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Abstract Two models based on the hydrostatic primitive equations are proposed. The
first model is the primitive equations with partial viscosity only, and is oriented towards
large-scale wave structures in the ocean and atmosphere. The second model is the viscous
primitive equations with spectral eddy viscosity, and is oriented towards turbulent geophys-
ical flows. For both models, the existence and uniqueness of global strong solutions are
established. For the second model, the convergence of the solutions to the solutions of the
classical primitive equations as eddy viscosity parameters tend to zero is also established.
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1 Introduction

We study two models for geophysical flows based on the hydrostatic primitive equations;
both are designed to faithfully simulate certain phenomena in the geophysical flows but they
are motivated by different physical considerations. A distinctive characteristic of the flows
under consideration is that the vertical scale (10 km) is much smaller than the horizontal scale
(6000km). Thanks to this disparity, a hydrostatic approximation is possible, and gives rise of
the primitive-equations.

On the mathematical side, the theory for the primitive equations is fairly complete (see, e.g.,
the pioneering work in [22, 23], and the survey article [28]). In particular, in contrast with the
Navier-Stokes equations (see [9, 33]), the primitive equations have been shown to have unique
global strong solutions (see [7, 18, 20, 21).

The first model we study aims to faithfully simulate large-scale coherent structures including
wave phenomena in the ocean and atmosphere. For relevant discussions of this topic, see, e.g.,
[12, 24, 27]. For the phenomena that we are interested in, both the ocean and atmosphere
are close to being inviscid. Therefore, the inviscid primitive equation is the preferred model.
However, it is very costly to simulate the inviscid primitive equations directly due to the small
scales embodied within the model. What we propose here is a new model with eddy viscosity
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added to the small scale (high frequency) part only while keeping the large scale (low frequency)
features intact (at least directly). Intuitively, this type of model would reduce the complexity
due to the damping on small scales whereas keeping the desirable large scale structures. Such
a naive approach may not work all the time due to the cascade of energy induced by the
nonlinear advection term. However, we can easily find situations where such cascade is small
or negligible. Indeed, it is easy to find exact large-scale solutions to this primitive equation
with partial viscosity; see below. Of course, the existence of such examples do not fully justify
the model, and extensive numerical experiments are called for which is our future plan. The
idea of partial damping on the high frequency components of the system is not alien to the
geophysical community (see, e.g., [11, 25]) or the mathematical community (see, e.g., [4, 5, 10,
26]), although the application to the primitive equations is new here. Our goal in this paper is
to demonstrate the global well posedness of this model with partial viscosity.

The second model is oriented at turbulence modeling for geophysical flows. The simulation
of three-dimensional turbulent flows is a formidable task due to the need to resolve the small
scale fluctuations or eddies that have subtle effects on the large-scale dynamics of the flow. To
make this problem computationally tractable, these effects must be modeled. In one approach,
the velocity field is averaged over a small radius to derive equations in terms of the averaged
velocity. For nonlinear equations, there arises the problem of closure because the product
operation is not closed under the averaging process. To obtain a closed system, the average
of the nonlinear terms in the equations must be approximated and expressed solely in terms
of averaged quantities. The way in which this is done gives rise to a variety of models. The
approach we consider, called the eddy-viscosity method, treats the Reynolds stress as a viscous
effect caused by the transport and dissipation of energy due to the small-scale eddies. For
this reason, this additional viscosity is called the eddy viscosity or turbulent viscosity. The
turbulence model of Smagorinsky [31] belongs to this type. For an overall survey on issues
related to these models (see [3]).

Unfortunately, a straightforward application of the approach described above leads to the
over smearing of the large-scale structures in the fluid. To remedy this unwanted effect, it
has been proposed that the eddy viscosity be added only to the subgrid scales. In this way,
one hopes to prevent the large-scale structure from being smeared away. Here, we examine a
particular class of models of this type called spectral-viscosity or spectral-vanishing-viscosity
models, in which the scales are defined in terms of Fourier modes. The subgrid viscosity is
simply realized as an addition of the artificial viscosity only to the high-frequency modes. The
most intuitive way of doing this to insert a high-pass filter to the standard eddy viscosity. This
approach was considered in [13] for hyperviscosity on the Navier-Stokes equations and in [15]
for nonlinear as well as hyper-viscosity on the Navier Stokes Equations. In both works, the
well-posedness of the resulting spectral viscosity is proven, and the consistency of these model
with the original Navier-Stokes equations is discussed.

We employ the idea of spectral viscosity to build and analyze a turbulence model for the
geophysical flows in the ocean and atmosphere. As mentioned above, the primitive equations,
even without any eddy viscosity, have been shown to have unique global solutions, provided
the initial and boundary data are sufficiently smooth. For our model, we prove its global well
posedness, which should not come as a surprise. In addition, we will show the convergence of
the solutions of the model to the solutions of the primitive equations without any eddy viscosity,
as the eddy viscosity parameters tend to zero. This is not possible yet for the Navier-Stokes
equations because there convergence is only shown to be in a weak sense.

We should point out that this technique, usually under the name of spectral viscosity or
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spectral-vanishing viscosity, is known in terms of turbulence modelling (see [2, 13, 15, 19, 32],
and below), and to applications in geophysical fluid dynamics [11]. However, to the best of our
knowledge, the well-posedness result for the three-dimensional nonlinear primitive equations
with partial viscosity is new.

The paper is organized as follows. In Section 2, we introduce and prove the well posedness of
a model with only partial viscosity. In Section 3, we introduce the linear spectral eddy-viscosity
model. In Section 3.2, we prove the existence and uniqueness of strong solutions to the model.
In Section 3.3, we study the convergence of the solutions of the model to the solutions of the
original primitive equations.

2 A Model with Partial Viscosity

In this section, we study a model with partial (high-frequency) viscosity only. The lower
modes are not damped directly. This feature renders the model suitable for large scale coherent
structures in the ocean and atmosphere, because non-physical large scale damping could change
the large scale coherent structures over time.

The model reads

∂u
∂t

+ (u · ∇)u + w
∂u
∂z

+ fk× u +
1
ρ0

∇p

− μΔ(I − PM,N )u − ν
∂2

∂z2
(I − PM,N )u = F, (2.1)

∂p

∂z
= −ρ0g, (2.2)

∇ · u +
∂w

∂z
= 0. (2.3)

In the above, u = (u, v) is the horizontal velocity, w is the vertical velocity, μ and ν are the
horizontal and vertical kinetic viscosities, respectively. We use ∇ and Δ to denote the 2D
horizontal gradient and Laplacian operators, respectively. The operator (I − PM,N ) represents
the high-pass filter and will be defined later on.

We consider a rectangular domain Ω = M×(−H, 0), withM = (0, Lx)×(0, Ly). We consider
periodic boundary conditions in both the x and y directions, and free-slip, non-penetration
boundary conditions in the vertical directions. More precisely,

u(x, y, z, t) = u(x + Lx, y, z, t), (2.4)

u(x, y, z, t) = u(x, y + Ly, z, t), (2.5)
∂u
∂n

|z=0 =
∂u
∂n

|z=−H = 0, (2.6)

w|z=0 = w|z=−H = 0, (2.7)

p|z=0 = p0. (2.8)

Under the settings just described, we can define the high-pass filter in terms of Fourier
frequencies. Specifically, for each function u ∈ (L2(Ω))2, we let

PM,Nu =
∑

|m|sup≤M
n≤N

ûm,neim·x′
cosnz′ (2.9)
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where

m = (m1,m2) ∈ Z
2,

|m|sup = max(|m1|, |m2|),
x′ = 2π

( x

Lx
,
y

Ly

)
,

z′ =
πz

H
,

ûm,n =
∫

Ω

u(x, y, z)e−im·x′
cosnz′dxdydz.

Remark 2.1 The issue of suitable physical boundary conditions for the inviscid primitive
equations is an unresolved one. Partial results concerning the linearized primitive equations
are available in a series of papers (see [8, 29, 30]). There, an infinite set of nonlocal boundary
conditions were proposed, which guaranteed the well-posedness of the linearized system. Here,
we avoid this issue and use the periodic boundary conditions on the lateral boundaries.

Remark 2.2 As we have touched upon in Introduction, we can easily identify some large-
scale motions which are exact solutions of the inviscid primitive equations. For example, let

ψ = sin
(4πx
L1

)
cos

(2πy
L2

)
and u = ∇⊥ψ.

With the surface pressure p0 given by

p0 = fψ +
2π2

L2
2

cos
(4πx
L1

)2

− 8π2

L2
1

cos
(2πy
L2

)2

,

(u, 0) is a set of exact solutions of the inviscid primitive equations, that is, the system (2.1)–(2.8)
without the viscosities, or with partial viscosity with M > 4.

