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Abstract For β ∈ R, the authors consider the evolution system in the unknown variables
u and α �

∂ttu + ∂xxxxu + ∂xxtα − (β + ‖∂xu‖2
L2)∂xxu = f,

∂ttα − ∂xxα − ∂xxtα − ∂xxtu = 0

describing the dynamics of type III thermoelastic extensible beams, where the dissipa-
tion is entirely contributed by the second equation ruling the evolution of the thermal
displacement α. Under natural boundary conditions, the existence of the global attractor
of optimal regularity for the related dynamical system acting on the phase space of weak
energy solutions is established.
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1 Introduction

After the pioneering work of Woinowsky-Krieger [28], a great interest has been devoted
to the study of nonlinear evolution problems modelling the vibrations of extensible beams.
We may mention [1, 5, 6, 13, 25], along with the more recent papers [2, 3, 8, 9] dealing with
thermoelastic and viscoelastic beams or plates.

The system of equations describing the transverse deformations of an extensible thermoelas-
tic homogeneous beam of unitary natural length, obtained by combining the ideas of [14] and
[28], reads ⎧⎨

⎩∂ttu+ ∂xxxxu+ ∂xxθ −
(
β +

∫ 1

0

|∂xu(x, · )|2dx
)
∂xxu = f,

∂tθ − ∂xxθ − ∂xxtu = 0,
(1.1)
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in the unknowns u = u(x, t) : [0, 1] × R
+ → R and θ = θ(x, t) : [0, 1] × R

+ → R, having
set for simplicity all the physical parameters, except β, equal to one. Here, u represents the
vertical deflection of the beam from its configuration reference and θ is the relative temperature
from a reference value, while f = f(x) is the external load distribution, assumed constant in
time for simplicity. The parameter β ∈ R accounts for the axial force acting in the reference
configuration, positive when the beam is stretched and negative when compressed.

However, classical heat conduction based on the Fourier law has encountered strong criti-
cism, since it predicts the instantaneous propagation of thermal signals. Such an effect, often
referred to [7] as the paradox of heat conduction, is physically unrealistic; reason why many
alternative theories have been proposed through the years. Among those, we quote the one by
Green and Naghdi [10–12]. In fact, they established three different theories, labelled as type
I, II and III, respectively, based on an entropy balance law rather than on the usual entropy
inequality. Linearizing type I theory, one recovers classical thermoelasticity. Type II ther-
moelasticity, also known as thermoelasticity without energy dissipation, is fully hyperbolic and
the energy is conserved; consequently, thermoelastic disturbances propagate with finite speed.
In this theory, the thermal displacement

α(x, t) = α(x, 0) +
∫ t

0

θ(x, s)ds

plays a relevant role. Indeed, its gradient is included in the list of independent variables, whereas
the gradient of the temperature is omitted. In type III thermoelasticity, the independent vari-
ables are the gradient of the displacement, the temperature and its gradient, and the gradient
of the thermal displacement. For homogeneous materials, the constitutive equation for the heat
flux vector takes the form

q = k1∂xα+ k2∂xθ,

in place of the classical Fourier law, where kı > 0 are constants that we set equal to one in the
rest of the paper.

The theories of Green and Naghdi, albeit relatively recent, have become quite popular
in the scientific community, especially among mathematicians. We recall results concerning
uniqueness of solutions (see [21, 23]) and their spatial behavior (see [20]), as well as several
kind of wave propagation phenomena (see [19, 24]). But, probably, the main efforts have been
directed towards the asymptotic analysis of the related models (see [15–18, 22, 26, 29, 30]).

Our aim is to proceed along this line, analyzing the longterm behavior of type III ther-
moelastic extensible beams. Accordingly, we replace the second equation of (1.1), ruling the
thermal evolution, with the one arising in the framework of type III thermoelasticity. Therefore,
in light of the relation ∂tα = θ, we are led to the new evolution system

⎧⎨
⎩∂ttu+ ∂xxxxu+ ∂xxtα−

(
β +

∫ 1

0

|∂xu(x, · )|2dx
)
∂xxu = f,

∂ttα− ∂xxα− ∂xxtα− ∂xxtu = 0.
(1.2)
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System (1.2) is supplemented by the initial conditions{
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),
α(x, 0) = α0(x), ∂tα(x, 0) = α1(x),

