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Abstract The author first reviews the classical Korn inequality and its proof. Following

recent works of S. Kesavan, P. Ciarlet, Jr., and the author, it is shown how the Korn

inequality can be recovered by an entirely different proof. This new proof hinges on ap-

propriate weak versions of the classical Poincaré and Saint-Venant lemma. In fine, both

proofs essentially depend on a crucial lemma of J. L. Lions, recalled at the beginning of

this paper.
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1 A Lemma of J. L. Lions

Let Ω be an open subset of R
N . A function v ∈ L2(Ω) being identified with the distribution

Tv that it defines, it is clear that v ∈ L2(Ω) implies that

v ∈ H−1(Ω) and ∂iv ∈ H−1(Ω), 1 ≤ i ≤ N,

since

|Tv(ϕ)| =
∣∣∣
∫

Ω

vϕdx
∣∣∣ ≤ ‖v‖0,Ω‖ϕ‖1,Ω for all ϕ ∈ D(Ω),

|∂iTv(ϕ)| = | − Tv(∂iϕ)| =
∣∣∣ −

∫

Ω

v∂iϕdx
∣∣∣ ≤ ‖v‖0,Ω‖ϕ‖1,Ω for all ϕ ∈ D(Ω).

A domain in R
N is a bounded and connected open subset Ω of R

N with a Lipschitz-

continuous boundary Γ, the set Ω being locally on the same side of Γ.

It is remarkable, but also remarkably difficult to prove, that, if Ω is a domain, a converse

implication holds:

Theorem 1.1 (J. L. Lions Lemma) Let Ω be a domain in R
N . Let a distribution v ∈ D′(Ω)

be such that ∂iv ∈ H−1(Ω), 1 ≤ i ≤ N. Then v ∈ L2(Ω).

This implication was first established, for domains with smooth boundaries and for functions

v ∈ L2(Ω), by Jacques-Louis Lions in 1958, as stated in Footnote (22) of [20]. Its first published

proof by J. L. Lions appeared in [5]. Other proofs of the original lemma of J. L. Lions have

since then been given, some extending it to genuine domains (i.e., with Lipschitz-continuous
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boundaries, as stated in Theorem 1.1), or to the more general spaces W−1,q(Ω), 1 < q < ∞

(see, e.g., [9, 22, 23]). The extension to distributions v ∈ D′(Ω) (instead of distributions in

H−1(Ω) or W−1,q(Ω)) as stated in Theorem 1.1 is due to [2] and [3]. A counterexample to J.

L. Lions lemma when Ω is not a domain is given in [8].

J. L. Lions lemma is of fundamental importance: it is in particular the key to proving many

fundamental results, such as the Korn’s inequality (see Section 2), the weak Poincaré lemma

(see Section 3), or the weak Saint-Venant lemma (see Section 4).

Remark 1.1 Although Theorem 1.1 shall be referred to as “the” lemma of J. L. Lions

in this article, there are other results of his that bear the same name in the literature, such

as his “compactness lemmas” (see [17, Proposition 4.1] or [18, Section 5.2]), or his “singular

perturbation lemma” (see [19, Lemma 5.1]).

2 Korn’s Inequality

The norms in the space L2(Ω) and H1(Ω) are denoted ‖ · ‖0,Ω and ‖ · ‖1,Ω, respectively.

Korn’s inequality asserts that, given a domain Ω in R
N , there exists a constant C depending

solely on Ω such that

( N∑

i=1

‖vi‖
2
0,Ω +

N∑

i,j=1

‖∂jvi‖
2
0,Ω

) 1

2

≤ C
( N∑

i=1

‖vi‖
2
0,Ω +

N∑

i,j=1

‖eij(v)‖2
0,Ω

) 1

2

for all vector fields v = (vi)
N
i=1 ∈ H1(Ω; RN ), where

eij(v) :=
1

2
(∂jvi + ∂ivj) ∈ L2(Ω), 1 ≤ i, j ≤ N.

This inequality appeared for the first time, with a proof under the assumption that the

vector fields v vanish on the boundary of Ω, in [14, 15, 16]. A second proof, this time under the

assumption that the vector fields v satisfy
∫
Ω

curl v dx = 0, was then given in [7]. The first

proof in full generality (based on the Calderón-Zygmund theory of singular integrals), is due to

[11].