2.1 The barotropic and baroclinic modes

As usual, p and w can be expressed in terms of u. Specifically, integrating (2.2) from z to
0, and using the boundary condition (2.8) we obtain

p(x, y, z, t) = p0(x, y, t) − ρ0gz, (2.10)

Integrating (2.3) from z to 0, and using the boundary condition (2.7), we obtain

w(x, y, z, t) =
∫ 0

z

∇ · udξ = ∇ ·
∫ 0

z

udξ. (2.11)

Setting z = −H in (2.11), and using (2.7) again, we find

∇ ·
∫ 0

−H

udz = 0. (2.12)

We substitute (2.10) and (2.11) into (2.1), and obtain a single closed equation for u,

∂u
∂t

+ (u · ∇)u +
(
∇ ·

∫ 0

z

udξ
)∂u
∂z

+ fk × u +
1
ρ0

∇p0

− μΔ(I − PM,N )u − ν
∂2

∂z2
(I − PM,N )u = F. (2.13)
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It turns out essential to rewrite this equation and work with the following form:

∂u
∂t

+ (u · ∇)u +
(
∇ ·

∫ 0

z

udξ
)∂u
∂z

+ fk× u +
1
ρ0

∇p0 − μΔu− ν
∂2

∂z2
u

= F− μΔPM,Nu − ν
∂2

∂z2
PM,Nu. (2.14)

We note here that PM,Nu contains only finite number modes of u. The prognostic variable u
satisfies the equation (2.14), the constraint (2.12), and the boundary conditions (2.4)–(2.6). To
complete the system, we also require u to satisfy the following initial condition:

u(x, y, z, 0) = u0(x, y, z). (2.15)

The diagnostic variables w and p are given by (2.11) and (2.10) respectively.
We now specify the barotropic and baroclinic modes of equation (2.14). We let

u(x, y, t) =
1
H

∫ 0

−H

u(x, y, z, t)dz, (2.16)

which denotes the barotropic mode of the primitive variables. We also denote by

u′(x, y, z, t) = u(x, y, z, t) − u(x, y, t) (2.17)

the baroclinic mode of the primitive variables. It is easy to see that

u′ = 0. (2.18)

From (2.4) and (2.5), we derive the boundary conditions for u,

u(x, y, t) = u(x + Lx, y, t), (2.19)

u(x, y, t) = u(x, y + Ly, t). (2.20)

By (2.12), we see that u satisfies the following constraint:

∇ · u = 0. (2.21)

Then u′ also satisfy the periodic boundary conditions on the lateral boundary,

u′(x, y, z, t) = u′(x+ Lx, y, z, t), (2.22)

u′(x, y, z, t) = u′(x, y + Ly, z, t). (2.23)

It inherits the boundary conditions for u on the top and bottom,

∂u′

∂z

∣∣∣
z=0

=
∂u′

∂z

∣∣∣
z=−H

= 0. (2.24)

By taking average of the equation (2.14), we now derive the equations that u and u′ satisfy

∂u
∂t

+ (u · ∇)u + w
∂u
∂z

+ fk × u +
1
ρ0

∇p0 − μΔu − ν
∂2u
∂z2

= F− μΔPM,Nu− ν
∂2

∂z2
PM,Nu. (2.25)
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We notice

(∂2u
∂z2

)
=

1
H

∫ 0

−H

∂2u
∂z2

dz =
1
H

∂u
∂z

∣∣∣0
−H

= 0, (by (2.6))

∂2

∂z2
PM,Nu =

1
H

∫ 0

−H

∂2

∂z2
PM,Nudz = 0,

ΔPM,Nu = ΔPM,Nu.

By using (2.18), we find
(u · ∇)u = (u · ∇)u + (u′ · ∇)u′.

Using (2.12), (2.18) and (2.21), we find

w
∂u
∂z

= (∇ · u′) · u′.

Hence the equation for u can be written as

∂u
∂t

+ (u · ∇)u + [(u′ · ∇)u′ + (∇ · u′)u′] + fk× u +
1
ρ0

∇p0 − μΔu

= F− μΔPM,Nu. (2.26)

The barotropic variable u satisfies the following conditions:

u(x, y, t) = u(x + Lx, y, t), (2.27)

u(x, y, t) = u(x, y + Ly, t), (2.28)

∇ · u = 0. (2.29)

Subtracting (2.26) from (2.14), we obtain the equation for the baroclinic mode:

∂u′

∂t
+ (u′ · ∇)u′ +

(
∇ ·

∫ 0

z

u′dξ
)∂u′

∂z
+ fk × u′ − μΔu′ − ν

∂2u′

∂z2

+ [(u′ · ∇)u + (u · ∇)u′ − ((u′ · ∇)u′ + (∇ · u′)u′)]

= F′ − μΔPM,Nu′ − ν
∂2

∂z2
PM,Nu′. (2.30)

In addition, u′ satisfies

u′(x, y, t) = u′(x+ Lx, y, t), (2.31)

u′(x, y, t) = u′(x, y + Ly, t), (2.32)

∂u′

∂z

∣∣∣
z=0

=
∂u′

∂z

∣∣∣
z=−H

= 0, (2.33)

∫ 0

−H

u′dz = 0. (2.34)

2.2 Global well-posedness of the model with partial viscosity

In order to have uniqueness for the solution to (2.1)–(2.8), we work with functions that have
zero average over Ω. Indeed, it can be checked that if the initial data and the forcing have zero
average over Ω, then the solutions have zero average over Ω at any time.
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We use the convention L̇2(Ω), Ḣ1(Ω), etc. to denote function spaces that have zero average
over Ω. We let

H = (L̇2(Ω))2,

V = {u ∈ Ċ∞(R3)2 | u periodic in x with period Lx, periodic in y with

period Ly, periodic and even in z ith period 2H},
V = VH1

(closure of V in (H1(Ω))2).

The inner product and norm of H will be denoted as ( · , · ) and | · |, respectively. The space
V inherits the inner product and norm of H1, which will be denoted as (( · , · )) and ‖ · ‖,
respectively.

Since the functions in V has zero spatial averages, we have the following Poincaré inequality
for functions in V :

|u|2 ≤ C
(
|∇u|2 +

∣∣∣∂u
∂z

∣∣∣2). (2.35)

Therefore
(|∇u|2 +

∣∣∂u
∂z

∣∣2) 1
2 is equivalent to the usual H1 norm, and can be taken as the norm

for V .
In what follows, we abuse the notation by denoting every generic constant by C. Such

constants may depend on the domain Ω and the function spaces in the context, but we omit
such dependence in the notation. But if the constant depends on any other parameters, such
as M , N etc., we shall use a specific symbol and specify such dependence in the notation.

We shall prove the global existence and uniqueness of strong solutions to the system (2.1)–
(2.8).

Theorem 2.1 For a given T > 0, let F ∈ L2(0, T ;H), u0 ∈ V . Then there exists a unique
strong solution u ∈ C([0, T ];V ) ∩ L2(0, T ;H2(Ω)) to the system (2.1)– (2.8) which depends
continuously on the initial data.

We shall first obtain some key estimates that will be needed for the proof of Theorem 2.1.
The proof of the theorem will be furnished at the end of this subsection.

L2 estimates
We multiply (2.14) by u, integrate by parts over Ω, using the boundary conditions (2.4)–

(2.8), we obtain

(∂u
∂t
,u

)
+ ((u · ∇)u,u) +

((
∇ ·

∫ 0

z

udξ
)∂u
∂z
, u

)

+ (fk× u,u) +
1
ρ0

(∇p0,u) + μ|∇u|2 + ν
∣∣∣∂u
∂z

∣∣∣2
= (F,u) + μδ|∇PM,Nu|2 + νδ

∣∣∣ ∂
∂z
PM,Nu

∣∣∣2. (2.36)

We notice (∂u
∂t
, u

)
=

1
2

d
dt

|u|2, (2.37)

(∇p0, u)Ω = H(∇p0, u) = 0, (2.38)

(fk × u,u) = 0. (2.39)
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Let

b(u, ũ,u#) =
(
(u · ∇ũ) + w(u)

∂ũ
∂z
, u#

)
, (2.40)

where w(u) is defined as in (2.11). We can verify that the trilinear operator b(u, ũ,u#) is skew
symmetric with respect to the last two arguments, that is,

b(u, ũ,u#) = −b(u,u#, ũ). (2.41)

Then it is inferred from (2.41) that

b(u,u,u) = 0. (2.42)

By (2.36)–(2.39) and (2.42) we have

1
2

d
dt

|u|2 + μ|∇u|2 + ν
∣∣∣ ∂
∂z

u
∣∣∣2 = (F,u) + μ|∇PM,Nu|2 + ν

∣∣∣ ∂
∂z
PM,Nu

∣∣∣2. (2.43)

Since PM,Nu contains only finite number of Fourier modes, |∇PM,Nu|2, as well as
∣∣ ∂
∂zPM,Nu

∣∣2
can be bounded by |u|2. More generally, for functions in Hk(Ω), there exists a constant
Ck(M,N,Ω), which is independent of the function, such that

|PM,Nu|Hk ≤ Ck|u|L2 . (2.44)

Using (2.44) and the Cauchy-Schwarz inequality, we derive from (2.43) that

d
dt

|u|2 + μ|∇u|2 + ν
∣∣∣ ∂
∂z

u
∣∣∣2 ≤ C|F|2 + C1|u|2. (2.45)