(1.3)

where u0, u1, α0, α1 are assigned functions defined on the interval [0, 1]. Moreover, we assume
Dirichlet boundary conditions for the thermal displacement α and hinged boundary conditions
for the vertical deflection u; namely, for all t ≥ 0,{

u(0, t) = u(1, t) = ∂xxu(0, t) = ∂xxu(1, t) = 0,
α(0, t) = α(1, t) = 0. (1.4)

If f = f(x) ∈ L2(0, 1), problem (1.2)–(1.4) is shown to generate a strongly continuous semi-
group, or dynamical system, S(t) acting on the natural phase space

[H2(0, 1) ∩H1
0 (0, 1)] × L2(0, 1) ×H1

0 (0, 1) × L2(0, 1)

of weak energy solutions. The main result of this paper read as follows.

Theorem 1.1 The semigroup S(t) possesses the global attractor.

In fact, several generalizations of the problem are possible. For instance, one can allow the
presence of an external heat supply in the second equation of (1.2), which is easily handled
by means of standard techniques. It would be also interesting to carry out the same kind of
analysis assuming different boundary conditions for the vertical displacement, such as clamped,
or one end clamped and the other one hinged. In that case, the analysis is more complicated,
and a major modification of the needed tools is required. A further step is proving the existence
of regular exponential attractors having finite fractal dimension. However, this is a relatively
simple task; indeed, as shown in the next sections, the dynamical system possesses regular
exponentially attracting sets. Finally, one can investigate the nonautonomous case, with a
time-dependent external force. We address the reader to the paper [8], where the above issues
are discussed in connection with the classical model (1.1).

2 The Abstract Dynamical System

Denoting H = L2(0, 1) with inner product and norm 〈 · , · 〉 and ‖ · ‖, respectively, we
introduce the strictly positive selfadjoint operator on H

A =
d4

dx4
, dom(A) = {φ ∈ H4(0, 1) : φ(0) = φ(1) = φ′′(0) = φ′′(1) = 0}.

In which case, the powers of A are well-defined; in particular,

A
1
2 = − d2

dx2
, dom(A

1
2 ) = H2(0, 1) ∩H1

0 (0, 1).

Thus, we can rewrite system (1.2) with boundary conditions (1.4) in the abstract form{
∂ttu+Au−A

1
2 ∂tα+ (β + ‖A 1

4 u‖2)A
1
2u = f,

∂ttα+A
1
2α+A

1
2 ∂tα+A

1
2 ∂tu = 0.

(2.1)
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Remark 2.1 We point out that the results of our paper hold for the abstract system (2.1),
where A is any strictly positive selfadjoint operator on some separable real Hilbert space H
with compact embedding dom(A) � H . This is noteworthy, since (2.1) serves as a model to
describe quite general situations, including thermoelastic plates.

For r ∈ R, we introduce the scale of Hilbert spaces generated by the powers of A

Hr = dom(A
r
4 ), 〈u, v〉r = 〈A r

4u,A
r
4 v〉, ‖u‖r = ‖A r

4 u‖.

We will always omit the index r if r = 0. In particular, Hr1 � Hr2 whenever r1 > r2. Then,
we define the product Hilbert spaces with compact embedding

V := H4 ×H2 ×H3 ×H2 � H := H2 ×H ×H1 ×H,

endowed with the standard inner products and norms. The well-posedness result for (2.1) in
the weak energy space H is stated in the next proposition, whose proof, based on a standard
Galerkin approximation scheme, is omitted.

Proposition 2.1 For every β ∈ R and f ∈ H, system (2.1) generates a semigroup of
solutions S(t) : H → H satisfying the joint continuity property

(t, z) 	→ S(t)z ∈ C(R+ ×H,H).

Accordingly, for every t ≥ 0 and every z = (u0, u1, α0, α1) ∈ H,

S(t)z = (u(t), ∂tu(t), α(t), ∂tα(t))

is the unique weak solution at time t to (2.1) with initial datum z.

3 The Lyapunov Functional

The energy corresponding to the initial datum z = (u0, u1, α0, α1) ∈ H at time t ≥ 0 is
given by

E(t) =
1
2
‖S(t)z‖2

H +
1
4
(β + ‖u(t)‖2

1)
2.

