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Abstract The authors consider the finite volume approximation of a reaction-diffusion
system with fast reversible reaction. It is deduced from a priori estimates that the approxi-
mate solution converges to the weak solution of the reaction-diffusion problem and satisfies
estimates which do not depend on the kinetic rate. It follows that the solution converges
to the solution of a nonlinear diffusion problem, as the size of the volume elements and the
time steps converge to zero while the kinetic rate tends to infinity.
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1 Introduction

In this paper, we consider chemical systems with fast reactions where mean reaction times
vary from approximately 10−14 second to 1 minute. In particular, reactions that involve bond
making or breaking are not likely to occur in less than 10−13 second. Moreover, chemical
systems almost always involve some elementary reaction steps that are reversible and fast.

The study of reactions with rates that are outside of the time frame of ordinary laboratory
operations requires specialized instrumentation, techniques and ways of proceeding (see for
example [5, Chapter 11]). The aim of this paper is to provide an efficient, quick and cheap way
for the numerical investigation of such reactions.

In this article, we consider a reversible chemical reaction between mobile species A and B,
that takes place inside a bounded region Ω ⊂ R

d where d = 1, 2 or 3. If the region is isolated
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and diffusion is modelled by Fick’s law, this leads to the reaction-diffusion system of partial
differential equations

ut = aΔu− αk(rA(u) − rB(v)), in Ω × (0, T ),
vt = bΔv + βk(rA(u) − rB(v)), in Ω × (0, T ), (1.1)

where T > 0 and Ω is a bounded set of R
d. An example of explicit expressions and values for

α, β, k, rA, rB , a, b is given in Section 6. We supplement the system (1.1) by the homogeneous
Neumann boundary conditions

∇u ·nnn = ∇v ·nnn = 0, on ∂Ω × (0, T ), (1.2)

and the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω. (1.3)

In the sequel, system (1.1) together with the boundary conditions (1.2) and the initial conditions
(1.3) is called Problem Pk.

For a reversible reaction mA � nB one has α = m, β = n and the rate functions are of the
form rA(u) = um and rB(v) = vn. Further discussion about this motivation and some concrete
examples can be found in [5, 9].

In practice, especially for ionic or radical reactions, changes due to reaction are often very
fast compared to diffusive effects. This corresponds to a large rate constant k. Bothe and
Hilhorst [1] studied the limit to an instantaneous reaction. They exploited a natural Lyapunov
functional and use compactness arguments to prove that

uk → u and vk → v, in L2(Ω × (0, T ))

as k tends to infinity, where (uk, vk) is the solution of Problem Pk and the limit (u, v) is
determined by

rA(u) = rB(v) and
u

α
+
v

β
= w, (1.4)

where w is the unique weak solution of the nonlinear diffusion problem

wt = Δφ(w), in Ω × (0, T ),

∂φ(w)
∂nnn

= 0, on ∂Ω × (0, T ),

w(x, 0) = w0(x) :=
1
α
u0(x) +

1
β
v0(x), in Ω.

(1.5)

Here,

φ :=
( a
α

id +
b

β
η
)
◦

( 1
α

id +
1
β
η
)−1

, η := r−1
B ◦ rA.

The identities in (1.4) can be explained as follows: the first one states that the system is in
chemical equilibrium, while the second one defines w as the quantity that is conserved under
the chemical reaction. Given a function w, the system (1.4) can be uniquely solved for (u, v)
if rA, rB are strictly increasing with for instance rA(R+) ⊂ rB(R+) so that η = r−1

B ◦ rA
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is well-defined and strictly increasing. Under these assumptions u is the unique solution of
1
αu+ 1

β η(u) = w, which gives the explicit representation of u and v

u = f(w) and v = g(w). (1.6)

Here, f :=
(

1
α id + 1

β η
)−1 and g := η ◦ f .

