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Abstract The authors prove Carleman estimates for the Schréodinger equation in Sobolev
spaces of negative orders, and use these estimates to prove the uniqueness in the inverse
problem of determining LP-potentials. An L2-level observability inequality and unique
continuation results for the Schrédinger equation are also obtained.
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1 Introduction and Main Results

In this paper, we discuss Carleman estimates and apply them to an inverse problem and an
observability inequality for the Schrodinger equations. First we derive Carleman estimates for
the Schrodinger equations in Sobolev spaces of negative orders.

Throughout this paper, we set

(Pv)(x,t) =i0w(x,t) + g(z, t) Av(z, t) + Z ri;(x,t)05v(z, t)

j=1

n oot
+ Z/ ro;(x,t,0)0;v(x,0)dl, (z,t) € Q=Q x (=T,T),
j=170

where ) is a bounded domain in R™ with boundary 99 € C3. Set ¥ = 9Q x (=T, T), i = v/—1,
0y = %, 0; = a%j, j =12 n Let Vu = (O1u,0ou, - ,0,u), and v(z) be the unit
outward normal vector to 9Q at z. Moreover, let & = (aq, g, -+ , ;) be a multi-index with
a; € NU{0}, and let

oY =01105% - 0%, lal=a1+az+ -+ ay.
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Let p > 1,7 > 0, and let W) () and W,/ (Q) denote usual Sobolev spaces. Set HY () = W, ()
and Hy (Q) = W5 4(Q) (see e.g., [39]). Let %4—% = 1. Identifying the dual of LP(£2) with L (Q),
we denote the dual of W,((Q2) by W ;7(Q). Set H~7(Q2) = W, 7(Q).

Assume that 75, r25, 1 < j < n are complex-valued and satisfy

r; € CHQ), 1o €C' QX [-T,T)x [-T,T)), 1<j<n. (1.1)
Assume that d and g are real-valued and satisfy

geC*(@Q), ¢g>0, onQ,
deC*Q), |Vd >0, onQ,
1

Viog (5ig ) - V(@) + 6 V@) > -2 3 @0d@)eE. (@0 eq. 1P

jo=1
for every £ = (&, , &) € C™ satisfying [¢] = 1.

First we show a Carleman estimate whose right-hand side is estimated in L?(—=T,T; H=%(Q))
with 3 < s < 1.

Theorem 1.1 Let % <s<1,0<Ty <T, and Q° C Q be a domain satisfying QO C Q.
Assume that (1.1) and (1.2) hold. For positive constants A and 3, we set ¢p(x,t) = M@ =p%)
Then for large enough X\ > 0, there exists a constant Cy = C1(\) > 0 such that for all large
enough T > 0,

T T
r [ et <O [ e Pul oyt (1.3
—-T -T
for all uw € L*(=T,T; H'=%(Q)) with compact support in Q° x (=T1,Ty) such that Pu €
L2(~T,T; H5()).

Carleman estimates in Sobolev space of negative orders are useful tools for dealing with
inverse problems (see e.g., [12, 14]) and unique continuation (see e.g., [38]) for the solutions
of partial differential equation with less regular coefficients or non-homogenous terms. For
H~! Carleman estimate for hyperbolic equations, we can refer to [11, 12]. For H~! Carleman
estimate for parabolic equations, we can refer to [14, 17]. We can refer to [32] for an L2-
energy estimate with right-hand side in a Sobolev space of negative order for a nonconservative
Schrodinger equation. The estimate in [32] involves a lower-order term on the right-hand side.

From Theorem 1.1, it is easy to see the following result.

Corollary 1.1 Let % <s<1,0<Ty <T, and Q° C Q be a domain satisfying QO C Q.
Assume that (1.1) holds, and real-valued g satisfies
g€C*@Q), g¢g>0, onQ,
1 _
Vlog( )-x—xo > -2, (x,t) €@
e ( ) (1)

for a fized xo € R™\Q. We set ¢y (x,t) = Mle—wol”=5t%) for A, B > 0. Then for large enough
A > 0, there exists a constant Cy = Ca(\) > 0 such that for all large enough T > 0,

(1.4)

T T
P e et < Ca [Pl (1.5)
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for all w € L*(=T,T; H'=%(Q)) with compact support in Q° x (=T1,Ty) such that Pu €
L?(=T,T; H=5(Q)).

Moreover, we can prove a Carleman estimate with less regular potential in x.

Corollary 1.2 Letn > 2, % <s5<1,0<Ty <T, and Q° C Q be a domain satisfying
00 C Q. Assume that (1.1) and (1.2) hold. Let0 <~ < 1—s andp > 1 satisfy 1 —v > n(1— %),
and let %—i— i =1. If ¢ is complez-valued and {; € L= (=T, T; WPTV(Q)), then for large enough
A > 0, there exists a constant Cs = Cs(\) > 0 such that for all large enough T > 0,

T”ueT¢”%2(7T,T;H1*S(Q)) < C3HGT¢(P + Cl)uH%Q(fT,T;H*S(Q)) (1.6)

for all w € L*(=T,T; H'=5(Q)) with compact support in Q° x (=T1,T1) such that (P + (1)u €
L?(=T,T; H=*()).

From Corollary 1.2, we can obtain a unique continuation result for the Schrédinger equation
with potential in a Sobolev space in x of negative order.

We consider the Schrédinger equation:
(Pru)(z,t) = i0pu(z, t) + div (p(z, t) Vu(z, t)) — ((z, t)u(z,t), (z,t) € Q. (1.7)
For zop € R™\Q and a constant 8 > 0, we set J(z,t) = |z — z¢|* — ft%.
Theorem 1.2 Let n > 2 and p satisfy

peC*Q), plx,t)>0,

V log (@) (z—m0) > -2, (2,t)€Q

(1.8)

for a fized xo € R"\Q. Let ( € Lo(=T,T;W,,"(Q)) be compler-valued and u € L?(-T,T;
H'™75(Q)), where 3 <s<1,0<y<1l-s,p>1 satisfyingl—”y>n(1—%) and%—l—}% =1.
If Pu=0in Q and u = 0 in {(z,t) € Q;J(z,t) > J(z,tY)} for a point (z',t') € Q, then
there exists a neighbourhood U of (x1,t') such that

u(z,t) =0, (x,t) €U.

Theorem 1.2 is a consequence of Corollary 1.2 by using a known argument in deriving the
unique continuation by a Carleman estimate (see e.g., [9, 10]). We give the details of the proof
of Theorem 1.2 in Appendix.