Applying the Gronwall inequality to (2.45) yields

|u( · , t)|2 + μ

∫ t

0

|∇u|2ds+ ν

∫ t

0

∣∣∣ ∂
∂z

u
∣∣∣2ds ≤ J1(t), (2.46)

where

J1(t) ≡ eC1t
(
|u0|2 + C

∫ t

0

|F|2ds
)
. (2.47)

L6 estimate on u′

We take inner product of (2.30) with |u′|4u′, and integrate by parts over Ω to obtain

1
6

d
dt

|u′|6L6 + b(u′,u′, |u′|4u′) +
∫

Ω

fk× u′ · |u′|4u′dΩ

+
∫

Ω

((u′ · ∇)u + (u · ∇)u′ − (u′ · ∇)u′ + (∇ · u′)u′)|u′|4u′dΩ

−
∫

Ω

(
μΔu′ + ν

∂2u′

∂z2

)
|u′|4u′dΩ

=
∫

Ω

F′ · |u′|4u′dΩ −
∫

Ω

(
μΔPM,Nu′ + ν

∂2

∂z2
PM,Nu′

)
|u′|4u′dΩ. (2.48)
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In the above, the trilinear operator b( · , · , · ) is defined as in (2.40). We can verify by calculations
that

b(u′,u′, |u′|4u′) = −2b(u′,u′, |u′|4u′), (2.49)

which implies that

b(u′,u′, |u′|4u′) = 0. (2.50)

Since k × u′ is orthogonal to u′, we have∫
Ω

fk× u′ · |u′|4u′dΩ = 0. (2.51)

Noticing the divergence free condition (2.29) for u and the horizontal periodic boundary con-
ditions (2.27)–(2.28) and (2.31)–(2.32) for u and u′ respectively, we find∫

Ω

(u · ∇)u′ · |u′|4u′dΩ = 0. (2.52)

For the inner products involving the diffusion terms, we find

−
∫

Ω

μΔu′ · |u′|4u′dΩ = μ

∫
Ω

|∇u′|2|u′|4dΩ + μ

∫
Ω

|∇|u′|2|2|u′|2dΩ, (2.53)

−
∫

Ω

ν
∂2u′

∂z2
· |u′|4u′dΩ = ν

∫
Ω

∣∣∣∂u′

∂z

∣∣∣2|u′|4dΩ + ν

∫
Ω

∣∣∣ ∂
∂z

|u′|2
∣∣∣2|u′|2dΩ. (2.54)

For integrals on the right-hand side of (2.48), we use (2.44) (with k = 2) to find that∫
Ω

−μΔPM,Nu′ · |u′|4u′dΩ

≤ μ|ΔPM,Nu′|L2 |u′|5L10

≤ C2|u′|L2 ||u′|3| 53
L

10
3

≤ C|u′|2L2 |u′|4L6 +
μ

4

∫
Ω

|u′|4|∇u′|2dΩ +
ν

4

∫
Ω

|u′|4
∣∣∣∂u′

∂z

∣∣∣2dΩ.

In the above, we have used the interpolation inequality

|φ|
L

10
3

≤ C|φ| 25L2 |φ|
3
5
H1 , (2.55)

which can be obtained by setting p = 10
3 , p1 = 2, p2 = 6 in (A.1), and then using (A.5).

Similarly, ∫
Ω

−ν ∂
2

∂z2
PM,Nu′ · |u′|4u′dΩ

≤ C|u′|2L2 |u′|4L6 +
μ

4

∫
Ω

|u′|4|∇u′|2dΩ +
ν

4

∫
Ω

|u′|4
∣∣∣∂u′

∂z

∣∣∣2dΩ.

Hence, we derive from (2.48) that

1
6

d
dt

|u′|6L6 +
∫

Ω

((u′ · ∇)u− (u′ · ∇)u′ + (∇ · u′)u′) · |u′|4u′dΩ
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+
1
2
μ

∫
Ω

(|∇u′|2|u′|4 + |∇|u′|2|2|u′|2)dΩ

+
1
2
ν

∫
Ω

(∣∣∣∂u′

∂z

∣∣∣2|u′|4 +
∣∣∣ ∂
∂z

|u′|2
∣∣∣2|u′|2

)
dΩ

≤
∫

Ω

F′ · |u′|4u′dΩ + C|u′|2L2 |u′|4L6 . (2.56)

For the integrals on the right-hand side of (2.56) that involve nonlinear terms, we proceed by
integration by parts, using the periodic boundary conditions on u′ and u when appropriate,
and we find ∣∣∣ ∫

Ω

(u′ · ∇)u · |u′|4u′dΩ
∣∣∣

=
∣∣∣ ∫

Ω

((∇ · u′)u · |u′|4u′ + (u′ · ∇)(|u′|4u′) · u)dΩ
∣∣∣

≤
∣∣∣ ∫

M

(
u ·

∫ 0

−H

(∇ · u′)|u′|4u′dz + u ·
∫ 0

−H

(u′ · ∇)(|u′|4u′)dz
)
dxdy

∣∣∣
≤ C

∫
M

|u|
∫ 0

−H

|∇u′||u′|5dzdxdy.

By the Cauchy-Schwarz inequality and the Holder’s inequality, we find
∣∣∣ ∫

M

u
∫ 0

−H

|∇u′||u′|5dzdxdy
∣∣∣

≤
(∫

M

|u|4dM
) 1

4
( ∫

Ω

|∇u′|2|u′|4dΩ
) 1

2
(∫

M

(∫ 0

−H

|u′|6dz
)2

dM
) 1

4
. (2.57)

By the Minkowski integral inequality (A.6), we have

( ∫
M

( ∫ 0

−H

|u′|6dz
)2

dM
) 1

2 ≤
∫ 0

−H

(∫
M

|u′|12dM
) 1

2
dz. (2.58)

Applying the Ladyzhenskaya inequality (A.2) to φ3 in R
2, we obtain

|φ|12L12(M) ≤ C|φ|6L6(M)

( ∫
M

|φ|4|∇φ|2dxdy
)

+ |φ|12L6(M). (2.59)

Using (2.59), we infer from (2.58) that

(∫
M

( ∫ 0

−H

|u′|6dz
)2

dM
) 1

2

≤
∫ 0

−H

(
C

∫
M

|u′|6dM
∫

M

|u′|4|∇u′|2dM +
(∫

M

|u′|6dM
)2) 1

2
dz

≤ C

∫ 0

−H

(∫
M

|u′|6dM
) 1

2
( ∫

M

|u′|4|∇u′|2dM
) 1

2
+

∫
Ω

|u′|6dΩ

≤ C
( ∫

Ω

|u′|6dΩ
) 1

2
(∫

Ω

|u′|4|∇u′|2dΩ
) 1

2
+

∫
Ω

|u′|6dΩ.

Therefore, we have

(∫
M

(∫ 0

−H

|u′|6dz
)2

dM
) 1

2 ≤ C|u′|3L6

( ∫
Ω

|u′|4|∇u′|2dΩ
) 1

2
+ |u′|6L6 . (2.60)
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By the Ladyzhenskaya inequality (A.2) for functions in R
2, we find

(∫
M

|u|4dM
) 1

4 ≤ C|u| 12L2(M)|u|
1
2
H1(M). (2.61)

Using (2.60) and (2.61), we infer from (2.57) that∫
M

(
u

∫ 0

−H

|∇u′||u′|5dz
)
dxdy

≤ C|u| 12L2(M)|u|
1
2
H1(M)

(
|u′| 32L6

(∫
Ω

|u′|4|∇u′|2dΩ
) 3

4
+ |u′|6L6

)
. (2.62)

By Young’s inequality, we have

|u| 12L2(M)|u|
1
2
H1(M)|u′| 32L6

(∫
Ω

|u′|4|∇u′|2dΩ
) 3

4

≤ C|u|2L2(M)|u|2H1(M)|u′|6L6 +
1
4
μ

∫
Ω

|u′|4|∇u′|2dΩ. (2.63)

For the other integral that involves nonlinear terms, we have∣∣∣ ∫
Ω

(u′ · ∇)u′ + (∇ · u′)u′ · |u′|4u′dΩ
∣∣∣

=
∣∣∣ ∫

Ω

u′iu
′
j∂i(|u′|4u′j)dΩ

∣∣∣
≤

∣∣∣ ∫
M

u′iu
′
j

( ∫ 0

−H

∂j(|u′|4u′j)dz
)
dxdy

∣∣∣
≤

∣∣∣ 1
H

∫
M

( ∫ 0

−H

u′iu
′
jdz

∫ 0

−H

∂j(|u′|4u′j)dz
)
dxdy

∣∣∣
≤ C

∫
M

( ∫ 0

−H

|u′|2dz
∫ 0

−H

|u′|4|∇u′|2dz
)
dxdy.