We assume the following hypotheses, which we denote by H:
(1) Let Ω be an open, connected and bounded subset of R

d, where d = 1, 2 or 3, with a
smooth boundary ∂Ω,

(2) u0, v0 ∈ L∞(Ω) and there exist constants U, V > 0 such that 0 � u0(x) � U and
0 � v0(x) � V for all x ∈ Ω,

(3) α, β, a, b and k are strictly positive real values,
(4) Let rA, rB : R → R be strictly increasing and locally Lipschitz functions, such that

rA(0) = rB(0) = 0, and assume furthermore that rA(R+) ⊂ rB(R+).

It follows as in [1, Section 2] that Problem Pk has a unique classical solution (uk, vk) on
every finite time interval [0, T ], for all nonnegative bounded initial data. By classical solution,
we mean a function pair (uk, vk) such that uk, vk ∈ C2,1(Ω × (0, T ]) ∩ C1,0(Ω × (0, T ]) with
uk, vk ∈ C([0, T ]; L2(Ω)) (see also [11]).

Next we present a notion of a weak solution of Problem Pk, which will be used in the
Sections 4 and 5.

Definition 1.1 We say that (uk, vk) is a weak solution to Problem Pk if and only if
(1) uk, vk ∈ L2(0, T ;H1(Ω));
(2) Let Ψ be the set of test functions, defined as

Ψ = {ψ ∈ C2,1(Ω × [0, T ]) : ∇ψ ·nnn = 0 on ∂Ω × [0, T ] and ψ(T ) = 0}.

For a.e. t ∈ (0, T ) and all ψ ∈ Ψ,∫
Ω

u0(x)ψ(x, 0)dx +
∫

Ω

uk(x, t)ψt(x, t)dx + a

∫
Ω

uk(x, t)Δψ(x, t)dx

− αk

∫
Ω

ψ(x, t)(rA(uk(x, t)) − rB(vk(x, t)))dx = 0, (1.7)∫
Ω

v0(x)ψ(x, 0)dx +
∫

Ω

vk(x, t)ψt(x, t)dx + b

∫
Ω

vk(x, t)Δψ(x, t)dx

+ βk

∫
Ω

ψ(x, t)(rA(uk(x, t)) − rB(vk(x, t)))dx = 0. (1.8)

We remark that every essentially bounded weak solution of Problem Pk, in the sense of
Definition 1.1, is also a classical solution. The weak solution of the nonlinear diffusion equation
(1.5) is similarly defined.

This paper is organized as follows. In Section 2, we define a finite volume discretisation and
an approximate solution (uk

D, v
k
D) for Problem Pk. Section 3 contains a discrete comparison

principle which yields discrete L∞ estimates, and we show the existence and uniqueness of the
approximate solution. We prove technical lemmas used further in the convergence proofs. Bothe
and Hilhorst [1] used a Lyapunov functional to obtain L2(0, T ;H1(Ω)) estimates. However, we
can drop every argument connected to the Lyapunov functional. Furthermore, we can weaken
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their assumptions. We obtain discrete L2(0, T ;H1(Ω)) estimates using suitable combinations
of energy estimates. In Section 4, the convergence of the approximate solution to the classical
solution of Problem Pk in the case of fixed k is proved. In Section 5, we show that the
approximate solution (uk

D, v
k
D) converges to (u, v) defined in (1.6) as k tends to infinity and

the size of the discretisation parameters tends to zero. Afterwards, we examine the rate of
convergence with respect to k. In Section 6, we present numerical results obtained with our
finite volume scheme, for the reversible dimerisation of o-phenylenedioxydimethylsilane (2, 2-
dimethyl-1, 2, 3-benzodioxasilole) which is a reaction of the type 2A � B (see [12]). We compute
the approximate solution (uk

D, v
k
D) of the solution (uk, vk) of Problem Pk and the numerical

approximation wD of the solution w of the problem (1.5). Moreover, we numerically check our
convergence result.

Remark 1.1 In what follows, we denote by C and Ck positive generic constants which
may vary from line to line.