Indeed, multiplying the first equation of (2.1) by ∂tu and the second one by ∂tα, we readily
obtain the energy identity

d
dt
E + ‖∂tα‖2

1 = 〈f, ∂tu〉. (3.1)

The next step is to prove the existence of a Lyapunov functional for the semigroup. This is a
function L ∈ C(H,R) such that

( i ) L(S(t)z) ≤ L(z) for every z ∈ H and every t ≥ 0,
(ii) L(S(t)z) = L(z) for all t ≥ 0 implies that z ∈ S,

where

S = {z ∈ H : S(t)z = z, ∀ t ≥ 0}
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is the set of stationary points of S(t). It is easily seen that S is made of all vectors of the form
(u, 0, 0, 0), with u solution to the elliptic equation

Au+ (β + ‖u‖2
1)A

1
2 u = f. (3.2)

In particular, S turns out to be a nonempty bounded subset of V .

Remark 3.1 According to [4], the cardinality of S does not exceed 4n� + 1 whenever all
the eigenvalues λn of A satisfying the relation β < −√

λn are simple, where n� is the (finite)
cardinality of the set {n ∈ N : β < −√

λn}. This is the case for the concrete realization
(1.2)–(1.4) of (2.1), where λn = n4π4.

For z = (u0, u1, α0, α1) ∈ H, we set

L(z) =
1
2
‖z‖2

H +
1
4
(β + ‖u0‖2

1)
2 − 〈f, u0〉.

Proposition 3.1 The above-defined L is a Lyapunov functional for S(t). Moreover,

‖z‖H → ∞ ⇔ L(z) → ∞.

Proof Property (i) is a consequence of the energy identity (3.1), which translates into

d
dt

L(S(t)z) + ‖∂tα(t)‖2
1 = 0. (3.3)

Concerning (ii), if L is constant along a trajectory, it follows that ∂tα(t) = 0 for all t ≥ 0. From
the second equation of (2.1), we learn that ∂ttu(t) = 0. Hence, using the first equation, we
conclude that u(t) is constant in time and solves (3.2). Therefore, the second equation reads
A

1
2α(t) = 0, yielding α(t) = 0 for all times. Finally, it is immediate to verify that

1
4
‖z‖2

H − c ≤ L(z) ≤ c‖z‖4
H + c

for some c > 0 independent of z, proving the last assertion.

Remark 3.2 A dynamical system S(t) with a Lyapunov functional complying with Propo-
sition 3.1 is commonly called a gradient system.

4 The Global Attractor

In the theory of dynamical systems (see [13, 27]), the global attractor of a semigroup S(t)
acting on a Banach space H is the unique compact set A ⊂ H at the same time fully invariant
and attracting for the semigroup, i.e., S(t)A = A for all t ≥ 0, and

lim
t→∞ distH(S(t)B,A) = ′

for every bounded set B ⊂ H, where distH denotes the usual Hausdorff semidistance in H,
defined as

distH(B1,B2) = sup
z1∈B∞

inf
z2∈B2

‖z1 − z2‖H.
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The global attractor is a crucial object in order to understand the asymptotic dynamics, since
it captures all the trajectories in the longterm, uniformly with respect to any bounded set of
initial data. When the semigroup, as in our case, possesses a Lyapunov functional, further
information on the structure of the attractor can be drawn. Namely, recalling that a function
ζ : R → H is a complete bounded trajectory (c.b.t.) of S(t) when

sup
τ∈R

‖ζ(τ)‖H <∞

and
ζ(t+ τ) = S(t)ζ(τ), ∀ t ≥ 0, ∀ τ ∈ R,

the attractor A coincides with the unstable set of S, that is,

A =
{
ζ(0) : ζ c.b.t. and lim

τ→−∞ ‖ζ(τ) − S‖H = 0
}
.

In particular, if S has finite cardinality,

A =
{
ζ(0) : lim

τ→−∞ ‖ζ(τ) − z1‖H = lim
τ→∞ ‖ζ(τ) − z2‖H = 0

}
,

for some zı ∈ S.
We are now in a position to state a generalized version of Theorem 1.1 for the abstract

semigroup S(t) on H generated by system (2.1).

Theorem 4.1 For every β ∈ R and f ∈ H, the unstable set A of S is the global attractor
of S(t). In addition, A is connected and bounded in V.

Within our hypotheses, the attained regularity of A is optimal. On the other hand, the
global attractor is as regular as f permits. For instance, if f ∈ Hn for every n ∈ N, then each
component of A is bounded in Hn for every n ∈ N.