By similar use of the Minkowski inequality (A.6) and various interpolation inequalities, we find∫
M

(∫ 0

−H

|u′|2dz
∫ 0

−H

|u′|4|∇u′|2dz
)
dxdy

≤ C|u′|3L6(Ω)

(∫
Ω

|u′|4|∇u′|2dΩ
) 1

2
(|u′|L2(Ω) + |∇u′|L2(Ω)). (2.64)

By Young’s inequality, we have

(|u′|L2(Ω) + |∇u′|L2(Ω))|u′|3L6(Ω)

( ∫
Ω

|u′|4|∇u′|2dΩ
) 1

2

≤ (|u′|2L2(Ω) + |∇u′|2L2(Ω))|u′|6L6(Ω) +
1
4
μ

∫
Ω

|u′|4|∇u′|2dΩ. (2.65)

Putting (2.56)–(2.65) together, we find

d
dt

|u′|6L6 + μ

∫
Ω

(|∇u′|2|u′|4 + |∇|u′|2|2|u′|2)dΩ

+ ν

∫
Ω

(∣∣∣∂u′

∂z

∣∣∣2|u′|4 +
∣∣∣ ∂
∂z

|u′|2
∣∣∣2|u′|2

)
dΩ
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≤ (C|F′|2L2 + C2|u′|2L2)|u′|4L6 + C(|u| 12L2(M)|u|
1
2
H1(M)

+ |u|2L2(M)|u|2H1(M) + |u′|2L2(Ω) + C|∇u′|2L2(Ω))|u′|6L6 . (2.66)

Ignoring the other positive terms on the left-hand side of (2.66), and dividing both sides by
|u′|4L6 , we have

d
dt

|u′|2L6 ≤ C|F′|2L2 + C2|u′|2L2 + C(|u|2L2(Ω)|u|2H1(Ω) + |u|2L2(Ω) + |∇u|2L2(Ω))|u′|2L6 . (2.67)

Applying the Gronwall inequality to (2.67), and using the L2 estimate result (2.46), we obtain

|u′( · , t)|2L6 ≤ J6, (2.68)

with

J6(t) = eC(K2
1(t)+K1(t)t+K1(t))

(
|u0|2L6(Ω) + C2J1(t) + C

∫ t

0

|F|2L2(Ω)ds
)
.

Integrating (2.66) over [0, t], and using the estimate (2.68), we obtain

μ

∫ t

0

∫
Ω

(|∇u′|2|u′|4 + |∇|u′|2|2|u′|2)dΩds

+ ν

∫ t

0

∫
Ω

(∣∣∣∂u′

∂z

∣∣∣2|u′|4 +
∣∣∣ ∂
∂z

|u′|2
∣∣∣2|u′|2

)
dΩds ≤ J̃6(t), (2.69)

with

J̃6(t) = |u0|6L6 + J2
6 (t)

(
C

∫ t

0

|F (·, s)|2L2ds+ C2K1t
)

+ CJ3
6 (t)(K2

1 (t) +K1(t)t+K1(t)).

Estimate |∇u|L2(M)

We multiply (2.26) by −Δu and integrate by parts over M to obtain

1
2

d
dt

|∇u|2L2(M) + μ|Δu|2L2(M) +
∫

M

fk× u · (−Δu)dM

=
∫

M

F · Δu dM − 1
ρ0

∫
M

∇p0 · Δu dM −
∫

M

(u · ∇)u · Δu dM

−
∫

M

(u′ · ∇)u′ + (∇ · u′)u′ · Δu dM + μ

∫
Ω

ΔPM,Nu · Δu dΩ. (2.70)

We note that, by integration by parts,∣∣∣ ∫
M

(fk × u) · Δu dΩ
∣∣∣ ≤ |f |∞|u|L2 |Δu|L2 ≤ C|f |2∞|u|2L2 +

μ

4
|Δu|2L2 .

And thanks to (2.21), ∫
M

∇p0 · Δu dM = 0.

Following similar steps in the handling of the 2D Navier-Stokes equations, we obtain∫
M

(u · ∇)u · Δu dM ≤ C|u| 12L2(M)|∇u|L2(M)|Δu| 32L2(M).
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Applying the Cauchy-Schwarz and Holder inequalities one has∫
M

(u′ · ∇)u′ + (∇ · u′)u′ · Δu dM ≤ C|∇u′| 12L2(Ω)

(∫
Ω

|u′|4|∇u′|2dΩ
) 1

4 |Δu|L2(M).

For this last integral in (2.70), we proceed by the Cauchy-Schwarz inequality and (2.44) with
k = 2,

μ

∫
Ω

ΔPM,Nu · Δu dΩ ≤ μ|ΔPM,Nu|L2 |Δu|2L2 ≤ C2μ|u|L2 |Δu|2L2 ≤ C2μ|u|2L2 +
μ

4
|Δu|2L2 .

Then we derive from (2.70) that

d
dt

|∇u|2L2(M) + μ|Δu|2L2(M) ≤
2
μ
|F|2L2(M) + (C2μ+ C|f |2∞)|u|2L2 + C|u|2L2(M)|∇u|4L2(M)

+ C|∇u′|2L2(Ω) + C

∫
Ω

|u′|4|∇u′|2dΩ. (2.71)

Applying the Gronwall inequality to (2.71), and using the previous estimates (2.46) and (2.69),
we obtain

|∇u( · , t)|2L2(M) +
μ

2

∫ t

0

|Δu|2L2(M)ds ≤ J2(t), (2.72)

with

J2(t) = eCJ2
1 (t)

(
|u0|2H1 + (C2μ+ C|f |2∞)J1(t)t+ C

∫ t

0

|F|2L2(M)ds+ CJ1(t) + CJ̃6(t)
)
.

To estimate |∂zu|L2(Ω)

Multiplying (2.14) by ∂2u
∂z2 and integrating by parts over Ω, we have

1
2

d
dt

|∂zu|2L2(Ω) + μ|∇∂zu|2L2(Ω) + ν
∣∣∣∂2u
∂z2

∣∣∣2
L2(Ω)

=
(
F,
∂2u
∂z2

)
−

∫
Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udz
)∂u
∂z

)
· ∂

2u
∂z2

dΩ

+ μ|∇PM,N∂zu|2L2(Ω) + ν
∣∣∣ ∂2

∂z2
PM,Nu

∣∣∣2
L2(Ω)

. (2.73)

By Holder’s inequality, (
F,
∂2u
∂z2

)
≤ C|F |2L2 +

ν

4

∣∣∣∂2u
∂z2

∣∣∣2
L2
.

With regard to the integral in (2.73) that involves the nonlinear convection terms, we find

−
∫

Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udz
)∂u
∂z

)
· ∂

2u
∂z2

dΩ

=
∫

Ω

∂

∂z

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udz
)∂u
∂z

)
· ∂u
∂z

dΩ

=
∫

Ω

(
(∂zu · ∇)u + (u · ∇)∂zu − (∇ · u)

∂u
∂z

+ ∇ ·
∫ 0

z

udξ
∂2u
∂z2

)
· ∂u
∂z

dΩ

=
∫

Ω

(
(∂zu · ∇)u − (∇ · u)

∂u
∂z

)
· ∂u
∂z

dΩ
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=
∫

Ω

(−(∇ · ∂zu)u · ∂zu − (∂zu · ∇)∂zu · u + 2(u · ∇)∂zu · ∂zu)dΩ.

Hence ∣∣∣ ∫
Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udz
)∂u
∂z

)
· ∂

2u
∂z2

dΩ
∣∣∣

≤ C

∫
Ω

|u||∇∂zu||∂zu|dΩ

≤ C|u|L6(Ω)|∂zu|L3(Ω)|∇∂zu|L2(Ω)

≤ C|u|L6(Ω)|∂zu|
1
2
L2(Ω)|∂zu|

1
2
H1(Ω)|∇∂zu|L2(Ω)

≤ C|u|L6(Ω)|∂zu|
1
2
L2(Ω)|uzz |

1
2
L2 |∇∂zu|L2(Ω) + C|u|L6(Ω)|∂zu|

1
2
L2(Ω)|∇∂zu|

3
2
L2(Ω)

≤ C|u|4L6 |∂zu|2L2 +
ν

4
|uzz |2L2 +

μ

2
|∇∂zu|2L2 .

The last two integrals on the right-hand side of (2.73) can be handled by (2.44) with k = 2.
Thus we derive from (2.73) that

d
dt

|∂zu|2L2(Ω) + μ|∇∂zu|2L2(Ω) + ν
∣∣∣∂2u
∂z2

∣∣∣2
L2(Ω)

≤ C|F|2L2 + C(J2
2 (t) + J2

6 (t))|∂zu|2L2 + C2|u|2L2 . (2.74)

An application of the Gronwall inequality to (2.74) readily yields

|∂zu( · , t)|2L2(Ω) + μ

∫ t

0

|∇∂zu|2L2(Ω)ds+ ν

∫ t

0

∣∣∣∂2u
∂z2

∣∣∣2
L2(Ω)

ds ≤ Jz(t), (2.75)

with

Jz(t) = eC(J2
2 (t)+J2

6 (t))t
(
|u0|2H1 + C

∫ t

0

|F|2L2ds+ C2J1t
)
.