2 The Finite Volume Scheme

The finite volume method was first developed by engineers in order to study complex, cou-
pled physical problems where the conservation of quantities such as masses, energy or impulsion
must be carefully respected by the approximate solution. Another advantage of this method is
that a large variety of meshes can be used in the computations. The finite volume methods are
particularly well suited for numerical investigations of conservations laws. They are one of the
most popular methods among the engineers performing computations for industrial purposes:
the modelling of flows in porous media, problems related to oil recovery, questions related to
hydrology, such as the numerical approximation of a stationary incompressible Navier-Stokes
equations.

For a comprehensive discussion about the finite volume method, we refer to [6] and the
references therein.

Following [6], we define a finite volume discretization of QT .

Definition 2.1 (Admissible Mesh of Ω) An admissible mesh M of Ω is given by a set of
open, bounded subsets of Ω (control volumes) and a family of points (one per control volume),
satisfying the following properties:

(1) The closure of the union of all the control volumes is Ω. We denote by mK the measure
of each volume element K and size (M) = max

K∈M
mk.

(2) K ∩ L = ∅ for any (K,L) ∈ M2, such that K 	= L. If K ∩ L 	= ∅, then it is a subset of
a hyperplane in R

d. Let us denote by E ⊂ M2 the set of pairs (K,L), such that K 	= L and the
d− 1 Lebesgue measure of K ∩ L is strictly positive. For (K,L) ∈ E, we write K|L for the set
K ∩ L and mK|L for the d− 1 Lebesgue measure of K|L.

(3) For any K ∈ M, we also define NK = {L ∈ M, (K,L) ∈ E} and assume that ∂K =
K\K = (K ∩ ∂Ω) ∪

( ⋃
L∈NK

K|L
)
.

(4) There exists a family of points (xK)K∈M, such that xK ∈ K and if L ∈ NK then the
straight line (xK , xL) is orthogonal to K|L. We set

dK|L = d(xK , xL) and TK|L =
mK|L
dK|L

,
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where the last quantity is sometimes called the transmissibility across the edge K|L.

Since Problem Pk is a time evolution problem, we also need to discretize the time interval
(0, T ).

Definition 2.2 (Time Discretization) A time discretization of the interval (0, T ) is given
by an integer value N and by a strictly increasing sequence of real values (t(n))n∈{0,··· ,N+1} with
t(0) = 0 and t(N+1) = T . The time steps are defined by

t
(n)
δ = t(n+1) − t(n) for n ∈ {0, · · · , N}.

We may then define a discretization of the whole domain QT in the following way.

Definition 2.3 (Discretization of QT ) A finite volume discretization D of QT is defined as

D = (M, E , (xK)K∈M, (t(n))n∈{0,··· ,N+1}),

where M, E and (xK)K∈M are given in Definition 2.1 and the sequence (t(n))n∈{0,··· ,N+1} is a
time discretization of (0, T ) in the sense of Definition 2.2. One then sets

size (D) = max{size (M), t(n)
δ : n ∈ {0, · · · , N}}.

We present below the finite volume scheme which we use and define approximate solutions.
We assume that the hypotheses H hold and suppose that D is an admissible discretization of
QT in the sense of Definition 2.3. We prescribe the approximate initial conditions

u
(0)
K =

1
mK

∫
K

u0(x)dx and v
(0)
K =

1
mK

∫
K

v0(x)dx (2.1)

for all K ∈ M, and associate to Problem Pk the finite volume scheme

mK(u(n+1)
K − u

(n)
K ) − t

(n)
δ a

∑
L∈NK

TK|L(u(n+1)
L − u

(n+1)
K )

+t(n)
δ mKαk(rA(u(n+1)

K ) − rB(v(n+1)
K )) = 0,

mK(v(n+1)
K − v

(n)
K ) − t

(n)
δ b

∑
L∈NK

TK|L(v(n+1)
L − v

(n+1)
K )

−t(n)
δ mKβk(rA(u(n+1)

K ) − rB(v(n+1)
K )) = 0.