For unique continuation across any non-characteristic surface for the Schrodinger equation
with partially analytic coefficients, we can refer to [40]. For the unique continuation of the
H'-solution to the Schrédinger equation with L>°-potential, we refer to [19, 20, 41], and for
the unique continuation of the solution in L"(R; W2(R™)) N W(R; L™ (R™)) with r = 2(7?:42 )
to the Schrédinger equation with LnTﬂ—potential, we refer to [23]. We note that Theorem

1.2 is a unique continuation result with potential in a Sobolev space of negative order if u €
L?(=T,T; H*=*(Q)).

Next we consider an inverse problem of determining an LP-potential ¢ locally by some
suitable local observation data.
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We consider the Schrodinger equation:

Yy =ys, on X, (1.9)
y('u 0) = Yo, in Q.

First we introduce an admissible set Q@ of unknown potentials: let
p > max{n, 2}.

We set Q = {q € LP(R); q(x) > —co, = € 2}, where ¢p > 0 is a constant.
For

beB= {b € C%(Q); b(x) > 0 and Vlog (ﬁ) (x—m9) > -2,z € ﬁ},

we introduce an admissible set of boundary values:

Vo = {(yo,y=); the solution y = y(g, b, yo,ys) of (1.9)
is in H'((=T,T); L*(Q)) for any q € Q}.

Remark 1.1 The admissible set V), is not empty. For example, if yo € H3(Q2) and ys €
H3i () satisfy the compatibility condition ys(z,0) = yo(x), then we can choose a function
® € H*2(Q) (see e.g., [34, Chapter 4]) such that ®(z,t) = ys(z,t), (z,t) € X, and ®(x,0) =
yo(x), z € Q. By (1.9), we have

i0(y — @) +div (b(z)V(y — @) —q(x)(y — @) = F, inQ,

y—® =0, on X,
(y—®)(-,0) =0, in Q,
where F := —i9,® — div (b(z)V®) + q(z)® € H'(-T,T;L?(Q2)). Then one can verify that

y € L*(=T,T; H*(Q)) N HY (=T, T; L*(Q)) (see e.g., Theorem 12.1 in Chapter 5 of [34]).
For fixed zg € R™\Q, we set Q(5) = {z € Q;|x — z0| > §}, where § > 0 is a constant.

Theorem 1.3 Let S C 99 be a relatively open subset of 02 and wg C  be a subdomain
such that Owg D S, and let a constant dg > 0 satisfy

Q%) C (QUS). (1.10)

Assume that b € B, (yo,ys) € Vo, (1 € Q, and

lyo(z)| > ¢ >0, =z € (), (1.11)
a;laty(QMbuyOuyE) € C(Q((SO) X (_T7 T))? |CY| =2. (112)

For gy € Q, if
y(q27bay07y2)(xvt) :y((habvy()vyE)(Iat)v ({E,t) € wg X (_Ta T)a (113)

then
a2(z) = q(z), x€ Qo).
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We can prove also the stability, but in this paper we omit the details.

The uniqueness in determining the L*°-potential in the Schrodinger equation was firstly
proved by Bukhgeim [5]. Afterwards, the stability was proved by Baudouin and Puel [2]. In
those two papers, Carleman estimates in L2-spaces are used. We further refer to [1] which proved
the stability in determining L°(Q2)-potential in the Schrédinger equation with discontinuous
principal term, and refer to [36] which established a new Carleman estimate and proved the
Lipschitz stability in determining potentials in L>°(). In this paper, we use an H ~!-Carleman
estimate which leads to the uniqueness in LP(Q2) with p > max{n,2}. The method of solving
inverse problems by Carleman estimates was firstly introduced by Bukhgeim and Klibanov [6]
(see also [25, 26]). As for works on the stability and the uniqueness for inverse problems for
hyperbolic or parabolic equations by Carleman estimates, see [3, 4, 13, 15, 16, 18, 20, 24, 28,
43] and the references therein.

Finally, we derive an L?-level observability inequality for the Schrédinger equations:

iOn(z, t) + div (b(z)Vn(x,t)) — q(x)n(z,t) =0, in Q@ =Qx (-T,T),
n(x,t) =0, on X =00 x (=T,T), (1.14)
n(-,0) = no, in Q.

Now we present an L2-level observability inequality for the Schrédinger equation.

Theorem 1.4 Let w C Q be a neighbourhood of 02 satisfying Ow D ). Assume that

_ _ 1 _
beC?(Q), b>0, onQ, Vlog (ﬁ) (x—mo) > -2, €0
x
and g € LP(Q) with p > max{n,2}, ¢(x) > —co, x € Q with some constant co > 0. Then for
every T > 0, there exists a constant Cy > 0 such that

T
Il < Cs [ [ infasar (115

for every solution n € L*(Q) to (1.14) with no € L?(£).

For L?-level observability inequality for the Schrédinger equation with b = 1 and ¢ = 0
in (1.14), we refer [35, 37] where methods based on multiplier techniques were used to prove
the observability inequalities. In this paper, we derive an L?-level observability inequality in
Theorem 1.4 for the Schrodinger equation with a variable principal term and an LP-potential.
Our method is based on the H~! Carleman estimate (see Theorem 1.1). As for the method of
applying Carleman estimate to derive observability inequalities, see [22, 27]. As for observability
inequalities by Carleman estimates, see further [7, 8, 17, 21, 28-31, 33].

This paper is composed of five sections. In Section 2, we prove Theorem 1.1 and Corollary
1.2. In Section 3 and Section 4, we prove Theorem 1.3 and Theorem 1.4 respectively. A proof
of a Carleman estimate in L? space is given in Appendix. We also present the proof of Theorem
1.2 in Appendix.

2 Proofs of Carleman Estimates
For § > 0, we set Q5 = {x € R"; dist(x,Q) < 6}, Q° = Qs x (=T — 6, T +9). Let

(Pou)(x,t) = 10wu(x, t) + g(z, ) Aul(z, t), (x,t) € Q
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where g € C%(Q).

Henceforth, C' and C; denote generic constants which are dependent on @, 7" and A, but
independent of 7. The numbering in C; can be independent in the different sections and the
appendix. By ¢, we denote the complex conjugate of ¢ € C, while we note that  means the
closure of a domain ).

We will prove Carleman estimates with right-hand sides in L? and negative-order Sobolev
spaces as well.

First we present a Carleman estimate in L? space.

Proposition 2.1 Let ¢(x,t) = e’\(d(m)_ﬁt2), where 8 > 0, A > 0. Assume that g and d
satisfy (1.2). Then there exists a constant Ao > 0 such that for arbitrary X\ > X\g, we can choose
To > 0 satisfying: there exists a constant C(79, Ao) > 0 such that

7'/ |Vv|262"¢dxdt—|—7'3/ lv|?e*™ ¢ dadt
Q Q

T
gc/ |P0v|2627¢dxdt+07-/ / ’@
Q —1 Jaq 10V

for all T > 19 and all v satisfying

2
e¥™(Vd - v)dZ (2.1)

Py € I2(Q), ve H'(Q) N L(-T. T Hy(®),
{% € LQ(—T,T;LQ((?Q))7 v(-,=T)=v(-,T) =0. (2.2)

We give the proof of Proposition 2.1 in Appendix.