To estimate |∇u|L2

We multiply (2.14) by −Δu and integrate by parts over Ω,

1
2

d
dt

|∇u|2L2(Ω) +
∫

Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udξ
)∂u
∂z

)
· (−Δu)dΩ

+ f

∫
Ω

k × u · (−Δu)dΩ +
1
ρ0

∫
Ω

∇p0 · (−Δu)dΩ + μ|Δu|2L2(Ω) + ν|∇∂zu|2L2(Ω)

= (F,−Δu) + μ|ΔPM,Nu|2L2(Ω) + ν|∇PM,N∂zu|2L2(Ω). (2.76)

We note that ∫
M

(fk × u) · ΔudΩ = 0,

and ∫
Ω

∇p0 · (−Δu)dΩ = −
∫

M

∇p0 ·
∫ 0

−H

(Δu)dzdM = −H
∫

M

∇p0 · ΔudM = 0.

It is easy to see that ∫
Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udξ
)∂u
∂z

)
· (Δu)dΩ
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≤ C

∫
Ω

(
|u||∇u| +

∫ 0

−H

|∇u|dz|∂zu|
)
|Δu|dΩ.

By Young’s inequality and the Sobolev interpolation inequality (A.4) for L3 functions, we have∫
Ω

|u||∇u||Δu|dΩ ≤ C|u|L6 |∇u|L3 |Δu|L2

≤ C|u|L6 |∇u| 12L2 |∇∂zu|
1
2
L2 |Δu|L2 + C|u|L6 |∇u| 12L2 |Δu| 32L2 .

We appeal to the following inequality for functions in R
3 (the scaling is 2D due to the vertical

integration. For a proof, see [6].),∫
Ω

( ∫ 0

−H

|∇u|dz
)
|f ||g|dΩ ≤ C|f |L2 |u| 12H1 |u|

1
2
H2 |g|

1
2
L2 |g|

1
2
H1 ,

to obtain (by setting f = Δu, g = ∂zu)∫
Ω

(∫ 0

−H

|∇u|dz
)
|∂zu||Δu|dΩ ≤ C|∇u| 12L2 |∂zu|

1
2
L2 |∇∂zu|

1
2
L2 |Δu| 32L2 .

The last two integrals in the equation above are handled by (2.44) with k = 2. After these
intermediate steps we derive from (2.76) that

d
dt

|∇u|2L2 + μ|Δu|2L2 + ν|∇∂zu|2L2

≤ 4
μ
|F|2L2 + C(|u|4L6 + |∂zu|2L2 |∇∂zu|2L2)|∇u|2L2 + C2|u|2L2 . (2.77)

We appeal to the Gronwall inequality. With use of (2.46), (2.68), and (2.75), we obtain

|∇u(·, t)|2L2 + μ

∫ t

0

|Δu|2L2ds+ ν

∫ t

0

|∇∂zu|2L2ds ≤ JV (t), (2.78)

with

JV (t) = eC(J2
6+J2

2 (t))t+J2
z (t)

(
|u0|2H1 + C2J1t+

4
μ

∫ t

0

|F(·, s)|2L2ds
)
.

We now prove Theorem 2.1.

Proof of Theorem 2.1 The short time existence and uniqueness of the strong solutions
of (2.1)–(2.8) can be established as for the viscous primitive equations (see [14, 17]). Let u
be such a strong solution corresponding to the initial data u0 with the maximal interval of
existence [0, T ∗). If T ∗ ≥ T , then there is nothing to prove here. Let us suppose that T ∗ < T ,
and in particular, T ∗ <∞. Then it is clear that

lim sup
t→T∗−

‖u‖H1 = ∞. (2.79)

Otherwise the solution can be extended beyond T ∗. However, the estimates (2.75) and (2.78)
indicate that ‖u( · , t)‖H1 <∞ for all t < T , which contradicts (2.79). Hence, the solution must
exist for the whole period of [0, T ).

It remains to show the continuous dependence of the solution on the data, of which the
uniqueness of the solution is a consequence. Let us assume that u1 and u2 are two solutions
corresponding to the two sets of initial data u1

0 and u2
0, respectively. We let

u = u1 − u2.



594 Q. S. Chen, M. Gunzburger and X. M. Wang

Then u satisfies the following equation:

∂u
∂t

+ (u1 · ∇)u + (∇ ·
∫ 0

z

u1dξ)
∂u
∂z

+ (u · ∇)u2

+
(
∇ ·

∫ 0

z

udξ
)∂u2

∂z
+ fk× u − μΔu− ν

∂2u
∂z2

= −μΔPM,Nu − ν
∂2

∂z2
PM,Nu. (2.80)

We multiply (2.80) by u and integrate by parts over Ω to obtain

1
2

d
dt

|u|2L2 + ((u1 · ∇)u,u) +
((

∇ ·
∫ 0

z

u1dξ
)∂u
∂z
, u

)

+ ((u · ∇)u2,u) +
((

∇ ·
∫ 0

z

udξ
)∂u2

∂z
, u

)
+ μ|∇u|2 + ν

∣∣∣∂u
∂z

∣∣∣2
= μ|∇PM,Nu|2 + ν

∣∣∣ ∂
∂z
PM,Nu

∣∣∣2. (2.81)

We verify that

((u1 · ∇)u,u) +
((

∇ ·
∫ 0

z

u1dξ
)∂u
∂z
, u

)
= 0, (2.82)

|((u · ∇)u2,u)| ≤ |∇u2|L2 |u| 12L2 |∇u| 32L2 , (2.83)

and that

((
∇ ·

∫ 0

z

udξ
)∂u2

∂z
, u

)
≤ C|u| 12L2 |∇u| 32L2 |∂zu2| 12L2 |∇∂zu2| 12L2 . (2.84)

Again, the last two integrals on the right-hand side of (2.81) are handled by (2.44) with k = 1.
Thus we derive from (2.81) that

d
dt

|u|2L2 + μ|∇u|2 + ν
∣∣∣∂u
∂z

∣∣∣2 ≤ C(|∇u2|4L2 + |∂zu2|2L2 |∇∂zu2|2L2)|u|2L2 + C1|u|2L2 . (2.85)

Thanks to the a priori estimates (2.75) and (2.78) and the Gronwall inequality, we have

|u(·, t)|2L2 ≤ eC(K2
V (t)t+K2

z(t))+C1 |u( · , 0)|2L2 . (2.86)

This shows that the solution depends on the initial data continuously. When u( · , 0) = u1( · , 0)−
u2( · , 0) = 0,

u(·, t) = 0 for all t > 0. (2.87)

This shows the uniqueness of the solution.

3 A Spectral-Viscosity Model for Geophysical Turbulence

In this section, we study a model that has applications in the simulation of geophysical
turbulent flows.
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3.1 The model

The 3D primitive equations with linear spectral eddy viscosity read

∂u
∂t

+ (u · ∇)u + w
∂u
∂z

+ fk× u +
1
ρ0

∇p− μΔu − ν
∂2u
∂z2

− Lu = F, (3.1)

∂p

∂z
= −ρ0g, (3.2)

∇ · u +
∂w

∂z
= 0 (3.3)

with

Lu = μδΔ(I − PM,N )u + νδ
∂2

∂z2
(I − PM,N )u.

The other notations are the same as those in Section 2; the newly introduced ones μδ and νδ

are the eddy closure parameters in the horizontal and vertical directions, respectively. The
subscript δ indicates that the parameters depend on the grid resolution.

As for the model with partial viscosity in Section 2, we consider a rectangular domain
Ω = M×(−H, 0), with M = (0, Lx)×(0, Ly), and we also consider periodic boundary conditions
in both the x and y directions, and free-slip, non-penetration boundary conditions in the vertical
directions. More precisely,

u(x, y, z, t) = u(x + Lx, y, z, t), (3.4)

u(x, y, z, t) = u(x, y + Ly, z, t), (3.5)
∂u
∂n

∣∣∣
z=0

=
∂u
∂n

∣∣∣
z=−H

= 0, (3.6)

w|z=0 = w|z=−H = 0, (3.7)

p|z=0 = p0. (3.8)

As a consequence of the boundary conditions taken here, the spectral low-pass filter PM,N can
be, and is defined as in (2.9).

For the model (3.1)–(3.8) we obtain two results. The first is the global well-posedness of
the model, and the second is concerned with the convergence of the solutions of (3.1)–(3.8) to
those of the viscous primitive equations as μδ and νδ tend to zero. The first result shall come
as no surprise, and therefore its proof will only be briefly sketched. The second result will be
discussed in more details.