(2.2)

Note that (2.2) is a nonlinear system of equations in the unknowns

(u(n+1)
K , v

(n+1)
K )K∈M, n∈{0,··· ,N}.

For x ∈ Ω and t ∈ (0, T ), let K ∈ M be such that x ∈ K and n ∈ {0, · · · , N} be such that
t ∈ (t(n), t(n+1)]. We can then define the approximate solutions

uD(x, t) = u
(n+1)
K and vD(x, t) = v

(n+1)
K . (2.3)

In the next section, we prove the existence and uniqueness of the solution of the discrete problem
(2.2), together with the initial values (2.1).

3 Existence and Uniqueness of the Approximate Solution
and Some Basic Properties

In this section, we prove the existence and uniqueness of the solution of (2.2) and provide
its basic properties.



636 R. Eymard, D. Hilhorst, H. Murakawa and M. Olech

3.1 The comparison principle and L∞-estimate

Let us start with a discrete version of the comparison principle.

Lemma 3.1 (Discrete Comparison Principle) We suppose that the hypotheses H are satis-
fied. Let D be a discretization as in Definition 2.3. Let (u(0)

K , v
(0)
K )K∈M and (ũ(0)

K , ṽ
(0)
K )K∈M be

given sequences of real values such that

u
(0)
K � ũ

(0)
K and v

(0)
K � ṽ

(0)
K

for all K ∈ M. If (u(n+1)
K , v

(n+1)
K )K∈M, n∈{0,··· ,N} and (ũ(n+1)

K , ṽ
(n+1)
K )K∈M, n∈{0,··· ,N} satisfy

equations (2.2) with the initial values (u(0)
K , v

(0)
K )K∈M and (ũ(0)

K , ṽ
(0)
K )K∈M, respectively, then

for K ∈ M and n ∈ {0, · · · , N},

u
(n+1)
K � ũ

(n+1)
K and v

(n+1)
K � ṽ

(n+1)
K . (3.1)

Proof We set û(n)
K = u

(n)
K − ũ

(n)
K and v̂

(n)
K = v

(n)
K − ṽ

(n)
K for all K ∈ M and n ∈ {0, · · · ,

N + 1} and define

Â
(n+1)
K = (rA(u(n+1)

K ) − rA(ũ(n+1)
K ))/û(n+1)

K ,

B̂
(n+1)
K = (rB(v(n+1)

K ) − rB(ṽ(n+1)
K ))/v̂(n+1)

K ,

whenever û(n+1)
K 	= 0 (else Â(n+1)

K = 0) or v̂(n+1)
K 	= 0 (else B̂(n+1)

K = 0). Since the functions rA
and rB are monotone increasing, it follows that Â(n+1)

K and B̂
(n+1)
K are nonnegative. We then

have, by subtracting the discrete equation (2.2) for ũ(n+1)
K from that for uK

(n+1),

mK

(
1 + t

(n)
δ

(
αkÂ

(n+1)
K +

a

mK

∑
L∈NK

TK|L
))
û

(n+1)
K

= mK û
(n)
K + t

(n)
δ a

∑
L∈NK

TK|Lû
(n+1)
L + t

(n)
δ mKαk(rB(v(n+1)

K ) − rB(ṽ(n+1)
K )) (3.2)

for K ∈ M and n ∈ {0, · · · , N}. Setting s+ = max(s, 0) and using that s � s+, (s + t)+ �
s+ + t+, we obtain

mK

(
1 + t

(n)
δ

(
αkÂ

(n+1)
K +

a

mK

∑
L∈NK

TK|L
))
û

(n+1)
K

� mK(û(n)
K )+ + t

(n)
δ a

∑
L∈NK

TK|L(û(n+1)
L )+ + t

(n)
δ mKαk(rB(v(n+1)