Next we show Carleman estimates in Sobolev spaces of negative orders by an argument
similar to [12].

We set

Pyw = i0yw + gAw — 217gV¢ - Vw + (T2|V¢|2 —17A¢) gw — iT(dp)w

n n t
+ Z[leajw —Tr1j ((%(b)w] + Z/ [szajw —Tr2; ((%d))w]do
j=1 j=170
Let

§I: (50;51;527"' agn)v 5: (517525"' 7571)5
©=\8+G++g+1

For ¥ € R and f € L?(Q), we define

FH((&)® +1Ts)Ff]= s 20,

Fﬁl[(W)Fﬂ, s <0,

where F' denotes the Fourier transform in R™ which is defined by

AL =

-7L e 1€ (L 2
(FIN€) = gy [ s @n, e 1@),
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and F~! denotes its inverse transform. By choosing a sufficiently small §; > 0, we extend d
into R™, g, 15, 1 < j <ninto R” x (=T, T) and r9;, 1 < j < ninto R" x (=T,T) x (=T, T), so
that they are supported in Qss,, Qs35, X (=T,T), Q35, X (=T, T) and Q35, x (=T, T) x (=T,T)
respectively, and satisfy

g € CH(R™ x [T, 1Y), TSUP lg(-, ) llLipern) + TSUP [Vg(- . O)llLipmn) < 400,

ri; € C(R™ x [T, T]), Sup. HTU( t)|lLiprny < 00, 1<j <, (2.3)
r2; € C(R" x (=T,T) x ( ))7 sup 25 (¢, 0)lLip@ny < +00, 1<j<n
and

g>0, onQ¥,
de C*R™), |Vd| >0, on Qas,,
(2.4)

9( t)) V() + |6 V(@) > =2 Y (9;0kd(@))6i€k, (1) € Q1,
’ jk=1

for every & = (&,--- ,&,) € C" satisfying [£] = 1.

Vlog(

Here and henceforth, we use the same notations to denote the extension of the coefficients,

|f(@h) = £(?)]

o =]

and we set
1flILiprey = sup
2! z2eRrR”
'l #a?
provided that the right-hand side is finite.
In order to prove our Carleman estimates, we need a commutator estimate as follows.

Lemma 2.1 Let % < s <1, g, rij and ro; satisfy (2.3). Then there exists a constant
C1 > 0 such that the following commutator estimate holds:

T T
/T || /\;S P¢’U — P¢ /\;S ’U“%2(Q251)dt < ClT474SH’U”%2(Q) + 017,2725/ HV( )”L2 Rn)dt
for all v € C3(Q) and T > 1.

Proof It is clear that
/\;Siaﬂ) — 18t /\:S v = 0,

and
A7 g(a, )07 — g(a, )07 AS° v = A-{05[(g NG — A 9)(A-°050)] + [N5059 — (9;9) A5 (AL °05v)}

for 1 < j < n. By the Parseval equality and the definition of A=, we obtain

T T
1A= 03l 7 = 15 A 00t < [0 8 = 15 9017050 ey

for 1 < j < n. By an argument in Chapter 3 of [42], we can prove an estimate of a commutator

of a pseudo-differential operator

T
[ 8= 0 it S s N Oy [ [ 107 Opan
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for 1 < j < n. Thus we obtain

T T
/T | AZ°01(g Ny — A g)(/\;sajv)]||%2m%1)dt < CQ/T/R | A7 % 0jv)?dadt (2.5)

for 1 < j < n. On the other hand, by the Parseval equality and an estimate of a commutator
of a pseudo-differential operator (see e.g., [42, Subsection 3.6]), we obtain

T
/T 1176059 = (939)ASI (AT 050) 122 @5,y
< sup ||Vg ||Llp(Rn / / | A% 952 dadt (2.6)
T<t<

for 1 < j <n. By (2.5) and (2.6), we have

T
/ I A" g+ 5820 — g(- 0% A" ey )dt<03/ / | AZ* 0,0[2dadt
-r

for 1 < j < n. By the Parseval equality and an estimate of a commutator of a pseudo-differential
operator (see e.g., [42, Subsection 3.6]), we obtain

T
I 0,00 = 750,00 A7 0l
T
= [ AT 0,00 85 = 5 0,076 A7 ol
§03T474S/ |v[2dxdt
Q
for 1 < j < n. Similarly,

T
/ A7 2@y 0)ady — 200,000, 17 Wl

T
< Oyt / / | AZS 0jv[2dadt,
T
/ | AZ2 [ir(9e) — T(V)glv — [iT(8:9) — T(V)g] A7° vl F2(qy,, )dt
-T

< 0572_25/ |v2dadt,
Q

T t
/H/\T_S/O%‘("W) 6)d6 — /rzg, 0)0; A v(-,0)do|

/ H/ Sorei (-, t,0)0v(-,0) — 1o (-, t,0)0; AT u(- 79))(19‘ 2

2

dt
L2(Qa2s,)

de
L2(Qa5,)

<Cs/ / I AZ%rei (-, t,0)0v( - 0)—r2j(-,t,9)ajA;Sv(-,0)||iz(9%1)d9dt

T
<20Cr sup oot D)llipeny [ 1140 050l 6) g, 0
—T<t,0<T T

T
< Cg/ / | AL° 8jv|2dxdt,
T R™
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T t
/_THAT_S/O 7r2;(+,1,0)(9;( -, 0))v( -, 0)d0

t 2
= [ et 0)@00 ) A ol 00 de < Cor* [ fuPdadt,
0 L2(Q Q

2651)

T
/T I AZ2 115050 = 11505 A7 0|72, ydt

T T
< sup Hrlj(-,t)”mp(Rn)/ / |/\T_S(’9jv|2dxdt§010/ / | A=* 0,v[2dadt,
T —T JR™ -T n

—T<t<
T

/ | A% Tri(050)vdr — 115 (0;0) AS° vd7'||%2(9251)dt < 0107'2_25/ |v|2dadt
-T Q

for j =1,2,---,n. Consequently we have

T T
/ ||/\;SP¢’U—P¢/\;S’UH%2(9251)dtS011T4_4S/ |U|2d$dt+0117‘2_25/ / | A% 00 Adxdt.
T Q —7 JRr

Thus the proof of Lemma 2.1 is completed.

Lemma 2.2 Let K(x,y;7) be the Schwartz kernel of the pseudo-differential operator N[ *
with 7 > 1. Then
|05 K (2, y;7)| < Cra(p)7 > —y[ 7277
provided that |o| <1 and |z —y| > u > 0.

