$

But $A = H \cdot p_i$ and this is a contradiction, so $\varepsilon(N_{ij}) \neq 0$.

(3) follows from Lemma 3.2 and part (1).

Suppose that the action of H on A is transitive and $H = N_{i1} \oplus \cdots \oplus N_{in}$. By Proposition 4.1(3), for any i, N_{ii} is a Frobenius algebra. Define two maps

$$N_{ij} \otimes_{N_{jj}} N_{ji} \to N_{ii}, \quad N_{ji} \otimes_{N_{ii}} N_{ij} \to N_{jj}$$

$$(4.3)$$

by the multiplication of H.

Since $N_{ij} \in N_{ii}M^H$ and $N_{ij} \in M^H_{N_{jj}}$, we see that N_{ij} is free left N_{ii} -module and free right N_{jj} -module. $N_{ij}N_{ji} \subseteq N_{ii}$ is also in $N_{ii}M^H$, so it is free left N_{ii} -module. By Proposition 4.1(2), $\varepsilon(N_{ij}) \neq 0$ and $\varepsilon(N_{ji}) \neq 0$, so $N_{ij}N_{ji} \neq 0$ and $N_{ij}N_{ji} = N_{ii}$. Similarly, $N_{ji}N_{ij} = N_{jj}$. So the maps defined by (4.3) are surjective, hence N_{ii} and N_{jj} are Morita equivalent. By Morita equivalent theory, the dimensions of all N_{ij} are the same. Pick $h_{i1} \in N_{i1}$ such that $\varepsilon(h_{i1}) = 1$ and $N_{i1} = h_{i1}N_{11}$. Then

$$N_{i1}H = N_{i1}(N_{11} \oplus \cdots \oplus N_{1n}) = N_{i1} \oplus \cdots \oplus N_{in} = H.$$

On the other hand,

$$N_{i1}H = h_{i1}N_{11}(N_{11} \oplus \cdots \oplus N_{1n}) = h_{i1}H.$$

So $h_{i1}H = H$, then there exists $h_{1i} \in H$ such that $h_{i1}h_{i1} = 1$. Since H is finite dimensional, h_{i1} is the inverse of h_{1i} . We get $h_{1i} \in H_{1i}$, so $N_{1i} = h_{1i}N_{11}$ and $N_{ij} = N_{i1}N_{1i} = h_{i1}N_{11}h_{1j}$.

Let G be the group generated by $h_{i1}, h_{1i}, i = 1, 2, \dots n$. Then $G \subseteq H$. But the group G is not contained in the set G(H) of group-like elements of H in general. In Example 3.2, A is an H-module algebra and the action is transitive. But one can verify that $N_{ii} = \{e, g\}$ for any iand $G = \{e, a^3, a^2, a, b^3, ba, b, ba^3\} \subsetneq G(H)$.

Let $M_n(N_{11})$ be the algebra of all n by n matrices over N_{11} . This algebra is the free N_{11} -module with basis $\{e_{ij} \mid 1 \leq i, j \leq n\}$ and the multiplication is given by

$$(h_1 e_{ij})(h_2 e_{kl}) = \delta_{j,k} h_1 h_2 e_{il}$$

for any $h_1, h_2 \in N_{11}$.

Now we prove Theorem 4.1.

Proof of Theorem 4.1 By Proposition 4.1, $H = N_{i1} \oplus \cdots \oplus N_{in}$ for each *i*. Define a map Φ from $M_n(N_{11})$ to A # H as

$$\Phi(h \cdot e_{ij}) = \frac{\alpha_i}{\alpha_j} p_i \# h_{i1} h h_{1j}$$

for any $h \in N_{11}$ and $h_{i1}, h_{1j} \in G$ defined above. For any $h, h' \in N_{11}$, we have

$$(p_i \# h_{i1} h h_{1k}) (p_j \# h_{j1} h' h_{1l})$$

$$= \sum_{(h_{i1}, h, h_{1k})} p_i (h_{i1(1)} h_{(1)} h_{1k(1)} \cdot p_j) \# h_{i1(2)} h_{(2)} h_{1k(2)} h_{j1} h' h_{1l}$$

$$= \sum_{(h_{i1}, h, h_{1k})} h_{i1(1)} h_{(1)} h_{1k(1)} \cdot (p_k p_j) \# h_{i1(2)} h_{(2)} h_{1k(2)} h_{j1} h' h_{1l}$$

$$= \delta_{kj} \frac{\alpha_k}{\alpha_j} p_i \# h_{i1} h h' h_{1l}.$$

So Φ is an algebra homomorphism. One may check that Φ is surjective. And by dimension considerations, Φ is an algebra isomorphism.