K ) − rB(ṽ(n+1)
K ))+, (3.3)

where K ∈ M and n ∈ {0, · · · , N}. Next we multiply the inequality (3.3) by indicator of the
set where û(n+1)

K is nonnegative. Since the right-hand side of (3.3) is nonnegative as well, we
obtain, acting similarly for both components,

mK

(
1 + t

(n)
δ

(
αkÂ

(n+1)
K +

a

mK

∑
L∈NK

TK|L
))

(û(n+1)
K )+

� mK(û(n)
K )+ + t

(n)
δ a

∑
L∈NK

TK|L(û(n+1)
L )+ + t

(n)
δ mKαk(rB(v(n+1)

K ) − rB(ṽ(n+1)
K ))+,

mK

(
1 + t

(n)
δ

(
βkB̂

(n+1)
K +

b

mK

∑
L∈NK

TK|L
))

(v̂(n+1)
K )+

� mK(v̂(n)
K )+ + t

(n)
δ b

∑
L∈NK

TK|L(v̂(n+1)
L )+ + t

(n)
δ mKβk(rA(u(n+1)

K ) − rA(ũ(n+1)
K ))+.

(3.4)
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Since

Â
(n+1)
K (û(n+1)

K )+ = (rA(u(n+1)
K ) − rA(ũ(n+1)

K ))+,

B̂
(n+1)
K (v̂(n+1)

K )+ = (rB(v(n+1)
K ) − rB(ṽ(n+1)

K ))+,

we add the first equation of (3.4) divided by α and the second equation of (3.4) divided by β,
which yields

mK

( 1
α

+ t
(n)
δ

a

mKα

∑
L∈NK

TK|L
)
(û(n+1)

K )+ + mK

( 1
β

+ t
(n)
δ

b

mKβ

∑
L∈NK

TK|L
)
(v̂(n+1)

K )+

� mK
1
α

(û(n)
K )+ + t

(n)
δ

a

α

∑
L∈NK

TK|L(û(n+1)
L )+ + mK

1
β

(v̂(n)
K )+

+ t
(n)
δ

b

β

∑
L∈NK

TK|L(v̂(n+1)
L )+ (3.5)

for K ∈ M and n ∈ {0, · · · , N}. Let us note that∑
K∈M

∑
L∈NK

TK|L(û(n+1)
K )+ =

∑
L∈M

∑
K∈NL

TL|K(û(n+1)
L )+ =

∑
L∈M

∑
K∈NL

TK|L(û(n+1)
L )+

=
∑

K∈M

∑
L∈NK

TK|L(û(n+1)
L )+.

Summing the inequalities (3.5) over K ∈ M, we obtain∑
K∈M

[
mK

( 1
α

(û(n+1)
K )+ +

1
β

(v̂(n+1)
K )+

)]
�

∑
K∈M

[
mK

( 1
α

(û(n)
K )+ +

1
β

(v̂(n)
K )+

)]
,

which, by induction, leads to∑
K∈M

[
mK

( 1
α

(û(n+1)
K )+ +

1
β

(v̂(n+1)
K )+

)]
= 0,

where n ∈ {0, · · · , N}. It implies that (û(n+1)
K )+ = (v̂(n+1)

K )+ = 0, which completes the proof.

Corollary 3.1 (Uniqueness) The discrete system (2.1), (2.2) possesses at most one solution.

Corollary 3.2 (Discrete Contraction in L1 Property) With the notation from Lemma 3.1,
we have

∑
K∈M

mK

( |u(n+1)
K − ũ

(n+1)
K |

α
+

|v(n+1)
K − ṽ

(n+1)
K |

β

)
�

∑
K∈M

mK

( |u(n)
K − ũ

(n)
K |

α
+

|v(n)
K − ṽ

(n)
K |

β

)
for n ∈ {0, · · · , N}. This represents the discrete counterpart of the L1(Ω)-contraction property
for solutions of (1.1), (1.2) which is proved in [3].