Proof The Schwartz kernel K (z,y; ) is the oscillatory integral
. 1 .
R R I el M RS S R
1 i(x—y)- s s\ —
— o [ e+ ) g

CJa—yP?

= 7|x(:1y)f% / ) ETEAL(E)* + )7 g, CeN.
We have integrated by parts in the above equalities. Observing that

D) +7°) 7Y < Cus(O((€)° +7°)2(g) 723, £=1,2,--
and choosing ¢ = n + 2, we complete the proof of Lemma 2.2.

Lemma 2.3 Let % <s<1,andg, rij, r2;, 1 < j < n satisfy (2.3). Moreover, assume that
g and d satisfy (2.4). Then for large enough X > 0, there exists a constant C14 = C14(N\) > 0
such that

T T
P [ e eyt < Cua [ e Pl ey

for all u € CZ(Q), provided that T > 0 is large enough.
Proof By Proposition 2.1, we know that for large enough A, there exists a constant

C15 = C15(A) > 0 such that if 7 is large enough, then

1
E 7372l / |02 2dadt < 015/ |Pyvo|?dadt  for all vy € CZ(Q).
|o¢‘:0 Q261 Q261
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Let x € C5°(Q%%), x = 1 in Q%. Applying the Carleman estimate to x A=* v, we have

/ [T3X2|/\;S v|2+TZ|X8j(/\T_Sv)—|—(8jx) A7S ) |dadt
Q251 =
< 016/ |Py(x A7* v)[Pdadt
Q261
<Cur [P0 + 77 A7 o o+ [9(A750) dnd, (2.7)
Q261
Furthermore, we can estimate
1
/ | A7% v)?dadt < —5 / |v|2dadt. (2.8)
Q2% T4 Q2%
From (2.7) and (2.8), we have
/ 3 AT o + 7V (A" 0)|?]dadt
Q%1
< Cua [P0 + 772 o + [V (A7) Pl (2.9)
Q251
We estimate
T T
7'/ / lv[2dadt < 7'/ / | AS AT Sv|2dadt
-T le -T n
T
< 019/ / (73] A7S 02 + 7| V(A *0) ] dadt. (2.10)
—-T n

We also have

T
7'/ / | Ay~5 vAdadt
— n

T
g/ / TI NG ASASS w2 dadt
— n

T
-1 l1—s_s —5 2
<o [ ] FTO + @t P (o) Pdade

T T
< 2T/_T /n |<§>F(/\;Sv)|2d§dt—|—2r/_T/n |<§>1_STSF(/\;SU)|2d§dt,

For the last inequality, we have used Parseval’s identity. By the Young’s inequality, we have

T T
7'/ / | Ay~ 5 v|dadt < 27/ / [(€)F (A 5v)[Adédt
T n -T n

T 4(1—s)
+ 27'/ /
7T n

2
(L + §T%S)F(A;Sv) dedt.
4 4
By noting 0 < 4(1 —s) <1 and %s < %, we can obtain

T T
T/ / | AL oPddt < czo/ / 3] AZ% of? 4+ 7V (A "0) 2] dadt. (2.11)
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By (2.9)-(2.11) and Lemma 2.1, we have

T
/ / [7'3| A8 v|2 + T|v|2 + 7] /\(1)7S v|2 + T|V(/\;Sv)|2]d:1:dt
T
_T n
T
- Cﬂ/ / [P A7 w4 7|V (A7) P dedt
T n\Qél

T
+Cﬂ/ / [P A7% ol + 7V (A7 50) Pldadt
Qs,

< ng/ / | AS P¢v|2d:17dt + Coar™ / |v]2dadt + Caor?™ / / v)[Adadt
Qao5, n

+ Cao / / (72 AZS 02 + 7|V (A7) 2] dadt. (2.12)
— n\Q&
Now we eliminate the last integral. From Lemma 2.2, we have
o2 A7 ol < @m) 7" [ ol DI K (.7l
<Cul@)r [ o=y o0l ol <1 (213)

Here we take p = %dist(anl,Q) = %61 > 0 when we apply Lemma 2.1. Since €2 is bounded,
we can choose a constant Ca4 > 1 such that |y| < % for y € 2. Since

I [ [ S M St
AT AL 205, 1 205, = 20 " T Ty
for x € R™\Qs,, y € Q, we have
1
9% AZ% vz, t)| < 0267'_25(1—|—|33|)_2"_3(/ |v|2d:1:)2, o] < 1. (2.14)
Q
Consequently,
T
/ / 105 A= v(z, 1) 2dadt < 0277745/ (1+ o)== de/ /|v| dadt
~1 JR\Qy, R™\Qs,
< 0287'_45/ |v2dzdt, |a| < 1. (2.15)
Q
From (2.12), (2.14) and (2.15), we have
/ / | AS™ ’U|2d$dt+7'/ lv|*dadt
" Q
< 029/ / | AS° P¢v|2dxdt+0297'4_45/ |v|>dzdt. (2.16)
T n Q

Since 4 —4s < 1, the last term on the right-hand side of (2.16) can be absorbed by the left-hand
side if 7 > 0 large enough. Then we have

T T
T/ / |/\§,—SU|2dxdt+7/ lv[2dadt < 029/ / | A7% Pyo|*dadt (2.17)
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by choosing 7 > 0 large enough. By the definitions of /\(1)7S and AZ°, we see that

T T
/ / | AL of2dadt — / T ———
—7 JR" _T

I . (2.18)
/ / | A7S PyoPdadt < Cgo/ ||P¢v||§1,s(Rn)dt.
7 JR" -7
Consequently, from (2.17) and (2.18), we have
T T
T/Q|v|2dxdt+T/T|u||§,ls(Rn)dtg 031/T||P¢U||§,,S(Rn)dt. (2.19)

By taking v = ue”®, we complete the proof of Lemma 2.3.

Proof of Theorem 1.1 We divide the proof of Theorem 1.1 into two steps.

Step 1 We first prove that (1.5) holds for all u € C?(Q) with compact support in Q° x
(=T, Ty). Thanks to Lemma 2.3, it suffices to prove that there exists a constant Cs3 > 0 such
that

lvillz-5@n) < Cazllvillm-+(q) (2.20)

for all v; € C() with compact support in Q°.
Let r = dist(992, 9Q%). We choose x1 € C§°(€2) such that
1, ze€ {x € Q; dist(x,00Q) > %Ii} ,
X1 =
0, xz¢€ {x € Q; dist(x,00) < %Ii},

and [|[Vx1||L=q) < Cssze™!. For every ¢ € H*(R") satisfying [|o||g=@n) = 1, we set o1 =
m. Then o1 € H§(2) and | 1] mz (o) = 1. Hence we have
H—s(Rn)(V1, 0) 5o (Rr) =H—2(R") (U1, X10) H* (R")

= Ixaellag ) m-+)(v1, 01) mye) < Csa(l+ 57" g-s(q)(v1, 01) s (@)

for all v; € C() with compact support in Q°. Therefore

lvillz-s@ny = sup  |g-s@n)(v1, 0) ms @)
”Q”HS(Rn):l

<Css(14+w7")  sup  [g-«o)(v1, 01) ()|
||91HH§(Q):1

= C35(1+ K7 )il (o
for all v; € C() with compact support in QY. Thus (2.20) is proved.