Theorem 4.2 Let H be a semisimple Hopf algebra and $A = k\{p_x, x \in X \mid p_x p_y = \delta_{x,y} p_x\}$ be an H-module algebra. Then the smash product A # H is isomorphic to a direct sum of full matrix algebras over some right coideal subalgebras of H.

Proof By Lemma 2.1,

$$A = I_1 \oplus I_2 \oplus \cdots \oplus I_m$$

is a direct sum of minimal *H*-ideals of *A*. For any $1 \le i \le m$, let $X_i = \{x \mid p_x I_i \ne 0\} \subseteq X$. Then $I_i = k\{p_x \mid x \in X_i\}$ and *X* equals the disjoint union of X_1, \dots, X_m . One may check that

$$A\#H\cong I_1\#H\oplus I_2\#H\oplus\cdots\oplus I_m\#H.$$

The action of H on each I_i is transitive by Proposition 2.1. Let $n_i = |X_i|$ and $N_i = \left\{h \in H \left|\sum_{(h)} h_{(1)} \cdot p_x \otimes h_{(2)} = p_x \otimes h\right\}$ for some $x \in X_i$. Then $I_i \# H \cong M_{n_i}(N_i)$ by Theorem 4.1. Hence the conclusion holds.

When H is not semisimple, the result in Proposition 4.1 is false in general, as the Example 3.1 shows. In Example 3.1, if $\alpha \neq 0$, then

$$N_{11} = k\{1_H\}, \quad N_{12} = k\{g\}.$$

However,

$$H = N_{11} + N_{12} + k\{x, gx\}.$$

But we have the following result.

Proposition 4.2 Let *H* be a finite-dimensional Hopf algebra, and A = k(X) be a transitive *H*-module algebra. If $H = N_{i1} + \cdots + N_{in}$ for some *i* and $\varepsilon(N_{ji}) \neq 0$, then $H = N_{j1} + \cdots + N_{jn}$.

Proof Suppose that t is a non-zero left integral of H. Then $t = t_1 + \cdots + t_n$, $t_k \in N_{ik}$ for $H = N_{i1} + \cdots + N_{in}$. Pick $a \in N_{ji}$ such that $\varepsilon(a) = 1$. We get $t = at = at_1 + \cdots + at_n \in N_{j1} + \cdots + N_{jn}$. Since $N_{j1} + \cdots + N_{jn} \subseteq H$ is a right H-comodule, then $H = N_{j1} + \cdots + N_{jn}$.

References

- Blattner, R. J. and Montgomery, S., A duality theorem for Hopf module algebras, J. Algebra, 95, 1985, 153–172.
- Blattner, R. J. and Montgomery, S., Crossed products and Galois extensions of Hopf algebras, *Pacific J. Math.*, 137, 1989, 37–54.
- [3] Harrison, D. K., K_0 of Hopf algebras and enlarged group algebras, Comm. Algebra, 12(2), 1984, 149–198.
- [4] Kashina, Y., The classification of semisimple Hopf algebras of dimension 16, J. Algebra, 232, 2000, 617– 663.
- [5] Koppinen, M., Coideal subalgebras in Hopf algebras: freeness, integrals, smash products, Comm. Algebra, 21(2), 1993, 427–444.
- [6] Larson, R. G. and Radford, D. E., Semisimple cosemisimple Hopf algebras, Amer. J. Math., 110, 1988, 187–195.
- [7] Masuoka, A., Freeness of Hopf algebras over coideal subalgebras, Comm. Algebra, 20(5), 1992, 1353–1373.
- [8] Radford, D. E., The group of automorphisms of a semisimple Hopf algebra over a field of characteristic 0 is finite, Amer. J. Math., 112, 1990, 331–357.
- [9] Sweedler, M. E., Hopf Algebra, Benjamin, New York, 1969.
- [10] Van den Bergh, M., A duality theorem for Hopf algebras, Methods in Ring Theory, NATO ASI Series, 129, Reidel, Dordrecht, 1984, 517–522.
- [11] Yan, M. and Zhu, Y., Stabilizer for Hopf algebra actions, Comm. Algebra, 26(12), 1998, 3885–3898.
- [12] Zhu, Y., The dimension of irreducible modules for transitive module algebras, Comm. Algebra, 29(7), 2001, 2877–2886.