Proof The proof directly follows as in the proof of Lemma 3.1. Let us consider the term
ûK . We multiply the equation (3.2) by sgn (û(n+1)

K ). Then, the inequality x � |x| yields

mK

(
1 + t

(n)
δ

(
αkÂ

(n+1)
K + a

∑
L∈NK

TK|L
))

|û(n+1)
K |
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� mK |û(n)
K | + t

(n)
δ

a

mK

∑
L∈NK

TK|L|û(n+1)
L | + t

(n)
δ mKαk|rB(v(n+1)

K ) − rB(ṽ(n+1)
K )|.

We proceed in the same way for v̂(n+1)
K and remark that

Â
(n+1)
K |û(n+1)

K | = |rA(u(n+1)
K ) − rA(ũ(n+1)

K )|,

B̂
(n+1)
K |v̂(n+1)

K | = |rB(v(n+1)
K ) − rB(ṽ(n+1)

K )|,

which enable us to obtain the counterpart of the inequalities in (3.5) which we sum overK ∈ M,
as in the proof of Lemma 3.1. This yields the result.

We now are in a position to prove a discrete L∞ estimate for the approximate solution.

Theorem 3.1 Let D = (M, E ,P , (t(n))n∈{0,··· ,N+1}) be an admissible discretization of
QT in the sense of Definition 2.3. We suppose that the hypotheses H are satisfied. Let
(u(0)

K , v
(0)
K )K∈M be given by (2.1) and (u(n+1)

K , v
(n+1)
K ) satisfy (2.2) for K ∈ M and n ∈

{0, · · · , N}. Then

0 � u
(n+1)
K � U +

α

β
V and 0 � v

(n+1)
K � V +

β

α
U (3.6)

for all K ∈ M and n ∈ {0, · · · , N}, where U and V are the positive constants from the
hypothesis H(2).

Proof From Lemma 3.1 we immediately obtain that u(n+1)
K and v(n+1)

K are nonnegative for
K ∈ M and n ∈ {0, · · · , N}. In order to find a discrete upper solution, we consider approximate
solutions of the corresponding system of ordinary differential equations. More precisely, we
consider sequences (u(n))n∈{0,··· ,N+1}, (v(n))n∈{0,··· ,N+1} (we postpone for a moment the proof
that they exist) such that

u(0) = U, v(0) = V

and

u(n+1) − u(n) = αk t
(n)
δ (rB(v(n+1)) − rA(u(n+1))),

v(n+1) − v(n) = βk t
(n)
δ (rA(u(n+1)) − rB(v(n+1)))

(3.7)

for n ∈ {0, · · · , N}. We note that the sequences (u(n+1))n∈{0,··· ,N}, (v(n+1))n∈{0,··· ,N} satisfy
(2.2) with the initial data U, V . Therefore, they satisfy the comparison principle from Lemma
3.1 which yields

0 � u(n+1) and 0 � v(n+1) for all n ∈ {0, · · · , N}. (3.8)

Adding up the first equation of (3.7) divided by α and the second one divided by β, we obtain

u(n+1)

α
+
v(n+1)

β
=
u(n)

α
+
v(n)

β
= · · · =

U

α
+
V

β
.

We deduce from the previous equation and from (3.8) that

0 � u(n+1) � U +
α

β
V and 0 � v(n+1) � V +

β

α
U (3.9)

for n ∈ {0, · · · , N}.
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3.2 Existence of the approximate solution

In order to prove the existence of the solution of the system (2.1), (2.2), we make use of the
topological degree theory in finite dimensional spaces. The proof of existence of the solution of
the system (3.7) is similar. The reader can find basic definitions as well as further information
in [4]. An example of the application of this tool to the analysis of a finite volume scheme can
be found for instance in [8]. We rewrite (2.2) in the form

F((u(n+1)
K )K∈M, (v(n+1)