Actually, we establish a stronger result. Indeed, as will be clear in the next sections, we
show the existence of a bounded subset of V attracting all bounded subsets of H exponentially
fast with respect to the Hausdorff semidistance (see Remark 5.1). Incidentally, this allows
to demonstrate the existence of regular exponential attractors for S(t) having finite fractal
dimension in H. Since the global attractor is the minimal closed attracting set, the fractal
dimension of A in H turns out to be finite as well.

Taking advantage of the gradient system structure of the semigroup ensured by Proposition
3.1, a standard way to prove Theorem 4.1 is showing the asymptotic compactness of S(t)B for
any given bounded set B ⊂ H. More precisely, we have the following result (see e.g. [13]).

Lemma 4.1 For every fixed R ≥ 0, let the semigroup S(t) admit the decomposition

S(t) = S0(t) + S1(t),

where the one-parameter operators S0(t) and S1(t) fulfill, uniformly as ‖z‖H ≤ R,

lim
t→∞ ‖S0(t)z‖H = 0 and sup

t≥0
‖S1(t)z‖V ≤ C,
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for some C = C(R) ≥ 0. Then, the conclusions of Theorem 4.1 hold.

Section 5 is devoted to the proof of Theorem 4.1, carried out by verifying the hypotheses of
Lemma 4.1. This method permits to find the attractor without proving first the existence of
an absorbing set, i.e., a bounded set B0 ⊂ H such that, for every bounded set B ⊂ H,

S(t)B ⊂ B0, ∀ t ≥ t0,

for some entering time t0 = t0(B) ≥ 0. In fact, the existence of B0 is recovered as a byproduct
of Theorem 4.1.

5 Proof of Theorem 4.1

Let R ≥ 0 be fixed. Till the end of the section, C = C(R) will denote a generic positive
constant depending only on R, besides the structural quantities of the model. Moreover, let
z = (u0, u1, α0, α1) ∈ H be a generic initial datum of the problem subject to the bound
‖z‖H ≤ R.

Thanks to Proposition 3.1, and integrating (3.3) on R
+, we draw the uniform (with respect

to ‖z‖H ≤ R) controls

‖S(t)z‖H ≤ C (5.1)

and ∫ ∞

0

‖∂tα(τ)‖2
1dτ ≤ C. (5.2)

The following dissipation integral for the norm of ∂tu will be crucial in the proofs.

Lemma 5.1 For every fixed ν ∈ (0, 1], the integral estimate∫ t

s

‖∂tu(τ)‖2dτ ≤ ν(t − s) +
C

ν
(5.3)

holds for all t > s ≥ 0.

Proof By direct calculations, the functional

Ψ(t) = 〈∂tu(t), ∂tα(t)〉−1 + 〈u(t), α(t)〉

satisfies the relation

d
dt

Ψ + ‖∂tu‖2 = ‖∂tα‖2 − 〈u, ∂tα〉1 − 〈∂tu, ∂tα〉 + (1 − β − ‖u‖2
1)〈u, ∂tα〉 + 〈f, ∂tα〉−1.

From (5.1), we learn that |Ψ| ≤ C, while the right-hand side in the above equality is bounded
by

C‖∂tα‖2
1 + C‖∂tα‖1 ≤ ν +

C

ν
‖∂tα‖2

1.

Thus, an integration on the interval (s, t) yields∫ t

s

‖∂tu(τ)‖2dτ ≤ ν(t− s) + C +
C

ν

∫ t

s

‖∂tα(τ)‖2
1dτ,



626 M. Coti Zelati, V. Pata and R. Quintanilla

and (5.2) completes the argument.

Borrowing a technique from [9], leaning on the interpolation inequality

‖u‖2
1 ≤ ‖u‖‖u‖2,

we now choose γ > 0 large enough such that

1
4
‖u‖2

2 ≤ 1
2
‖u‖2

2 + β‖u‖2
1 + γ‖u‖2. (5.4)