As is well-known, its special case N = 3 is crucial to establishing the existence and unique-

ness of the solution to the weak formulation of the boundary value problem of linearized three-

dimensional elasticity (as the key to proving the coerciveness of the associated bilinear form).

Korn’s inequality thus provides an upper bound for the L2(Ω)-norms of all the N2 partial

derivatives ∂jvi of a vector field v = (vi) ∈ H1(Ω; R) in terms of the L2(Ω)-norms of only
N(N+1)

2

particular linear combinations of these partial derivatives, namely the functions eij(v) = eji(v).

This truly remarkable feature suggests that none of its various available proofs (see, e.g., the

list of references provided in [12]) should be simple. For instance, the proof given below (which

is well-known, but is reproduced here for the reader’s convenience) is short and illuminating,

but it depends on the lemma of J. L. Lions (see Theorem 1.1).

In what follows, spaces of vector-valued (resp. symmetric tensor-valued) fields are denoted

by boldface (resp. special roman with s as a subscript) capitals, while the norms are denoted
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as in the scalar case. Thus, for instance,

‖v‖1,Ω =
( N∑

i=1

‖vi‖
2
1,Ω

) 1

2

for any v = (vi) ∈ H
1(Ω) := H1(Ω; RN ),

‖e‖0,Ω =
( N∑

i,j=1

‖eij‖
2
0,Ω

) 1

2

for any e = (eij) ∈ L
2
s(Ω) := L2(Ω; SN ),

where S
N denotes the space of all real N × N symmetric matrices.

Theorem 2.1 (Korn’s Inequality in H
1(Ω)) Let Ω be a domain in R

N . Then there exists

a constant C = C(Ω) such that

‖v‖1,Ω ≤ C(‖v‖2
0,Ω + ‖e(v)‖2

0,Ω)
1

2 for all v ∈ H
1(Ω),

where

e(v) := (eij(v)) with eij(v) :=
1

2
(∂jvi + ∂ivj), 1 ≤ i, j ≤ N.

Proof The proof given here follows that of Theorem 3.3 in Chapter 3 of [5].

(i) Define the space

E(Ω) := {v ∈ L
2(Ω); e(v) ∈ L

2
s(Ω)}.

Then, equipped with the norm defined by ‖v‖ := (‖v‖2
0,Ω + ‖e(v)‖2

0,Ω)
1

2 , the space E(Ω) is a

Hilbert space.

The relation “e(v) ∈ L
2
s(Ω)” appearing in the definition of the space E(Ω) is understood in

the sense of distributions, i.e., it means that there exist functions in the space L2(Ω), denoted

by eij(v) = eji(v), such that

∫

Ω

eij(v)ϕdx = −
1

2

∫

Ω

(vi∂jϕ + vj∂iϕ) dx for all ϕ ∈ D(Ω).

Consider a Cauchy sequence (vk)∞k=1 of elements vk = (vk
i )N

i=1 ∈ E(Ω). The definition of

the norm ‖ · ‖ shows that there exist functions vi ∈ L2(Ω) and eij ∈ L2(Ω) such that

vk
i → vi in L2(Ω), and eij(v

k) → eij in L2(Ω), as k → ∞,

since the space L2(Ω) is complete. Given a function ϕ ∈ D(Ω), letting k → ∞ in the relations

∫

Ω

eij(v
k)ϕdx = −

1

2

∫

Ω

(vk
i ∂jϕ + vk

j ∂iϕ) dx, k ≥ 1

shows that eij = eij(v).

(ii) The two spaces E(Ω) and H
1(Ω) coincide.

Clearly, H
1(Ω) ⊂ E(Ω). To prove the other inclusion, let v = (vi)

N
i=1 ∈ E(Ω). Then for

1 ≤ i, j, k ≤ N ,

∂kvi ∈ H−1(Ω), ∂j(∂kvi) = {∂jeik(v) + ∂keij(v) − ∂iejk(v)} ∈ H−1(Ω),

since w ∈ L2(Ω) implies ∂ℓw ∈ H−1(Ω), 1 ≤ ℓ ≤ N . Hence ∂kvi ∈ L2(Ω) by the lemma of J. L.