Step 2 We finish the proof of Theorem 1.1 by an argument based on approximation. Let ¢ €
C§°(R™1) be a mollifier such that supps C {(x,t); |z]* +1* < 1}, ¢ > 0 and [p,, (a, t)dzdt =
1. Weset ¢c(z,t) = e " 1¢(Z,L), e > 0. Let (s*u)(x,t) be the convolution of ¢, and u (see e.g.,

[9, Chapter I]). Then we have ¢.xu € C°°(R™*1) and supp(s.*u) C supp sc+supp u. By choosing
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€ > 0 sufficiently small, we see that ¢, * u € C°°(Q) with support in Q% x (=T} —¢, Ty +¢) C Q.
Here QY = {z € R"; dist(x, Q%) < €}. By the result of Step 1, we have

T

T
T/T (e * u)e™ |31 — () dt < Css /T o7 P (e % )|l (o dt. (2.21)

By an argument similar to the proof of Friedrichs’ lemma (P.9) in [10], we obtain
T
/T €7 P (e % u) — e™®[C * (Pu)]||§{,s(mdt —0, e—0.
Moreover, since it is easily verified that
T
/T 67 lse % (Pu)] — €™ Pull?y . dt =0, €—0,

we have

T
/ €™ P (e % u) — eT‘i’PuH%{,s(Q)dt —0, e—0.
T

On the other hand, we have
T
/T l(se * we™ — “ewH%{lﬂ(sz)dt —0, e¢—0.

Thus, letting € — 0 in (2.21), we complete the proof of Theorem 1.1.
Proof of Corollary 1.2 By virtue of Theorem 1.1, we see that if (yue™ € L?(—T,T;
H=%(Q)), then

TH’LLGTd)H%Q(fT_’T;Hl—s(Q))
S C36H€T¢(P + Cl - Cl)u||%2(—T7T;H—s(Q))
< 2036(||67¢(P + Cl)uH%Q(*T,T;H*S(Q)) + ”Cluenb”%%*T,T;H*S(Q))) (2.22)

for all u € L?(Q) with compact support in Q0 x (=T1,T1) such that Pu € L?(=T,T; H=*()).
Next we estimate the last term on the right-hand side. We see that

T T
/ H-o (@) (Crue®®, 1) ge o)dt = / w7 ey (G ey oy dt
-T =T

T
< [ il oy el ot (2.23)

if ue*?p € W (). From the corollary in [39, p. 189], we know that if n > 2,0 <y < 1—s and
1—y>n(l- %), then

H'"*(R™)- H*(R") C W,/ (R")
for 3 < s < 1. By using an argument of taking the 0-extension of y and ue*? outside Qx (=T, T,
it is easy to prove

lue?pllwy ) < llue |l ma-e ol s (o) - (2.24)
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From (2.23) and (2.24), we obtain
T
/ H*S(Q)<Clues¢7M>Hg(Q)dt
-7

T
< [ Wl ol Iyt
< HCl||Loo(_T,T;Wp7v(Q))||Ues¢||L2(—T,T;H1—s(Q))||N||L2(—T,T;Hg(sz))- (2.25)
Inequality (2.25) means (ue™ € L?(—=T,T; H=*(2)) and
|‘<1ue7-¢||L2(7T,T;H*S(Q)) < ||<1HLoo(_T7T;W;7(Q))”uesquLQ(fT,T;Hl*S(Q))- (2.26)

From (2.22) and (2.26), we obtain (1.6) by taking 7 large enough. Thus the proof of Corollary
1.2 is completed.

3 Proof of Theorem 1.3

Proof of Theorem 1.3 Let q(z) = q1(x) — ¢2(2), y1 (2, 1) = y(q1. b, y0, ys) (2, 1), ya(,t) =
y(q2,b,y0,ys)(x,t) and y(z,t) = y2(2,t) — y1 (2, t). Then we have
10wy (z,t) + div (b(z)Vy(z,t)) — @2(x)y(z,t) = qy1, in Q,
y =0, on X, (3.1)
y(,O):O, in Q.

Since |yo(z)| > ¢ >0, z € Q(d) and y1 € C(Q(d) x (=T, T)), there exist constants e; > 0 and
c1 > 0 such that

yl(l',t) > >0, (,T,t) € Q((SQ) X [—61,61].
It is easy to see that

10y + div (b(2)Vy(2, 1)) — g2(x)y
Y1

=q(z), 1in Q(dy) X (—e€1,¢€1). (3.2)

Because ¢(z) is independent of ¢, the differentiation of both sides of (3.2) with respect to t
eliminates ¢(z). Hence

04 [10ry + div (b(z)Vy(z, 1)) — g2(2)y(,1)]

= %['&ey + div (b(2)Vy(x, 1)) — g2(2)y(z,1)], in (D(Q(d0) x (—€1,€1)))". (3.3)
We set B (@)
tY1(T,
hl(x7t) = m, h(x,t) = 8ty($,t) — I’Ll(ilf, t)y(il?, t)

Then we have

y(a,t) = /0 zll((;” Z)) h(z,0)do. (3.4)

Consequently, we have

i0:h + div (b(z)Vh) — g2h = /t (zn: Kij(x,t,0)h(z,0) + zn: Koj(w,t,0)0;h(x, 9))019, (3.5)
0o Vo

j=1
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in (D(Q(d0) x (—€1,€1))), where

. b2 (D, ((z,t) . v (b(z y1(z, 1)
Kl]( 7t59) - 2b( )(8Jhl)aj (yl x,6‘)) + ( 3th1 + d (b( )Vhl))yl({[;’e)’
(x _ T . yl(xat)
Kjj(x,t,0) = 2b( xajhl)iyl(a&,ﬁ)'

Let § > 0 be a constant. Define
Q(0) = {(x,t) € Q; |z — x> — Bt* > §°}.

Here we choose a constant 5 > 0 such that Q(dy) C Q x (—e1,€1). We introduce a cut-off
function x2 € C*°(Q) such that

. 1, (,T,t) EQ(60+361),
xa(®,f) = {o, (,t) € Q\Q(d + 201), (3:6)

where §; > 0 is a small constant.