As usual, p and w can be expressed in terms of u. Specifically, integrating (3.2) from z to
0, and using the boundary condition (3.8), we obtain

p(x, y, z, t) = p0(x, y, t) − ρ0gz. (3.9)

Integrating (3.3) from z to 0, and using the boundary condition (3.7), we obtain

w(x, y, z, t) =
∫ 0

z

∇ · udξ = ∇ ·
∫ 0

z

udξ. (3.10)

Setting z = −H in (3.10), and using (3.7) again, we find

∇ ·
∫ 0

−H

udz = 0. (3.11)
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We substitute (3.9) and (3.10) into (3.1), and obtain a single closed equation for u,

∂u
∂t

+ (u · ∇)u +
(
∇ ·

∫ 0

z

udξ
)∂u
∂z

+ fk × u +
1
ρ0

∇p0 − μΔu − ν
∂2u
∂z2

− Lu = F. (3.12)

The prognostic variable u satisfies the equation (3.1), the constraint (3.11), and the boundary
conditions (3.4)–(3.6). To complete the system, we also require u to satisfy the following initial
condition:

u(x, y, z, 0) = u0(x, y, z). (3.13)

The diagnostic variables w and p are given by (3.10) and (3.9) respectively.
We now specify the barotropic and baroclinic modes of (3.12). Let

u(x, y, t) =
1
H

∫ 0

−H

u(x, y, z, t)dz, (3.14)

which denotes the barotropic mode of the primitive variables. We also denote by

u′(x, y, z, t) = u(x, y, z, t) − u(x, y, t) (3.15)

the baroclinic mode of the primitive variables.
As in Section 2, we derive the equations and conditions that the barotropic mode u and the

baroclinic mode u′ must satisfy. They are summarized as follows. The equation and boundary
conditions for u are

∂u
∂t

+ (u · ∇)u + [(u′ · ∇)u′ + (∇ · u′)u′] + fk× u +
1
ρ0

∇p0 − μΔu = F, (3.16)

u(x, y, t) = u(x+ Lx, y, t), (3.17)

u(x, y, t) = u(x, y + Ly, t). (3.18)

∇ · u = 0. (3.19)

The equation, boundary conditions, and constraint for u′ are

∂u′

∂t
+ (u′ · ∇)u′ +

(
∇ ·

∫ 0

z

u′dξ
)∂u′

∂z
+ fk × u′ − μΔu′ − ν

∂2u′

∂z2
− Lu′

+ [(u′ · ∇)u + (u · ∇)u′ − ((u′ · ∇)u′ + (∇ · u′)u′)] = F′, (3.20)

u′(x, y, t) = u′(x+ Lx, y, t), (3.21)

u′(x, y, t) = u′(x, y + Ly, t), (3.22)

∂u′

∂z

∣∣∣
z=0

=
∂u′

∂z

∣∣∣
z=−H

= 0, (3.23)

∫ 0

−H

u′dz = 0. (3.24)

3.2 Existence and uniqueness of strong solutions

The functional settings are the same as specified in Section 2. A priori estimates are the
essential ingredients in the proof of global well-posedness of (3.1)–(3.8). We shall first derive
the a priori estimates for u, u and u′.
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L2 estimates

Taking inner product of (3.12) with u, integrating by parts over Ω, and using the boundary
conditions (3.4)–(3.8), we obtain

(∂u
∂t
,u

)
+ ((u · ∇)u,u) +

((
∇ ·

∫ 0

z

udξ
)∂u
∂z
, u

)

+ (fk× u,u) +
1
ρ0

(∇p0,u) + μ|∇u|2 + ν
∣∣∣∂u
∂z

∣∣∣2
+ μδ|∇(I − PM,N )u|2 + νδ

∣∣∣ ∂
∂z

(I − PM,N )u
∣∣∣2 = (F,u). (3.25)

Following similar steps in Section 2, we obtain

|u( · , t)|2 + μ

∫ t

0

|∇u|2ds+ ν

∫ t

0

∣∣∣ ∂
∂z

u
∣∣∣2ds+ μδ

∫ t

0

|∇(I − PM,N )u|2ds

+ νδ

∫ t

0

∣∣∣ ∂
∂z

(I − PM,N )u
∣∣∣2ds ≤ K1(t), (3.26)

where

K1(t) ≡ |u0|2 + C

∫ t

0

|F|2ds. (3.27)

We note that K1(t) is a non-decreasing positive function in t. This notion will be useful later
in the paper.

L6 estimate on u′

We rewrite (3.20) as

∂u′

∂t
+ (u′ · ∇)u′ +

(
∇ ·

∫ 0

z

u′dξ
)∂u′

∂z
+ fk × u′ − (μ+ μδ)Δu′ − (ν + νδ)

∂2u′

∂z2

+ [(u′ · ∇)u + (u · ∇)u′ − ((u′ · ∇)u′ + (∇ · u′)u′)]

= F′ − μδΔPM,Nu − νδ
∂2

∂z2
PM,Nu. (3.28)

Now (3.28) is in the same form as equation (2.30), and therefore the same techniques from
Section 2 can be applied to yield the L6 estimates on u′. We omit the details and state the
results as follows.

|u′( · , t)|2L6 ≤ K6, (3.29)

with

K6(t) = eCK2
1(t)+CK1(t)t+CK1(t)+C1(t)

(
|u0|2L6(Ω) + C

∫ t

0

|F|2L2(Ω)ds
)
.

We also have

(μ+ μδ)
∫ t

0

∫
Ω

(|∇u′|2|u′|4 + |∇|u′|2|2|u′|2)dΩds

+ (ν + νδ)
∫ t

0

∫
Ω

(∣∣∣∂u′

∂z

∣∣∣2|u′|4 +
∣∣∣ ∂
∂z

|u′|2
∣∣∣2|u′|2

)
dΩds ≤ K̃6(t), (3.30)
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with

K̃6(t) = |u0|6L6 +K2
6 (t)

∫ t

0

|F ( · , s)|2L2ds

+K3
6 (t)(CK2

1 (t) + CK1(t)t+ CK1(t) + C1(t)).

Estimate |∇u|L2(M)

We multiply (3.16) by −Δu and integrate by parts over M to obtain

1
2

d
dt

|∇u|2L2(M) + μ|Δu|2L2(M) −
∫

M

fk× u · Δu dM

=
∫

M

F · Δu dM − 1
ρ0

∫
M

∇p0 · Δu dM −
∫

M

(u · ∇)u · Δu dM

−
∫

M

(u′ · ∇)u′ + (∇ · u′)u′ · Δu dM. (3.31)

We note that ∫
M

fk× u · ΔudM = 0 and
∫

M

∇p0 · ΔudM = 0.

Following similar steps in the handling of the 2D Navier-Stokes equations, we obtain∫
M

(u · ∇)u · Δu dM ≤ C|u| 12L2(M)|∇u|L2(M)|Δu| 32L2(M).

Applying the Cauchy-Schwarz and Holder inequalities, one has∫
M

(u′ · ∇)u′ + (∇ · u′)u′ · Δu dM ≤ C|∇u′| 12L2(Ω)

(∫
Ω

|u′|4|∇u′|2dΩ
) 1

4 |Δu|L2(M).

Utilizing these estimates, and using Young’s inequality again, we derive from (3.31) that

d
dt

|∇u|2L2(M) +
μ

2
|Δu|2L2(M) ≤

2
μ
|F|2L2(M) + C|u|2L2(M)|∇u|4L2(M)

+ C|∇u′|2L2(Ω) + C

∫
Ω

|u′|4|∇u′|2dΩ. (3.32)

Applying the Gronwall inequality to (3.32), and using the previous estimates (3.26) and (3.30),
we obtain

|∇u( · , t)|2L2(M) +
μ

2

∫ t

0

|Δu|2L2(M)ds ≤ K2(t), (3.33)

with

K2(t) = eCK2
1(t)

(
|u0|2H1 + C

∫ t

0

|F|2L2(M)ds+ CK1(t) + CK̃6(t)
)
.

To estimate |∂zu|L2(Ω)

We multiply (3.12) by ∂2u
∂z2 and integrate by parts over Ω. Utilizing the boundary conditions

(3.4)–(3.6), we have

1
2

d
dt

|∂zu|2L2(Ω) + μ|∇∂zu|2L2(Ω) + ν
∣∣∣∂2u
∂z2

∣∣∣2
L2(Ω)
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+ μδ|∇∂z(I − PM,N )u|2L2(Ω) + νδ

∣∣∣∂2(I − PM,N )u
∂z2

∣∣∣2
L2(Ω)

=
(
F,
∂2u
∂z2

)
−

∫
Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udz
)∂u
∂z

)
· ∂

2u
∂z2

dΩ. (3.34)

By Holder’s inequality, (
F,
∂2u
∂z2

)
≤ C|F |2L2 +

ν

4

∣∣∣∂2u
∂z2

∣∣∣2
L2
.

With regard to the last integral in (3.34), we find

−
∫

Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udz
)∂u
∂z

)
· ∂

2u
∂z2

dΩ

=
∫

Ω

∂

∂z

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udz
)∂u
∂z

)
· ∂u
∂z

dΩ

=
∫

Ω

(
(∂zu · ∇)u + (u · ∇)∂zu − (∇ · u)

∂u
∂z

+ ∇ ·
∫ 0

z

udξ
∂2u
∂z2

)
· ∂u
∂z

dΩ

=
∫

Ω

(
(∂zu · ∇)u − (∇ · u)

∂u
∂z

)
· ∂u
∂z

dΩ

=
∫

Ω

(−(∇ · ∂zu)u · ∂zu − (∂zu · ∇)∂zu · u + 2(u · ∇)∂zu · ∂zu)dΩ.