Lions (see Theorem 1.1), and thus v ∈ H
1(Ω).
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(iii) Korn’s inequality.

The identity mapping ι from H
1(Ω) equipped with ‖ · ‖1,Ω into E(Ω) equipped with ‖ · ‖

is injective, continuous (there clearly exists a constant c such that ‖v‖ ≤ c‖v‖1,Ω for all v ∈

H
1(Ω)), and surjective by (ii).

Banach open mapping theorem then shows that the inverse mapping ι−1 is also continuous,

which is exactly what is expressed by Korn’s inequality.

A counterexample showing that the Korn inequality does not necessarily hold if Ω is not a

domain is found in [8].

Similar inequalities can be established on a domain Ω in R
N , such as a Korn inequality in

W
1,p(Ω), which asserts that for each 1 < p < ∞, there exists a constant Cp such that (see [9])

‖v‖W 1,p(Ω) ≤ Cp(‖v‖
p

Lp(Ω) + ‖e(v)‖p

L
p

s(Ω)
)

1

p for all v ∈ W
1,p(Ω),

or a Korn inequality in L
2(Ω), which asserts that there exists a constant C such that (see [1])

‖v‖L2(Ω) ≤ C
(
‖v‖2

H−1(Ω) + ‖e(v)‖2
H
−1

s (Ω)

) 1

2 for all v ∈ L
2(Ω).

We now establish an equivalent form of the Korn inequality in H
1(Ω), this time in a quotient

space (see Theorem 2.3). For this purpose, we first need to identify those vector fields v ∈ H
1(Ω)

that satisfy e(v) = 0 in L
2
s(Ω) (see Theorem 2.2).

Let A
N denote the space of all real N × N antisymmetric matrices.

Theorem 2.2 Let Ω be a connected open subset R
N . Then

{v ∈ H
1(Ω); e(v) = 0 in Ω} = {v ∈ H

1(Ω); there exist A ∈ A
N and c ∈ R

N

such that v(x) = Ax + c for almost all x ∈ R
N}.

Proof We first note that, for each 1 ≤ i, j, k ≤ N , any vector field v ∈ H
1(Ω) satisfies

∫

Ω

(∂jvi)∂kϕdx =

∫

Ω

{eij(v)∂kϕ + eik(v)∂jϕ − ejk(v)∂iϕ} dx for all ϕ ∈ D(Ω),

since the two sides of this relation are equal to −
∫
Ω vi∂kjϕdx. Consequently,

e(v) = 0 in Ω implies

∫

Ω

(∂jvi)∂kϕdx = 0 for all ϕ ∈ D(Ω).

There thus exist constants bij , 1 ≤ i, j ≤ N , such that ∂jvi(x) = bij for almost all x ∈ Ω.

In addition, eij(v) = 0 implies that bij = −bji.

Let wi(x) :=
N∑

j=1

bijxj for all x = (xj) ∈ Ω, 1 ≤ i ≤ N . Then

∫

Ω

vi∂jϕdx = −

∫

Ω

(∂jvi)ϕdx = −bij

∫

Ω

ϕdx = −

∫

Ω

(∂jwi)ϕdx =

∫

Ω

wi∂jϕdx

for all ϕ ∈ D(Ω). There thus exist constants ci such that (vi − wi)(x) = ci, 1 ≤ i ≤ N .

We have therefore shown that, if a vector field v ∈ H
1(Ω) satisfies e(v) = 0 in Ω, there

exist an N × N antisymmetric matrix A = (bij) and a vector c ∈ R
N such that

v(x) = Ax + c for all x ∈ Ω.
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Note in passing that part (i) of the above proof implies that, when N = 3, a vector field

v ∈ H
1(Ω) satisfies e(v) = 0 in L

2
s(Ω) (if and) only if there exist two vectors a ∈ R

3 and

c ∈ R
3 such that

v(x) = a ∧ ox + c for almost all x ∈ Ω.

When thought of as a “displacement field” of the set Ω, such a vector field is called an infinites-

imal rigid displacement, “infinitesimal” reflecting its relation to a genuine “rigid deformation”

of Ω.