Then, we split the solution S(t)z into the sum

S(t)z = S0(t)z + S1(t)z, (5.5)

where

S0(t)z = (v(t), ∂tv(t), η(t), ∂tη(t)) and S1(t)z = (w(t), ∂tw(t), ξ(t), ∂tξ(t))

solve the Cauchy problems⎧⎨
⎩
∂ttv +Av −A

1
2 ∂tη + (β + ‖u‖2

1)A
1
2 v + γv = 0,

∂ttη +A
1
2 η +A

1
2 ∂tη +A

1
2 ∂tv = 0,

(v(0), ∂tv(0), η(0), ∂tη(0)) = z,

(5.6)

and ⎧⎨
⎩
∂ttw +Aw −A

1
2 ∂tξ + (β + ‖u‖2

1)A
1
2w − γv = f,

∂ttξ +A
1
2 ξ +A

1
2 ∂tξ +A

1
2 ∂tw = 0,

(w(0), ∂tw(0), ξ(0), ∂tξ(0)) = 0.
(5.7)

We are left to show that S0(t) and S1(t) comply with the assumptions of Lemma 4.1.

Lemma 5.2 There exists ω = ω(R) > 0 such that

E0(t) := ‖S0(t)z‖2
H ≤ Ce−ωt.

Proof For ε > 0 to be fixed later, introduce the functional

Λ0(t) = Γ0(t) + ε{Φ0(t) + 2Ψ0(t) + Θ0(t)},

having set

Γ0(t) = E0(t) + β‖v(t)‖2
1 + γ‖v(t)‖2 + ‖u(t)‖2

1‖v(t)‖2
1,

Φ0(t) = 〈∂tv(t), v(t)〉,
Ψ0(t) = 〈∂tv(t), ∂tη(t)〉−1 + 〈v(t), η(t)〉,
Θ0(t) = 〈∂tη(t), η(t)〉 + 〈v(t), η(t)〉1.

In light of (5.1) and (5.4), for all ε small enough,

1
2
E0(t) ≤ Λ0(t) ≤ CE0(t). (5.8)
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Using the equations of system (5.6) and the uniform bound (5.1), we estimate the time derivative
of each single component of Λ0. The first one reads

d
dt

Γ0 + 2‖∂tη‖2
1 = 2‖v‖2

1〈A
1
2u, ∂tu〉 ≤ C‖∂tu‖E0. (5.9)

Concerning Φ0,

d
dt

Φ0 + ‖v‖2
2 + β‖v‖2

1 + γ‖v‖2 + ‖u‖2
1‖v‖2

1 = ‖∂tv‖2 + 〈v, ∂tη〉1

≤ 1
4
‖v‖2

2 + ‖∂tv‖2 + C‖∂tη‖2
1,

and exploiting (5.4), we arrive at

d
dt

Φ0 +
1
2
‖v‖2

2 ≤ ‖∂tv‖2 + C‖∂tη‖2
1. (5.10)

Finally,

d
dt

Ψ0 + ‖∂tv‖2

= −〈∂tv, ∂tη〉 − 〈v, ∂tη〉1 + ‖∂tη‖2 + (1 − β − ‖u‖2
1)〈v, ∂tη〉 − γ〈v, ∂tη〉−1

≤ 1
16

‖v‖2
2 +

1
4
‖∂tv‖2 + C‖∂tη‖2

1, (5.11)

and

d
dt

Θ0 + ‖η‖2
1 = ‖∂tη‖2 + 〈v, ∂tη〉1 − 〈η, ∂tη〉1 ≤ 1

8
‖v‖2

2 +
1
2
‖η‖2

1 + C‖∂tη‖2
1. (5.12)

Adding (5.9) and ε-times (5.10)–(5.12), we end up with

d
dt

Λ0 +
ε

4
(‖v‖2

2 + 2‖∂tv‖2 + 2‖η‖2
1) + (2 − εC)‖∂tη‖2

1

≤ C‖∂tu‖E0 ≤ ε

8
E0 + C‖∂tu‖2E0.

In view of (5.8), it is apparent that, up to taking ε small enough (depending on C which in
turn depends on R), the differential inequality

d
dt

Λ0 + 2ωΛ0 ≤ ψΛ0

holds for some ω = ω(R) > 0, where we set ψ(t) = C‖∂tu(t)‖2 and fix ν in (5.3) sufficiently
small in order to have ∫ t

s

ψ(τ)dτ ≤ ω(t− s) + C.

On account of a Gronwall-type lemma (see e.g. [8, 9]), this allows us to conclude that

Λ0(t) ≤ CΛ0(0)e−ωt.

A further use of (5.8) yields the desired claim.