Let z = x2h. By (3.6) and (1.13), we know that z € L?*(Q(6 + 1) x (=T,T)) with
supp z C (£2(do + 201)\w) X (—e€1,€1).

From (3.5), we have

10z + div (b(x)Vz) / ZKQJ (x,t,0)0;2(z, 0)do

= q22—|—X2/ ZKU z,t,0)h(x,0)dd —/ ZKQJ ,t,0)h(x, 0)d; x2(x,0)do
+i(8txg)h+b(Ax2)h+ 26V x2 - Vh+th-Vx2, in (D(Qdo) x (—e1,€1))). (3.7

By noting also (1.12), we apply Corollary 1.1 to z. Then we obtain

T
7'/ / |z|2627¢1d:17dt
—1 JQ(80+61)
T 5 t n s
< H zeTl-l-/ Kii(- t,0)xa(-,0)h(-,0)e™* do H at
~/7T & 0 ng 1]( )X2( ) ( ~1(Q(60+61))
T t n :
+ H/ Koi( - 6,0)h(-,0)(8;x2)( -, 0)e2" 1d9H dt
/1] >R b OO0

T
+/ (e x2)he®™ 1 + b(Ax2)he®™® + 2b(Vxa - Vh)e? ™41
-7
+1(Vb- Vx2)e® [ F-1 s 460 At (3.8)

for large A\, 7 > 0. By (1.12), (3.6) and ¢2 € LP(Q) with p > max{n, 2}, we have

T
T / / |z|2e*7 1 dadt
-T 9(60 +61

T
g/ H/E KljxtHXQxﬂ)h(a:H)Td’ld’
-7

dt
L2 52(504*51))
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T
[ el 1 sy + Carer 3355

T
< (s / / |2|2e27 1 dadt + Cyre?m (o300 (3.9)
=T JQ(d0+01)

By taking 7 large enough, the first term on the right-hand side of (3.9) can be absorbed by the
term on the left-hand side. Then we have

T
T / / |hxa|?e?™ 1 dadt < Cyre?T(%0+301)
=T JQ(0+61)

for large 7 > 0. By (3.6), we obtain

/ |h2dzdt < Cge 270
Q(d0+461)

for large 7 > 0. As 7 — +oo, we have fQ(50+461) |h|?dzdt = 0. This implies that h(x,t) =
0, (x,t) € Q(dp + 461). By (3.4), we have y(x,t) = 0 in Q(dp + 461) . Consequently, we have
q(z) = 0 in Q(do + 4d1) by noting (3.2). Since d; is arbitrary, ¢2(z) = q1(x), = € Q(dp). Thus
the proof of Theorem 1.3 is completed.

4 Proof of Theorem 1.4

Proof of Theorem 1.4 Let dy = ing exp{|z — xo|?}. We choose 3 > 0 such that sup |z —
zE €N

zo|? < T?B. For A > 1, we set ¢ (x,t) = exp{\(|z — z0|* — Bt*)}. Then we have
¢1(2,0) > do,  ¢1(2,~T) = ¢1(2,T) <do, x€Q.
Thus, for given € > 0, we choose a sufficiently small 6; = d;(€) > 0 such that

¢1(£L‘,t) >dy — €, ($ ) €O x [—61,61], (41)
€Qx

't
é1(2,t) < do — 26, (z,1) ([T, =T + 26,] U [T — 26, T)). (4.2)

We introduce a cut-off function ys satisfying 0 < y3 < 1, x3 € C*[0,T] and

(4.3)

0, tE[—T,—T—I—(Sl]U[T—(Sl,TL
xs(t) =
1, te [—T+251,T—251]

Let QY C w satisfy 99" D 9Q. We introduce another cut-off function y4 satisfying 0 < y4 < 1,
x4 € C° () and

0, ze€Q°
= ’ ’ 4.4
xa(@) {1, x € Q\w. (44)

Multiply the first equation in (1.14) by 7, take the imaginary parts and integrate by parts.
Then we have

InCs)llz2@) = In(-, 0)llL2ey, € [0,T7]. (4.5)
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Consequently, we have

T
/ / Inf2dadt < Cynol|2 -

-T
By a density argument, we can see that in order to prove Theorem 1.4 it suffices to prove that
(1.15) holds for ng € H?(Q) N H}(Q). Then we have

n € C([=T,T); H*(Q) N Hy (@) N CY([=T, T]; L*(2)). (4.6)
Let z = x3x4n. Then by (4.3)—(4.6), we have
z€ HY(Q), suppz C (Q\w) x (=T +26;,T — 261). (4.7)

Since 10,z + div(b(z)Vz) € L*(Q), we apply Corollary 1.1 to z for the case when s = 1.
Then we have

T
7-/ |zeT¢1|2dxdt < 02/ ||e7'¢1 [i0:z + diV(b(I)VZ)]”%I*I(Q)dt
Q T

T
e / 171 {xaxali0en + div(bVn)] + ixandexa
T

+ 2x3div(bnVxa) — xsnVb - Vxa — xabnAxa}||F-1(q)dt

T
= Cz/ €™ {x3xaqn + ixandx3 + 2x3div(bnVx4)
T

— X31Vb - Vxa — x3bnAxa}[ -1 q)dt, (4.8)

provided that A > 1, 7 > 1 are large enough. By noting that d;x3 # 0 only in the case where
¢1(t, ) < doy — 2¢, and Ojxa, 1 < j < n, are supported in w, we have

T
7'/ |ze™ 1 2 dadt < 03/ ||q||2Lp(Q)HzeT¢1||2L2(Q)dt—|—C’geQT(d"*%)/ Ixan|*dxdt
Q T Q

T T
+ Cye?™® / gyt + Cs / 1T 2y () (49

where ® = sup ¢;(x,t). The first term on the right-hand side of (4.9) can be absorbed by
(z,t)€Q
the left-hand term when we choose 7 > 1 large enough. Thus we have

T
7'/ |ze™?1|2dadt < C4e27(d°_2€)/ |x477|2dxdt+C4e2T‘I’/ ||17||%2(w)dt
Q Q T

T
+Cy / lle™ 2x3div(bnV xa) | -1 (At (4.10)
T

By noting that €7?12x3div(bnVxa) =2 3" 9;(e™®1bx3ndjx4) — 2e™17bx3n (Vb1 - Vx4), We can
i=1
obtain

T
r [ e Pasd < e [ pnfasdr s om0 [l @4
Q Q -T
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Noting z = x3xa7, (4.1) and (4.3), we can obtain
01
T€2T(d0_€)/ / Ixan|>dazdt
-5 Ja
T
< Cﬁe2T(d0_2€)/ In|>dzdt + Ce(1 + T)e2T‘I’/ 7172 0y - (4.12)
Q -7