Let M
N denote the space of all N × N real matrices. Given an open subset Ω of R

N

and a smooth enough vector field v = (vi) : Ω → R
N , the gradient of v is the matrix field

∇v : Ω → M
N defined by (∇v)ij = ∂jvi. Hence the matrix field e(v) : Ω˜ → S

N introduced

in this section is also given by

e(v) =
1

2
(∇v

T + ∇v).

For this reason, e(v) is also called the symmetrized gradient of v and is sometimes (like in the

next theorem) denoted by the more “operator-like” notation ∇s̃ v.

Part (a) of the next theorem is known (see, e.g., [5]). A (different) proof is given here for

the reader’s convenience. A proof of part (b) was given in [4].

Theorem 2.3 (Korn’s Inequality in the Quotient Space H
1(Ω)/Ker∇s) Let Ω be a domain

in R
N . Define the quotient space

Ḣ(Ω) := H
1(Ω)/Ker∇s,

where

Ker∇s :=
{
v ∈ H

1(Ω); ∇sv :=
1

2
(∇v

T + ∇v) = 0 in Ω
}
.

Equipped with the quotient norm ‖ · ‖1,Ω defined by

‖v̇‖1,Ω := inf
r∈Ker∇s

‖v + r‖1,Ω for all v̇ ∈ Ḣ
1(Ω),

the space H
1(Ω) is thus a Hilbert space. Then:

(a) There exists a constant Ċ = Ċ(Ω) such that the Korn’s inequality in Ḣ
1(Ω) holds, viz.,

‖v̇‖1,Ω ≤ Ċ‖e(v̇)‖0,Ω for all v̇ ∈ Ḣ
1(Ω),

where e(v̇) := e(w) for any w ∈ v̇.

(b) Conversely, the Korn inequality in Ḣ
1(Ω) implies the Korn inequality in H

1(Ω) (see

Theorem 2.1).

Proof By Theorem 2.2, the space Ker∇s is finite-dimensional and its dimension is M :=
N(N+1)

2 .

By the Hahn-Banach theorem in a normed vector space, there exist M continuous linear

forms ℓα on H
1(Ω), 1 ≤ α ≤ M , with the following property: An element r ∈ Ker∇s is equal

to 0 if and only if ℓα(r) = 0, 1 ≤ α ≤ M . We then claim that there exists a constant D such

that

‖v‖1,Ω ≤ D
(
‖e(v)‖0,Ω +

M∑

α=1

|ℓα(v)|
)

for all v ∈ H
1(Ω).
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This inequality in turn implies Korn’s inequality in Ḣ
1(Ω): Given any v ∈ H

1(Ω), let r(v) ∈

Ker∇s be such that ℓα(v + r(v)) = 0, 1 ≤ α ≤ M ; then

‖v̇‖1,Ω = inf
r∈Ker∇s

‖v + r‖1,Ω ≤ ‖v + r(v)‖1,Ω ≤ D‖e(v)‖0,Ω = D‖e(v̇)‖0,Ω.

To establish the existence of such a constant D, assume the contrary. Then there exist

vk ∈ H
1(Ω), k ≥ 1, such that

‖vk‖1,Ω = 1 for all k ≥ 1 and
(
‖e(vk)‖0,Ω +

M∑

α=1

|ℓα(vk)|
)

−→
k→∞

0.

By the Rellich-Kondrašov theorem, there exists a subsequence (vℓ)∞ℓ=1 that converges in

L
2(Ω). Since the sequence (e(vℓ))∞ℓ=1 also converges in L

2
s(Ω), the subsequence (vℓ)∞ℓ=1 is a

Cauchy sequence with respect to the norm v → {‖v‖2
0,Ω +‖e(v)‖2

0,Ω}
1

2 , hence also with respect

to the norm ‖ · ‖1,Ω by Korn’s inequality in H
1(Ω) (see Theorem 2.1). Consequently, there

exists v ∈ H
1(Ω) such that

‖vℓ − v‖1,Ω −→
ℓ→∞

0.

But we have v = 0 since e(v) = 0 and ℓα(v) = 0, 1 ≤ α ≤ M , in contradiction with the

relations ‖vℓ‖1,Ω = 1 for all ℓ ≥ 1. This proves (a).

We next show that, conversely, Korn’s inequality in the quotient space Ḣ
1(Ω) implies Korn’s

inequality in the space H
1(Ω).