Lemma 5.3 We have the uniform estimate

sup
t≥0

‖S1(t)z‖V ≤ C.
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Proof For ε > 0 to be fixed later, and setting for simplicity E1(t) = ‖S1(t)z‖2
V , we define

the functional
Λ1(t) = Γ1(t) + ε{Φ1(t) + 2Ψ1(t) + Θ1(t)},

where

Γ1(t) = E1(t) + β‖w(t)‖2
3 + ‖u(t)‖2

1‖w(t)‖2
3 − 2〈f,Aw(t)〉,

Φ1(t) = 〈∂tw(t), w(t)〉2 ,
Ψ1(t) = 〈∂tw(t), ∂tξ(t)〉1 + 〈w(t), ξ(t)〉2 ,
Θ1(t) = 〈∂tξ(t), ξ(t)〉2 + 〈w(t), ξ(t)〉3 .

Due to (5.1) and the bound ‖v‖2 ≤ C, ensured by the previous lemma,

‖w‖2
3 ≤ ‖w‖2‖w‖4 ≤ (‖u‖2 + ‖v‖2)‖w‖4 ≤ C‖w‖4.

It is then an easy matter to see that, for ε small enough,

1
2
E1(t) − C ≤ Λ1(t) ≤ CE1(t) + C. (5.13)

Again, we evaluate the time derivative of every single functional, making use of the equations
of system (5.7). For Γ1, the standard higher order estimates entail

d
dt

Γ1 + 2‖∂tξ‖2
3 = 2γ〈v, ∂tw〉2 + 2‖w‖2

3〈A
1
2 u, ∂tu〉 ≤ ε

4
‖∂tw‖2

2 +
ε

8
‖w‖2

4 +
C

ε
. (5.14)

As far as Φ1 and Ψ1 are concerned, we have

d
dt

Φ1 + ‖w‖2
4 = ‖∂tw‖2

2 + 〈∂tξ, w〉3 + 〈f,Aw〉 + γ〈v, w〉2 − (β + ‖u‖2
1)‖w‖2

3

≤ ‖∂tw‖2
2 +

1
8
‖w‖2

4 + C‖∂tξ‖2
3 + C, (5.15)

and

d
dt

Ψ1 + ‖∂tw‖2
2 = ‖∂tξ‖2

2 + 〈w, ∂tξ〉2 − 〈∂tw, ∂tξ〉2 − 〈w, ∂tξ〉3
− (β + ‖u‖2

1)〈w, ∂tξ〉2 + γ〈v, ∂tξ〉1 + 〈f,A 1
2 ∂tξ〉

≤ 1
8
‖∂tw‖2

2 +
1
16

‖w‖2
4 + C‖∂tξ‖2

3 + C. (5.16)

Finally,

d
dt

Θ1 + ‖ξ‖2
3 = ‖∂tξ‖2

2 + 〈w, ∂tξ〉3 − 〈∂tξ, ξ〉3 ≤ 1
8
‖w‖2

4 +
1
2
‖ξ‖2

3 + C‖∂tξ‖2
3. (5.17)

Collecting (5.14) and ε-times (5.15)–(5.17), we are led to

d
dt

Λ1 +
ε

2
(‖w‖2

4 + ‖∂tw‖2
2 + ‖ξ‖2

3) + (2 − Cε)‖∂tξ‖2
3 ≤ C

ε
.

Thus, fixing ε = ε(R) suitably small, we eventually obtain the differential inequality

d
dt

Λ1 +
ε

2
E1 ≤ C.
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Noting that Λ1(0) = 0, the conclusion follows from the controls (5.13) together with the usual
Gronwall lemma.

In view of the semigroup decomposition (5.5), Lemmas 5.2 and 5.3, we meet the hypotheses
of Lemma 4.1. This finishes the proof of Theorem 4.1.

Remark 5.1 Once the existence of the attractor is established by means of Lemma 4.1,
every ball B′ of H centered in the origin with radius

R0 > sup
{
‖z‖H : L(z) ≤ max

z∈S
L(z)

}
is an absorbing set for S(t). Hence, arguing as above with R = R0, we find the exponential
attraction property

distH(S(t)B0,C) ≤ C0e−ω0t,

where C is a closed ball of V , and the positive constants C0 > 0 and ω0 can be explicitly
estimated in terms of the radius R0. In turn, this entails the existence of an increasing positive
function I such that, for every bounded set B ⊂ H,

distH(S(t)B,C) ≤ I(‖B‖H)e−ω′�.
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