K )K∈M) + G((u(n+1)
K )K∈M, (v(n+1)

K )K∈M)

= ((u(n)
K )K∈M, (v(n)

K )K∈M), (3.10)

where F ,G : R
2Θ → R

2Θ, with Θ the number of control volumes for the discretization D, are
continuous functions given by

F((u(n)
K )K∈M, (v(n)

K )K∈M) = ((u(n)
K )K∈M, (v(n)

K )K∈M),

G((u(n)
K )K∈M, (v(n)

K )K∈M) = (W1,W2),

where

W1 = − t
(n−1)
δ a

mK

∑
L∈NK

TK|L(u(n)
L − u

(n)
K ) + t

(n−1)
δ αk(rA(u(n)

K ) − rB(v(n)
K )),

and

W2 = − t
(n−1)
δ b

mK

∑
L∈NK

TK|L(v(n)
L − v

(n)
K ) − t

(n−1)
δ βk(rA(u(n)

K ) − rB(v(n)
K )).

We set O = B(0, R) ⊂ R
2Θ a ball centered at zero with a radius

R >

√
Θ

(
U +

α

β
V

)2

+ Θ
(
V +

β

α
U

)2

.

Since Θ > 1, we deduce from the discrete L∞(QT ) estimate of Theorem 3.1 that system (3.10)
does not have any solutions on ∂O. Similarly, one can show that for all λ ∈ [0, 1] the system

F((u(n+1)
K )K∈M, (v(n+1)

K )K∈M) + λG((u(n+1)
K )K∈M, (v(n+1)

K )K∈M)

= ((u(n)
K )K∈M, (v(n)

K )K∈M) (3.11)

does not possess any solution on the boundary of O. Therefore, it follows from [4, Theorem
3.1, p. 16] (d3) that

d(F + λG,O, ((u(n)
K )K∈M, (v(n)

K )K∈M)) = d(F ,O, ((u(n)
K )K∈M, (v(n)

K )K∈M)) (3.12)

for all λ ∈ [0, 1]. On the other hand we deduce from [4, Theorem 3.1, p. 16] (d1) that

d(F ,O, ((u(n)
K )K∈M, (v(n)

K )K∈M)) = 1, (3.13)

so that
d(F + G,O, ((u(n)

K )K∈M, (v(n)
K )K∈M)) = 1.

Also using [4, Theorem 3.1, p. 16] (d4), we conclude that there exists a solution of (3.10).
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Theorem 3.2 We suppose that the hypotheses H are satisfied. Let D be a discretization
as in Definition 2.3. Let (u(0)

K , v
(0)
K )K∈M be given by (2.1). Then there exists one and only one

sequence
(u(n+1)

K , v
(n+1)
K )K∈M, n∈{0,··· ,N},

which satisfies (2.2), with the initial condition (u(0)
K , v

(0)
K )K∈M.

3.3 Estimates of the gradient and some relationship between uD and vD

We prove the following estimates.

Lemma 3.2 We suppose that the hypotheses H are satisfied. Let D be a discretization as in
Definition 2.3. Let (2.1) and (2.2) give (u(0)

K , v
(0)
K )K∈M and (u(n+1)

K , v
(n+1)
K )K∈M, n∈{0,··· ,N},

respectively. Then, there exists a constant C > 0, which does not depend on the discretization
D and on the reaction rate k such that

N∑
n=0

t
(n)
δ

∑
(K,L)∈E

TK|L(u(n+1)
L − u

(n+1)
K )2 +

N∑
n=0

t
(n)
δ

∑
(K,L)∈E

TK|L(v(n+1)
L − v

(n+1)
K )2 � C, (3.14)

N∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))2 � C

k
. (3.15)

The bounds (3.14) constitute a discrete version of L2(QT ) gradient estimates.
Bothe and Hilhorst [1] imposed some additional assumptions on the nonlinear terms rA and

rB to prove the continuous version of this lemma. However, our idea of proof can simplify their
argument. A similar idea can be found in [13].