Assume the contrary. Then there exist vk ∈ H
1(Ω), k ≥ 1, such that

‖vk‖1,Ω = 1 for all k ≥ 1 and (‖vk‖0,Ω + ‖e(vk)‖0,Ω) −→
k→∞

0.

Let rk ∈ Ker∇s denote for each k ≥ 1 the projection of vk on Ker∇s with respect to the

inner-product of H
1(Ω), which thus satisfies

‖vk − r
k‖1,Ω = inf

r∈Ker∇s

‖vk − r‖1,Ω and ‖vk‖2
1,Ω = ‖vk − r

k‖2
1,Ω + ‖rk‖2

1,Ω.

The space Ker∇s being finite-dimensional, the inequalities ‖rk‖1,Ω ≤ 1 for all k ≥ 1 imply the

existence of a subsequence (rℓ)∞ℓ=1 that converges in H
1(Ω) to an element r ∈ Ker∇s. Besides,

Korn’s inequality in Ḣ
1(Ω) implies that ‖vℓ − rℓ‖1,Ω −→

ℓ→∞

0, so that ‖vℓ − r‖1,Ω −→
ℓ→∞

0. Hence

‖vℓ − r‖0,Ω −→
ℓ→∞

0, which forces r to be 0, since ‖vℓ‖0,Ω → 0 on the other hand. We thus reach

the conclusion that ‖vℓ‖1,Ω → 0, a contradiction.

3 Poincaré Lemma: the Classical and Weak Versions

Given an open subset Ω of R
N , consider the linear operator grad : C2(Ω) → C1(Ω; RN )

defined by

p ∈ C2(Ω) → grad p := (∂ip) ∈ C1(Ω; RN ).

A natural question then arises, as to whether this linear operator is invertible, i.e., whether,

given a vector field h = (hi) ∈ C1(Ω; RN ), there exists a function p ∈ C2(Ω) such that

∂ip = hi in Ω, 1 ≤ i ≤ N.
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Since then ∂ijp = ∂jip if this is the case, it is clear that the functions hi must necessarily satisfy

the compatibility conditions

∂ihj − ∂jhi = 0 in C(Ω), 1 ≤ i, j ≤ N,

or equivalently, in vector form, curl h = 0 in C(Ω; RN).

These necessary conditions become sufficient if the open set Ω is simply-connected: this is

the essence of the well-known Poincaré lemma; for a proof, see, e.g., Section 3.6 in [6]. This

classical result is recalled in Theorem 3.1 below (“classical”, as opposed to the “weak” form of

this lemma, established in Theorem 3.2).

Theorem 3.1 (Poincaré Lemma: Classical Version) Let Ω be a simply-connected open

subset of R
N , and let there be given functions hi ∈ C1(Ω), 1 ≤ i ≤ N , that satisfy

∂jhi = ∂ihj in Ω, 1 ≤ i, j ≤ N.

Then there exists a function p ∈ C2(Ω) such that

∂ip = hi in Ω, 1 ≤ i ≤ N.

Besides, any other solution p̃ ∈ C2(Ω) to the equations ∂ip̃ = hi in Ω, 1 ≤ i ≤ N , is of the

form p̃ = p + C for some constant C.

Our second application of J. L. Lions lemma will now consist in showing that Poincaré’s

lemma still holds under a substantially weaker regularity assumption, viz., that hi, 1 ≤ i ≤ N ,

be only distributions in H−1(Ω). This result is due to [4]. The simpler proof given here is due

to [13].

Theorem 3.2 (Poincaré Lemma: Weak Version) Let Ω be a simply-connected domain in

R
N and let there be given distributions hi ∈ H−1(Ω), 1 ≤ i ≤ N , that satisfy

∂jhi = ∂ihj in H−2(Ω), 1 ≤ i, j ≤ N.

Then there exists a function p ∈ L2(Ω) such that

∂ip = hi in H−1(Ω), 1 ≤ i ≤ N.

Besides, any other solution p̃ ∈ L2(Ω) to the equations ∂ip̃ = hi in H−1(Ω), 1 ≤ i ≤ N , is

of the form p̃ = p + C, where C is a constant.