By (4.4), we have

01
re27(do—¢) / / In|>dxdt
—51 Q\w

T
< C7e27(d0_26)/ In?dzdt + C7(1 + T)e2T‘I’/ 7172 0y At (4.13)
Q -7
Consequently, we have

01
re27(do—¢) / In2dadt
—5 JQ

T
< Cge?7(do=2¢) / In|*dzdt + Cs[(1 + 7)e*™® + 7'62T(d0_6)] / ||77||%2(w)dt (4.14)
Q T

for large 7 > 1. By noting (4.5) we obtain

(do—e CoT 671
27’6162 (do—e) (1 - T2Tl€) ||770||%2(Q)d{l]dt
T
< Co[(1 + 7)e?™® 4 7?7 (do=e)] / H77H%2(w)dt- (4.15)
-7
log 2Co T8 *

Taking 7 > max{1, L}, we have

2e

- CoTsi ' 1
Te27e 2
Thus, by (4.15), we complete the proof of Theorem 1.4

Appendix

Proof of Proposition 2.1 We first prove (2.1). Let a(z,t) = ﬁ, P = iadyv + Av,
w = ve™ and Lw = e"?P%(e~"%w). Then we have

Lw +i7(0:p)aw = Liw + Law,
Liw = iadyw + Aw + 72| V| 2w, (A1)
Low = =27V ¢ - Vw — TwA¢.

Then

/|Lw+i¢(8t¢)aw|2d:vdt=/ |L1w|2d:vdt—|—/ |L2w|2dxdt+2Re/ LiwLywdzdt. (A.2)
Q Q Q Q
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We calculate the last term:

2Re/ LiywLowdzdt = —47'Re/ i(Oyw)aVe - Vwdzdt — 47'Re/ (Aw)V¢ - Vwdadt
Q Q Q
- 2TRe/ iaw(Oyw) Apdadt — 2TRe/ w(Aw)A¢dadt
Q Q

—4T3Re/ |V¢|2wV¢~Vdedt—27-3/ Vo2 (Ap)|w|?dadt
Q Q

=1 (A.3)

j=1

Integrating by parts and using w|pg = 0 and (A.1), we have
I, = —27Im /Q {(=2X\?Bt)ap(Vd - Vo )w — ad(A\pAd + N2 ¢|Vd|*)w}dadt
+ 27Re /Q Ap(Vioga - Vd)wLiwdxdt — 27Im /Q(ata)wVE - Vodadt
+ 27Re /Q NowV (Vioga - Vd) - VI 4+ N2 ¢(Vloga - Vd)(Vd - Vo) w]dadt
+ 2T/QA¢(V loga - Vd)|Vw|*dzdt — 273/Q)\3¢3(V loga - Vd)|Vd|?|w|*dzdt,

I, = 27/ —(ApAd 4+ N ¢|Vd|*) | Vw|*dzdt
Q

+ 4rRe / S (A6, Ohd + X2(0;d) ) (0;0) 06T
Q

k=1
T T
d
+2T/ / /\¢8—|Vw|2d2—4TRe/ / A¢(w-vma—wdxdt,
—T J o ov —T JoQ ov
I3 = —27Im / aw(9,0)(ApAd + N2 ¢|Vd|?)dzdt,
Q
14 :27’/()\(bAd—l—)\2¢|Vd|2)|Vw|2dxdt—7')\/ ¢(A2d)|w|2dxdt
Q Q
—TA2/ H(|Ad)? 4 2Vd - V(Ad) + A(|Vd|?)) |w]*dzdt
Q
—27'/\3/ ¢(|Vd|2Ad+Vd~V(|Vd|2))|w|2dxdt—7—)\4/ P|Vd|*|w|>dzdt,
Q Q
15:273)\3/ ¢3(|Vd|2Ad+Vd~V(|Vd|2))|w|2da:dt+67-3)\4/ 3 |Vd|*w|?dzdt,
Q Q
Is = —273)\3/ ¢3|Vd|2(Ad)|w|2dxdt—273)\4/ 3| Vd|* |w|*dzdt.
Q Q
Consequently, we have

2Re / LiwLswdxdt
Q

= 27'/\/ ¢[|Vw|2V1oga -Vd+2 Z (ajakd)(ajw)akw} dzdt
Q

k=1
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+4¢A2/ ¢|Vd~Vw|2dxdt+47'3/\4/ ¢*|Vd|*lw|*dxdt
Q Q

T od _ T _Ow

+ 27 Ap— |Vw|?dE — 47Re Mp(Vd - V) —dE + X1 + Xo,  (A4)

—rJoa OV —T Jox v
where
X1:—273/ )\3¢3(V10ga-Vd)|Vd|2|w|2dxdt+2T?’)\3/ #*Vd - V(|Vd)?)|w|*dzdt,

Q Q

X2:—27'Im/ (—2)\25t)a¢(Vd~VE)wdxdt—FQTRe/ Ap(Voga - Vd)wL;wdadt

Q Q

—|—27’Re/ MpwV(Vioga - Vd) - Vo + A\?¢(Vloga - Vd)(Vd - Vio)w]dedt
Q

(A.5)
—27Tm / (Ora)wVw - Vodadt — TA / H(A2d)|w|*dzdt
Q Q
—T)\2/ d(|Ad|)? 4 2Vd - V(Ad) + A(|Vd|?)) |w]*dedt
Q
—27')\3/ o(|Vd)>Ad + Vd -V (|Vd]*))|w|? —Tx*/ B\ Vd|*|w|?dzdt.
Q Q
By (1.2), we obtain
/ ¢[|Vw|2V1oga -Vd+2 Z (ajakd)(ajw)akw} dzdt + / #|Vd - Vw|*dadt
Q k=1 Q
> Cl/ o|Vw|?dzdt.
Q
By taking A > %, we have
/ ¢>[|Vw|2v1oga-w+2 > (ajakd)(ajw)akw] dxdt+2)\/ $|Vd - Vw|*dadt
Q jok=1 Q
> Cl/ B|Vw|*dxdt. (A.6)
Q

From (A.4) and (A.6), we have

/|Lw+ira(8t¢)w|2dxdt2/ |L1w|2d:1:dt+/ | Low|*dadt
Q Q Q

+2TA01/ ¢|Vw|2dxdt+473)\4/ 3|\ Vd|*|w|*dzdt
Q Q

T
+2T/ / A¢@|Vw|2dz
—T7 JoQ 8V

T
— 47ARe / $(Vd - VW)
—T JoQ

ow

d¥ + X + Xo.
ov
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Since |Vd| > 0 on €, there exists a constant Cy > 0 such that |Vd|* > Cy on Q. Then we have
/ |Lw + iTa(0;¢)w|?dzdt > / |Liw|*dadt —|—/ | Low|*dxdt
Q Q Q