Hence

∣∣∣ ∫
Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udz
)∂u
∂z

)
· ∂

2u
∂z2

dΩ
∣∣∣

≤ C

∫
Ω

|u||∇∂zu||∂zu|dΩ

≤ C|u|L6(Ω)|∂zu|L3(Ω)|∇∂zu|L2(Ω)

≤ C|u|L6(Ω)|∂zu|
1
2
L2(Ω)|∂zu|

1
2
H1(Ω)|∇∂zu|L2(Ω)

≤ C|u|L6(Ω)|∂zu|
1
2
L2(Ω)|uzz |

1
2
L2 |∇∂zu|L2(Ω) + C|u|L6(Ω)|∂zu|

1
2
L2(Ω)|∇∂zu|

3
2
L2(Ω)

≤ C|u|4L6 |∂zu|2L2 +
ν

4
|uzz |2L2 +

μ

2
|∇∂zu|2L2 .

After these intermediate steps, we derive from (3.34) that

d
dt

|∂zu|2L2(Ω) + μ|∇∂zu|2L2(Ω) + ν
∣∣∣∂2u
∂z2

∣∣∣2
L2(Ω)

+ 2μδ|∇∂z(I − PM,N )u|2L2(Ω) + 2νδ

∣∣∣∂2(I − PM,N )u
∂z2

∣∣∣2
L2(Ω)

≤ C|F |2L2 + C|u|4L6 |∂zu|2L2 . (3.35)

We note that
|u|L6 = |u + u′|L6 ≤ |u|L6 + |u′|L6 ≤ C|∇u|L2 + |u′|L6 .

Therefore, by (3.29) and (3.33), we have

|u|4L6 ≤ C(K2
2 (t) +K2

6 (t)). (3.36)
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Then (3.35), together with (3.36), gives

d
dt

|∂zu|2L2(Ω) + μ|∇∂zu|2L2(Ω) + ν
∣∣∣∂2u
∂z2

∣∣∣2
L2(Ω)

+ 2μδ|∇∂z(I − PM,N )u|2L2(Ω) + 2νδ

∣∣∣∂2(I − PM,N )u
∂z2

∣∣∣2
L2(Ω)

≤ C|F|2L2 + C(K2
2 (t) +K2

6 (t))|∂zu|2L2 . (3.37)

An application of the Gronwall inequality to (3.37) readily gives

|∂zu( · , t)|2L2(Ω) + μ

∫ t

0

|∇∂zu|2L2(Ω)ds+ ν

∫ t

0

∣∣∣∂2u
∂z2

∣∣∣2
L2(Ω)

ds

+ 2μδ

∫ t

0

|∇∂z(I − PM,N )u|2L2(Ω)ds

+ 2νδ

∫ t

0

∣∣∣∂2(I − PM,N )u
∂z2

∣∣∣2
L2(Ω)

ds ≤ Kz(t), (3.38)

with

Kz(t) = eC(K2
2(t)+K2

6(t))t
(
|u0|2H1 + C

∫ t

0

|F|2L2ds
)
.

To estimate |∇u|L2

We multiply (3.12) by −Δu and integrate by parts over Ω to obtain

1
2

d
dt

|∇u|2L2(Ω) +
∫

Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udξ
)∂u
∂z

)
· (−Δu)dΩ

+ f

∫
Ω

k × u · (−Δu)dΩ +
1
ρ0

∫
Ω

∇p0 · (−Δu)dΩ + μ|Δu|2L2(Ω)

+ ν|∇∂zu|2L2(Ω) + μδ|Δ(I − PM,N)u|2L2(Ω) + νδ|∇∂z(I − PM,N )u|2L2(Ω)

= (F,−Δu). (3.39)

We note that ∫
M

(fk × u) · ΔudΩ = 0,

and ∫
Ω

∇p0 · (−Δu)dΩ = −
∫

M

∇p0 ·
∫ 0

−H

(Δu)dzdM = −H
∫

M

∇p0 · ΔudM = 0.

It is easy to see that∫
Ω

(
(u · ∇)u +

(
∇ ·

∫ 0

z

udξ
)∂u
∂z

)
· (Δu)dΩ ≤ C

∫
Ω

(
|u||∇u| +

∫ 0

−H

|∇u|dz|∂zu|
)
|Δu|dΩ.

Therefore, we derive from (3.39) that

1
2

d
dt

|∇u|2L2(Ω) +
μ

2
|Δu|2L2(Ω) + ν|∇∂zu|2L2(Ω)

+ μδ|Δ(I − PM,N )u|2L2(Ω) + νδ|∇∂z(I − PM,N )u|2L2(Ω)

≤ 1
μ
|F|2L2 +

μ

4
|Δu|2L2 + C

∫
Ω

(
|u||∇u| +

∫ 0

−H

|∇u|dz|∂zu|
)
|Δu|dΩ. (3.40)
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By Young’s inequality and the Sobolev interpolation inequality (A.4) for L3 functions, we have∫
Ω

|u||∇u||Δu|dΩ ≤ C|u|L6 |∇u|L3 |Δu|L2

≤ C|u|L6 |∇u| 12L2 |∇∂zu|
1
2
L2 |Δu|L2 + C|u|L6 |∇u| 12L2 |Δu| 32L2 .

We appeal to the following inequality

∫
Ω

(∫ 0

−H

|∇u|dz
)
|f ||g|dΩ ≤ C|f |L2 |u| 12H1 |u|

1
2
H2 |g|

1
2
L2 |g|

1
2
H1

to obtain (by setting f = Δu, g = ∂zu)

∫
Ω

(∫ 0

−H

|∇u|dz
)
|∂zu||Δu|dΩ ≤ C|∇u| 12L2 |∂zu|

1
2
L2 |∇∂zu|

1
2
L2 |Δu| 32L2 .

After these steps, we infer from (3.40) that

d
dt

|∇u|2L2 + μ|Δu|2L2 + ν|∇∂zu|2L2 + 2μδ|Δ(I − PM,N )u|2L2 + 2νδ|∇∂z(I − PM,N )u|2L2

≤ 4
μ
|F|2L2 + C(|u|4L6 + |∂zu|2L2 |∇∂zu|2L2)|∇u|2L2 . (3.41)

We are ready to use the Gronwall inequality, with use of (3.36), (3.38), to obtain

|∇u( · , t)|2L2 + μ

∫ t

0

|Δu|2L2ds+ ν

∫ t

0

|∇∂zu|2L2ds

+ 2μδ

∫ t

0

|Δ(I − PM,N )u|2L2ds+ 2νδ

∫ t

0

|∇∂z(I − PM,N )u|2L2ds

≤ KV (t), (3.42)

with

KV (t) = eC(K2
6+K2

2(t))t+K2
z(t)

(
|u0|2H1 +

4
μ

∫ t

0

|F( · , s)|2L2ds
)
.

Now that the key estimates are in place, with an argument similar to that for Theorem 2.1
in Section 2, we can show the following theorem.

Theorem 3.1 For a given T > 0, let F ∈ L2(0, T ;L2(Ω)), u0 ∈ V . Then there exists a
unique strong solution to system (3.1)–(3.8) which depends continuously on the initial data.

The proof is omitted.

3.3 Convergence of the solutions

In this section we take μδ → 0, νδ → 0 in (3.12), and study the convergence of the solution
of the system. We first rewrite (3.12) as follows:

∂uδ

∂t
+ (uδ · ∇)uδ +

(
∇ ·

∫ 0

z

uδdξ
)∂uδ

∂z
+ fk× uδ +

1
ρ0

∇p

− μΔuδ − ν
∂2uδ

∂z2
− μδΔ(I − PM,N )uδ − νδ

∂2

∂z2
(I − PM,N)uδ = F. (3.43)
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The superscript δ emphasizes the fact that the solution uδ depends on the spectral viscosity
parameters μδ and νδ, which themselves are determined by the grid resolution. The proper
relation between the parameters μδ and νδ and the grid resolution δ is the subject of a separate
endeavor, and will be presented elsewhere. In this work, we focus on the behavior of the solution
uδ of system (3.43) as μδ and νδ tend to 0 (corresponding to the scenario when the grid becomes
finer and finer).

Let u be the solution of the primitive equations without artificial viscosities, that is, u is
the solution of

∂u
∂t

+ (u · ∇)u +
(
∇ ·

∫ 0

z

udξ
)∂u
∂z

+ fk × u +
1
ρ0

∇p− μΔu − ν
∂2u
∂z2

= F. (3.44)

It can be shown that the system (3.44) plus (3.4)–(3.8) has unique global strong solutions,
provided that the initial data and the forcing are sufficiently smooth. See [7, 20, 21] (These works
use boundary conditions different from ours, but the case with periodic boundary conditions
can be handled as well.)