Proof We have to show that, if h ∈ H
−1(Ω) satisfies curl h = 0 in H

−2(Ω), then there

exists p ∈ L2(Ω) such that h = grad p in H
−1(Ω). To this end, we proceed in two stages.

(i) By Theorem 5.1 in Chapter 1 of [10], there exist a vector field u ∈ H
1
0(Ω) and a function

π ∈ L2(Ω) such that
−∆u + gradπ = h in H

−1(Ω),
div u = 0 in L2(Ω)

(the assumptions that Ω is simply-connected and that curl h = 0 in H
−2(Ω) are not needed

at this stage).

(ii) The assumption curl h = 0 in H
−2(Ω), together with the relation

curl grad π = 0, in D
′(Ω) for any π ∈ D′(Ω),
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imply that

∆(curl u) = curl (∆u) = curl h − curl gradπ = 0.

Since curl u ∈ L
2(Ω) ⊂ L

1
loc(Ω), the hypoellipticity of ∆ (see, e.g., [24]) shows that

curl u ∈ C
∞(Ω), so that (∂jui − ∂iuj) ∈ C∞(Ω) for all 1 ≤ i, j ≤ N . Therefore

∂j(∂jui − ∂iuj) = ∆ui − ∂i(div u) = ∆ui ∈ C∞(Ω), 1 ≤ i ≤ N,

since div u = 0.

Since ∆u ∈ C∞(Ω) and curl∆u = 0 in Ω, and Ω is simply-connected, the classical Poincaré

lemma (see Theorem 3.1) can be applied, showing that there exists a function p̃ ∈ C∞(Ω) ⊂

L1
loc(Ω) ⊂ D′(Ω) such that

grad p̃ = ∆u = grad π − h, in H
−1(Ω).

Since the distribution p := π − p̃ ∈ D′(Ω) is such that

grad p = grad π − grad p̃ = h ∈ H
−1(Ω),

J. L. Lions lemma shows that p is in effect a function in L2(Ω).

Let π ∈ L2(Ω) be such that gradπ = 0 in H
−1(Ω), which means that

∂iπ(ϕ) := −

∫

Ω

π∂iϕdx = 0 for all ϕ ∈ D(Ω), 1 ≤ i ≤ N.

Since the open set Ω is connected, the function π is a constant. Hence the function p ∈ L2(Ω)

found above is unique modulo the addition of a constant.

Together with the hypoellipticity of ∆, J. L. Lions lemma thus plays a key role for proving

the weak Poincaré lemma. Note that, as shown in [13], the weak Poincaré lemma conversely

provides a very simple proof of J. L. Lions lemma (at least for simply-connected domains, but

then the extension to non-simply-connected domains is easy). Note also that Poincaré lemma

was shown to hold in the even weaker sense of distributions in [21].

4 Saint-Venant Lemma: the Classical and Weak Versions

This section is the “matrix analog” of Section 3, the vector gradient operator

grad : p ∈ D′(Ω) → grad p ∈ D′(Ω; RN )

being “replaced” by the matrix symmetrized gradient operator

∇s : v ∈ D′(Ω; RN ) → ∇sv := e(v) =
1

2
(∇v

T + ∇v) ∈ D′(Ω; SN ).

This explains why the discourse follows the same lines as in Section 3, and why Theorems 4.1

and 4.2 below again crucially depend on Poincaré lemma, in its classical and weak versions.

Given an open subset of R
N , consider the linear operator from the space C3(Ω; RN ) into the

space C2(Ω; SN ) (these regularity assumptions insure that the compatibility relations satisfied

by the functions eij make sense in the space C(Ω)) defined by

v = (vi) ∈ C3(Ω; RN ) → e(v) = (eij(v)) ∈ C2(Ω; SN ),
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where

eij(v) :=
1

2
(∂jvi + ∂ivj) = eji(v), 1 ≤ i, j ≤ N.

A natural question therefore arises, as to whether this linear operator is invertible, i.e.,

whether, given a matrix field e = (eij) ∈ C2(Ω; SN ), there exists a vector field v ∈ C3(Ω; RN )

such that
1

2
(∂jvi + ∂ivj) = eij in Ω, 1 ≤ i, j ≤ N.