+2TA01/ ¢|Vw|2d:vdt+40273)\4/ #3|w|*dzdt
Q Q

T
+2T/ / A¢%|Vw|2d2
—T7 JoQ 81/
T _Ow
— 47 Re o(Vd - Vo) —d¥ + X5 + Xo. (A.7)
—T7 JoQ 8V

By (A.5) and (A.7), we see that there exists a constant A; > % such that for arbitrary A > Ay,
the terms of X; can be absorbed by 4Co73\4 Jo @°lw|*dzdt, and we have

/ | Lw + iTa(0;¢)w|*dzdt
Q

2/ |L1w|2d:vdt+/ |L2w|2dxdt+27)\01/ ¢|Vw|2dxdt+0373)\4/ #%|w|?dzdt
Q Q Q Q

ow

T T
od
—|—27’/ / /\gb—|Vw|2dE—47-/\Re/ o(Vd - V) d¥ 4+ Xo.
—rJoa OV —T J o v

Since ¢ > 0 on @ for A > A1, there exist constants Cy = Cy4()\) and 71 = 71()\) such that for all

T>T,

/ |Lw + ita(0;¢)w|?dzdt
Q

2/ |L1w|2dxdt+/ |L2w|2dxdt+C’4()\)T/ |Vw|2dxdt+C4()\)7'3/ |w|*dxdt
Q Q Q Q

ow

T T
d
+ 27/ / A¢8—|Vw|2d2 — 4TARe/ o(Vd - V) d¥ + Xo.
_rJoa OV -7 Jon v

Then we choose 75 = 72(A) > 0 such that all the terms of X5 can be absorbed into HL1w||2L2(Q)7
||L2w||%2(Q), C4||Vw||%2(Q) and C4T3||’UJH%2(Q), if we take 7 > 7. Hence since Vw = %y by
w=0ondQand [, |Lw+ira(dp)w*dadt < 2 [, [Lw[*dwdt + C572 [, [w[*dadt, taking 7 > 0
sufficiently large, we obtain

06/ |Lw|2d:vdt2/ |L1w|2dxdt+/ |L2w|2dxdt+7/ |Vw|2d:cdt+73/ lw|?dadt
Q Q Q Q Q

Now we rewrite our inequality with v instead of w. By w = ve™®, |v]?e*™? = |w|?, Lw = e7? P,
and |Vv|?e?™® < 2|Vw|? + 2720202 Vd|?[w|?, |92[?e*™® = |22|2 on 9 x (=T, T), we see that
there exist positive constants Cs(A) and 79 > 72(A) such that for all 7 > 7,

7'/ |Vv|2627¢d:17dt+7'3/ [v|?e7?dadt
Q Q

T
Ov |2
§C8/ |POU|2627¢dxdt+CgT/ / ¢‘_U‘ e2‘r¢(Vd.y)dE'
Q —-T JoQ v
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By noting P%u = ﬁPou and g € C1(Q), g > 0 on Q, we complete the proof of (2.1). Thus

the proof of Proposition 2.1 is completed.

Proof of Theorem 1.2 Let 0 < T’ < T, and € be a subset of Q satisfying (z!,¢!) €
Q x (=T',T") and Q' x (=T",T") C Q. Let U’ be a neighbourhood of (z!,t!) satisfying
U c Q x (=T, T"). We introduce a cut-off function y5 € C§°(Q) such that ys(z,t) = 1,
(x,t) € U and xs(x,t) = 0, (z,t) € Q\Q x (=T",T"). We set z(z,t) = xs5(z, t)u(x,t).
Then z € L?*(=T,T; H'7%(Q)) and suppz C ' x (=T',T’). Next we check that Pz €
L?(=T,T; H=*(2)). In fact, by (1.7), we obtain

[Piz]| L2(—rrim—o () = [1dexs + div(puVxs) + pVu - Vsl 7o rrm-s )

< Cillullfe-rrsm-«()) < o

Here we use | Vv| g-=(q) < C1||v]| 1+ (q), which can be proved for example by an interpolation
inequality (see e.g., [34, Section 5, Chapter 1, Vol. 1]), because V is a bounded operator from
H} () to L*(Q) and from L*(Q) to H1(Q).

Let §; > 0 be a constant. We take d(z) = |z — x0|> — 81|z — 2| in Corollary 1.2. From
(1.8), by choosing §; > 0 small enough, we apply Corollary 1.2 to P; and z. Let

¢2(w,t) = e>‘<|m7m0|27ﬁt2*51|$7961|2).

Then we have . "
. / 26782 2 ot < C / o7 Prall?y o dt
T =T

for large 7, A > 1. By noting that Pyu = 0 in @), we obtain

T

T
m [ e ot < Cs [ @)+ (Bxs)up

+2pVxs5 - Vu+uVys - Vp]e“i’?”f{,s(mdt

for large 7, A > 1. Consequently,

T T
T/T [xsue™ || F1- (ydt < 04/T{|\i(8tx5)ue7¢2||§175(9) + [(Axs)upe™ ([ F-s (@)

+ 1€72uV x5 - VpllFr—o ) + 120V x5 - Vu)pe™ 2|13 ) Yt

T
<Cs [ {0 s + 1 Ax0)ue™ o

+ 13ue™ Vxs - VpllZagq) + Y 1205 )upe™ [31-. o)
i=1

+ ||2(AX5)upeT¢2||2L2(Q) + 127 (Vx5 - V¢2)upeT¢2|\%2(Q)}dt. (A.8)

Since u = 0 in {(z,t) € Q; eMlz=zol*=51") 5 A(2"—2ol*=BIt'")} " we see that there exists a
constant € > 0 such that either v = 0 or all of the derivatives of x5 are equal to zero in
{(z,t) € Q; ¢a(z,t) > ¢a(z',t') — €}. Hence all the terms on the right-hand side of (A.8) are
equal to zero in {(z,t) € Q; ¢a(x,t) > da(x!, ') — €}. Then we obtain

T T
T/ / sul?e? 2 dadt < Core?e™™ / el 1o gyt
~rJa T



Carleman Estimates for the Schrodinger Equation and Applications 577
Consequently,

L. 21l T
(2reta@t =3 ju|2dzdt < Cre2me™" ") /T [

/Z/l’ﬂ{(m,t)6Q;¢2(m,t)>¢2(11,tl)—;}

By taking 7 — 400, we obtain u = 0 in U’ N{(z,t) € Q; ¢a(x,t) > do(x',t') — £}. Hence we
can choose a neighbourhood U of (z!,¢!) such that « =0 in #. Thus, the proof of Theorem
1.2 is completed.

Acknowledgement The authors thank the anonymous referees for valuable comments.
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