To study the convergence of the solution of system (3.43), we subtract (3.44) from (3.43).
Let vδ = uδ − u. We have

∂vδ

∂t
+ (uδ · ∇)vδ +

(
∇ ·

∫ 0

z

uδdξ
)∂vδ

∂z
+ (vδ · ∇)u +

(
∇ ·

∫ 0

z

vδdξ
)∂u
∂z

+ fk × vδ − μΔvδ − ν
∂2vδ

∂z2
− μδΔ(I − PM,N )uδ − νδ

∂2

∂z2
(I − PM,N )uδ = 0. (3.45)

We take the inner product of (3.45) with vδ, and integrate by parts over Ω to obtain

1
2

d
dt

|vδ|2L2 +
∫

Ω

(
(uδ · ∇)vδ +

(
∇ ·

∫ 0

z

uδdξ
)∂vδ

∂z

)
· vδdΩ

+
∫

Ω

(
(vδ · ∇)u +

(
∇ ·

∫ 0

z

vδdξ
)∂u
∂z

)
· vδdΩ

+
∫

Ω

fk× vδ · vδdΩ + μ|∇vδ|2 + ν
∣∣∣∂vδ

∂z

∣∣∣2
= −μδ(∇(I − PM,N )uδ, ∇vδ) − νδ

( ∂

∂z
(I − PM,N )u,

∂

∂z
vδ

)
. (3.46)

We note ∫
Ω

fk× vδ · vδdΩ = 0. (3.47)

We can also verify by integration by parts, and using the boundary conditions (3.4)–(3.6) for
u, uδ (and therefore for vδ), that∫

Ω

(
(uδ · ∇)vδ +

(
∇ ·

∫ 0

z

uδdξ
)∂vδ

∂z

)
· vδdΩ = 0. (3.48)

By Holder’s inequality and the interpolation inequalities (A.4) and (A.5) in R3, we find∣∣∣ ∫
Ω

((vδ · ∇)u) · vδdΩ
∣∣∣ ≤ C|∇u|L2 |vδ |L3 |vδ|L6 ,

∣∣∣ ∫
Ω

((vδ · ∇)u) · vδdΩ
∣∣∣ ≤ C|∇u|L2 |vδ | 12L2 |∇vδ| 32L2 .

(3.49)
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Using Holder’s inequality again, we find

∣∣∣ ∫
Ω

(
∇ ·

∫ 0

z

vδdξ
)∂u
∂z

· vδdΩ
∣∣∣

≤ C

∫
M

(∫ 0

−H

|∇vδ|dz
)( ∫ 0

−H

∣∣∣∂u
∂z

∣∣∣|vδ |dz
)
dxdy

≤ C

∫
M

(∫ 0

−H

|∇vδ|dz
)( ∫ 0

−H

∣∣∣∂u
∂z

∣∣∣2dz) 1
2
(∫ 0

−H

|vδ|2dz
) 1

2
dxdy

≤ C
( ∫

M

( ∫ 0

−H

|∇vδ|dz
)2

dxdy
) 1

2
(∫

M

(∫ 0

−H

∣∣∣∂u
∂z

∣∣∣2dz)2

dxdy
) 1

4
( ∫

M

( ∫ 0

−H

|vδ|2dz
)2

dxdy
) 1

4
.

We first note that(∫
M

(∫ 0

−H

|∇vδ|dz
)2

dxdy
) 1

2 ≤ C
(∫

M

∫ 0

−H

|∇vδ|2dzdxdy
) 1

2
= C|∇vδ |L2(Ω).

By the integral Minkowski inequality (A.6) and the interpolation inequality (A.2) in R2, we
find ( ∫

M

( ∫ 0

−H

∣∣∣∂u
∂z

∣∣∣2dz)2

dxdy
) 1

2 ≤ C

∫ 0

−H

(∫
M

∣∣∣∂u
∂z

∣∣∣4dxdy) 1
2
dz

≤ C

∫ 0

−H

∣∣∣∂u( · , z)
∂z

∣∣∣2
L4(M)

dz

≤ C

∫ 0

−H

∣∣∣∂u( · , z)
∂z

∣∣∣
L2(M)

∣∣∣∇∂u( · , z)
∂z

∣∣∣
L2(M)

dz

≤ C
∣∣∣∂u
∂z

∣∣∣
L2(Ω)

∣∣∣∇∂u
∂z

∣∣∣
L2(Ω)

.

Similarly, we have ( ∫
M

( ∫ 0

−H

|vδ|2dz
)2

dxdy
) 1

2 ≤ C|vδ |L2 |∇vδ|L2 .

Therefore,

∣∣∣ ∫
Ω

(
∇ ·

∫ 0

z

vδdξ
)∂u
∂z

· vδdΩ
∣∣∣ ≤ C

∣∣∣∂u
∂z

∣∣∣ 1
2

L2(Ω)

∣∣∣∇∂u
∂z

∣∣∣ 1
2

L2(Ω)
|vδ| 12L2 |∇vδ| 32L2 . (3.50)

With (3.47)–(3.50), we derive from (3.46) that

1
2

d
dt

|vδ|2L2 + μ|∇vδ|2 + ν
∣∣∣∂vδ

∂z

∣∣∣2
≤ μδ|∇(I − PM,N )uδ||∇vδ| + νδ

∣∣∣ ∂
∂z

(I − PM,N)u
∣∣∣∣∣∣ ∂
∂z

vδ
∣∣∣

+ C
(∣∣∣∂u
∂z

∣∣∣ 1
2

L2(Ω)

∣∣∣∇∂u
∂z

∣∣∣ 1
2

L2(Ω)

)
|vδ| 12L2 |∇vδ | 32L2 + C|∇u|L2 |vδ| 12L2 |∇vδ | 32L2 . (3.51)

By Young’s inequality, we have

d
dt

|vδ |2L2 + μ|∇vδ |2 + ν
∣∣∣∂vδ

∂z

∣∣∣2 ≤ 2
μ2

δ

ν
|∇(I − PM,N)uδ|2 +

ν2
δ

ν

∣∣∣ ∂
∂z

(I − PM,N )u
∣∣∣2

+ C
(∣∣∣∂u
∂z

∣∣∣2
L2(Ω)

∣∣∣∇∂u
∂z

∣∣∣2
L2(Ω)

+ |∇u|4L2

)
|vδ|2L2 . (3.52)
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We notice that the a priori estimates obtained in the previous section are independent of μδ

and νδ. We apply the Gronwall inequality to (3.52). Utilizing the a priori estimates (3.26),
(3.38) and (3.42), we obtain

|vδ( · , t)|2L2 +
∫ t

0

μ|∇vδ( · , s)|2ds+ν
∫ t

0

∣∣∣∂vδ

∂z
( · , s)

∣∣∣2ds≤eK2
z (t)+K2

V (t)
(2μδ

μ
+
νδ

ν

)
K1(t). (3.53)

We have just proved the following theorem.

Theorem 3.2 Let T > 0 be given, and the other assumptions be the same as in Theorem
3.1. Then, as μδ & νδ → 0,

uδ − u ∼ √
μδ + νδ → 0, in L∞(0, T ;L2(Ω)), (3.54)

uδ − u ∼ √
μδ + νδ → 0, in L2(0, T ;H1(Ω)). (3.55)

Appendix Some Inequalities

We list here some functional inequalities that are frequently used in this paper.

Lp interpolation inequality

Let Ω ⊂ R
3, and 1 ≤ p1 ≤ p ≤ p2, p1 �= p2. Let u ∈ Lp1(Ω) ∩ Lp2(Ω). Then u ∈ Lp(Ω), and

‖u‖Lp ≤ ‖u‖s1
Lp1‖u‖s2

Lp2 , (A.1)

with
s1 =

p1

p

p2 − p

p2 − p1
, s2 =

p2

p

p− p1

p2 − p1
.

Ladyzhenskaya/Sobolev inequalities in R
2

Let M ⊂ R
2 be a bounded domain with piecewise smooth boundaries. For each φ ∈ H1(M),

the following inequalities hold:

‖φ‖L4(Ω) ≤ C‖φ‖ 1
2
L2(Ω)‖φ‖

1
2
H1(Ω), (A.2)

‖φ‖L8(Ω) ≤ C‖φ‖ 3
4
L6(Ω)‖φ‖

1
4
H1(Ω). (A.3)

Ladyzhenskaya/Sobolev inequalities in R
3

Let Ω ⊂ R
3 be a bounded domain with piecewise smooth boundaries. For each φ ∈ H1(Ω),

the following inequalities hold:

‖φ‖L3(Ω) ≤ C‖φ‖ 1
2
L2(Ω)‖φ‖

1
2
H1(Ω), (A.4)

‖φ‖L6(Ω) ≤ C‖φ‖H1(Ω). (A.5)

Minkowski integral inequality (for p ≥ 1)

Let Ω1 ⊂ R
m1 and Ω2 ⊂ R

m2 be two measurable sets, with m1 and m2 being positive
integers. Let f(ξ, η) be a measurable function over Ω1 × Ω2. Then

(∫
Ω1

( ∫
Ω2

|f(ξ, η)|dη
)p

dξ
) 1

p ≤
∫

Ω2

(∫
Ω1

|f(ξ, η)|pdξ
) 1

p

dη. (A.6)
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The inequality (A.1) can be verified by the Holder’s inequality. For (A.2)–(A.5), we refer to
such classical texts as [1, 33]. A proof of (A.6) can be found in [16].

Acknowledgement Xiaoming Wang acknowledges helpful conversation with Ning Ju.
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