If this is the case, it is then immediately verified that the functions eij = eji ∈ C2(Ω) must

necessarily satisfy the Saint-Venant compatibility relations, so named after Adhémar-Jean-

Claude Barré de Saint-Venant, who published these relations in 1864:

∂ℓjeik + ∂kiejℓ − ∂ℓiejk − ∂kjeiℓ = 0 in C(Ω), 1 ≤ i, j, k, ℓ ≤ N.

It is remarkable that these necessary conditions become sufficient if the open set Ω is simply-

connected. The next proof is well-known.

Theorem 4.1 (Saint-Venant Lemma: Classical Version) Let Ω be a simply-connected open

subset of R
N , and let there be given functions eij = eji ∈ C2(Ω), 1 ≤ i, j ≤ N , that satisfy the

Saint-Venant compatibility relations

∂ℓjeik + ∂kiejℓ − ∂ℓiejk − ∂kjeiℓ = 0 in Ω, 1 ≤ i, j, k, ℓ ≤ N.

Then there exists a vector field v = (vi) ∈ C3(Ω; RN ) such that

1

2
(∂jvi + ∂ivj) = eij in Ω, 1 ≤ i, j ≤ N.

Besides, any other solution ṽ = (ṽi) ∈ C3(Ω; RN ) to the equations

1

2
(∂j ṽi + ∂iṽj) = eij in Ω, 1 ≤ i, j ≤ N,

is of the form ṽ(x) = v(x) + Ax + c, x ∈ Ω, for some N × N antisymmetric matrix A and

vector c ∈ R
N .

Proof It is implicitly understood that the various relations found in this proof hold for all

the values 1, 2, · · · , N of the Latin indices appearing in them. The Saint-Venant compatibility

relations may be equivalently rewritten as

∂ℓhijk = ∂khijℓ in C(Ω) with hijk := ∂jeik − ∂iejk ∈ C1(Ω).

Hence the classical Poincaré lemma (see Theorem 3.1) shows that there exist functions pij ∈

C2(Ω), unique up to additive constants, such that

∂kpij = hijk = ∂jeik − ∂iejk in C1(Ω).

Besides, since ∂kpij = −∂kpji in C1(Ω), we have the freedom of choosing the functions pij in

such a way that pij + pji = 0 in C2(Ω).

Noting that the functions qij := (eij + pij) ∈ C2(Ω) satisfy

∂kqij = ∂keij + ∂kpij = ∂keij + ∂jeik − ∂iejk = ∂jeik + ∂jpik = ∂jqik in C1(Ω),
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we again resort to the classical Poincaré lemma to assert the existence of functions vi ∈ C3(Ω),

unique up to additive constants, such that

∂jvi = qij = eij + pij in C2(Ω).

Consequently,

1

2
(∂jvi + ∂ivj) = eij +

1

2
(pij + pji) = eij in C2(Ω),

as required. That all other solutions are of the indicated form is established like in the proof

of Theorem 2.2.

Using the weak version of Poincaré lemma, hence in fine using J. L. Lions lemma, we

now show that the Saint-Venant lemma still holds under a substantially weaker regularity

assumption, viz., that eij , 1 ≤ i, j ≤ N , be only functions in L2(Ω). This result is due to [4].

This “weak version” of the Saint-Venant lemma will in turn provide a new proof of Korn’s

inequality (see Theorem 4.4).

Theorem 4.2 (Saint-Venant Lemma: Weak Version) Let Ω be a simply-connected domain

in R
N . Let e = (eij) ∈ L

2
s(Ω) be a symmetric matrix field that satisfies the Saint-Venant

compatibility relations:

∂ℓjeik + ∂kiejℓ − ∂ℓiejk − ∂kjeiℓ = 0 in H−2(Ω), 1 ≤ i, j, k, ℓ ≤ N.

Then there exists a vector field v = (vi) ∈ H
1(Ω) such that

eij =
1

2
(∂jvi + ∂ivj) in L2(Ω), 1 ≤ i, j ≤ N.

Besides, all other solutions ṽ = (ṽi) ∈ H
1(Ω) to the equations eij = 1

2 (∂j ṽi + ∂iṽj) are of

the form

ṽ(x) = v(x) + Ax + c for almost x ∈ Ω,

for some N × N antisymmetric matrix A and vector c ∈ R
N .

Proof The proof is analogous to that of Theorem 4.1, save that it is now the weak version

of Poincaré lemma (see Theorem 3.2) that is used twice: first, to show that there exist functions

pij ∈ L2(Ω), unique up to additive constants, that satisfy

∂kpij = hijk = ∂jeik − ∂iejk in H−1(Ω),

and, second, to show that there exist functions vi ∈ H1(Ω), again unique up to additive

constants, that satisfy ∂jvi = qij = eij + pij in L2(Ω).

Consequently,

1

2
(∂jvi + ∂ivj) = eij +

1

2
(pij + pji) = eij in L2(Ω),

as desired. That all other solutions are of the indicated form follows from Theorem 2.2.

Let a symmetric matrix field e = (eij) ∈ L
2
s(Ω) satisfy

∂ℓjeik + ∂kiejℓ − ∂ℓiejk − ∂kjeiℓ = 0 in H−2(Ω), 1 ≤ i, j, k, ℓ ≤ N,
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i.e., the weak form of Saint Venant’s compatibility relations. By Theorem 4.2, there then exists

a unique equivalence class v̇ ∈ Ḣ
1(Ω) = H

1(Ω)/Ker∇s such that e = e(v̇) in L
2
s(Ω).

We now show that the mapping F : e → v̇ defined in this fashion is an isomorphism between

appropriate Hilbert spaces.

Theorem 4.3 Let Ω be a simply-connected domain in R
N . Define the space

Es(Ω) := {e = (eij) ∈ L
2
s(Ω); ∂ℓjeik + ∂kiejℓ − ∂ℓiejk − ∂kjeiℓ = 0

in H−2(Ω), 1 ≤ i, j, k, ℓ ≤ N},

and let

F : Es(Ω) → Ḣ
1(Ω)

be the linear mapping defined for each e ∈ Es(Ω) by F(e) = v̇, where v̇ is the unique element

in the quotient space Ḣ
1(Ω) that satisfies e(v̇) = e in L

2
s(Ω) (see Theorem 4.2). Then F is an

isomorphism between the Hilbert spaces Es(Ω) and Ḣ
1(Ω).

Proof Clearly, Es(Ω) is a Hilbert space as a closed subspace of L
2
s(Ω). The mapping F is

injective since F(e) = 0̇ means that e = e(0̇) = 0, and surjective since, given any v̇ ∈ Ḣ
1(Ω),

the matrix field e(v̇) ∈ L
2
s(Ω) necessarily satisfies ∂ℓjeik+∂kiejℓ−∂ℓiejk−∂kjeiℓ = 0 in H−2(Ω),

1 ≤ i, j, k, ℓ ≤ N .

Finally, the inverse mapping

F
−1 : v̇ ∈ Ḣ

1(Ω) → e(v̇) ∈ Es(Ω)

is continuous, since there evidently exists a constant c such that

‖e(v̇)‖0,Ω = ‖e(v + r)‖0,Ω ≤ c‖v + r‖1,Ω

for any v ∈ H
1(Ω) and any r ∈ Ker∇s, so that

‖e(v̇)‖0,Ω ≤ c inf
r∈Ker∇s

‖v + r‖1,Ω = c‖v̇‖1,Ω.

The conclusion thus follows from Banach open mapping theorem.

Remarkably, the Korn’s inequalities of Section 2 can now be very simply recovered from

Theorem 4.3.

Theorem 4.4 That the mapping F : Es(Ω) → Ḣ
1(Ω) is an isomorphism implies Korn’s

inequalities in both spaces H
1(Ω) and Ḣ

1(Ω) (see Theorems 2.1 and 2.3).

Proof Since F is an isomorphism by Theorem 4.3, there exists a constant Ċ such that

‖F(e)‖1,Ω ≤ Ċ‖e‖0,Ω for all e ∈ Es(Ω),

or equivalently such that

‖v̇‖1,Ω ≤ Ċ‖e(v̇)‖0,Ω for all v̇ ∈ Ḣ
1(Ω).

But this is exactly the Korn’s inequality in the quotient space Ḣ
1(Ω), itself equivalent to the

Korn’s inequality in the space H
1(Ω) (see Theorem 2.3).
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