Proof We multiply the first equation in the finite volume scheme (2.2) by η(u(n+1)
K ) and

sum the result over all K ∈ M and over all n ∈ {0, · · · , N} to obtain

S1 + S2 + S3 = 0, (3.16)

where

S1 =
N∑

n=0

∑
K∈M

mK(u(n+1)
K − u

(n)
K )η(u(n+1)

K ),

S2 = −a
N∑

n=0

t
(n)
δ

∑
K∈M

∑
L∈NK

TK|L(u(n+1)
L − u

(n+1)
K )η(u(n+1)

K ),

S3 = kα

N∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))η(u(n+1)
K ).

Let us define Φη(s) =
∫ s

0 η(r)dr for all s ∈ R. Since Φη is non-negative and convex, we can
estimate S1 as follows:

S1 �
N∑

n=0

∑
K∈M

mK(Φη(u(n+1)
K ) − Φη(u(n)

K ))

=
∑

K∈M
mKΦη(u(N+1)

K ) −
∑

K∈M
mKΦη(u(0)

K ) � −
∑

K∈M
mKΦη(u(0)

K ).
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We can perform a discrete integration by parts to obtain

S2 = a

N∑
n=0

t
(n)
δ

∑
(K,L)∈E

TK|L(u(n+1)
L − u

(n+1)
K )(η(u(n+1)

L ) − η(u(n+1)
K )). (3.17)

This is positive because η is an increasing function. Therefore, we obtain

S3 �
∑

K∈M
mKΦη(u(0)

K ). (3.18)

We multiply the second equation in (2.2) by v
(n+1)
K and sum the result over all K ∈ M and

over all n ∈ {0, · · · , N}. Noting that

(v(n+1)
K )2 − v

(n)
K v

(n+1)
K =

1
2
(v(n+1)

K )2 − 1
2
(v(n)

K )2 +
1
2
(v(n+1)

K − v
(n)
K )2,

a similar argument as above gives us the following relation:

b

N∑
n=0

t
(n)
δ

∑
(K,L)∈E

TK|L(v(n+1)
L − v

(n+1)
K )2

− kβ

N∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))v(n+1)
K

� 1
2

∑
K∈M

mK(v(0)
K )2. (3.19)

Summing up (3.18) and (3.19) weighted by 1
α and 1

β , respectively, we have

b

β

N∑
n=0

t
(n)
δ

∑
(K,L)∈E

TK|L(v(n+1)
L − v

(n+1)
K )2

+ k

N∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))(η(u(n+1)
K ) − v

(n+1)
K )

� 1
α

∑
K∈M

mKΦη(u(0)
K ) +

1
2β

∑
K∈M

mK(v(0)
K )2. (3.20)

The right-hand side is bounded due to the Hypotheses H. Since rB is Lipschitz continuous on
the finite interval

[
0, U + α

βV
]
, we denote by LB the local Lipschitz constant. Then, it follows

from (3.20) that

k

N∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))2

= k

N∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))(rB(η(u(n+1)
K )) − rB(v(n+1)

K ))

� LBk

N∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))(η(u(n+1)
K ) − v

(n+1)
K ) � C
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for some positive constant C, which implies (3.15).
Adding up the first equation of (2.2) divided by α and the second one divided by β yields

mK(w(n+1)
K − w

(n)
K ) − t

(n)
δ

∑
L∈NK

TK|L
( a
α

(u(n+1)
L − u

(n+1)
K ) +

b

β
(v(n+1)

L − v
(n+1)
K )

)
= 0. (3.21)

Here, w(n)
K := 1

αu
(n)
K + 1

β v
(n)
K . Multiply it by w(n+1)

K , sum over all K ∈ M and n ∈ {0, · · · , N−1}
and apply discrete integration by parts to obtain

1
2

∑
K∈M

mK(w(N+1)
K )2 − 1

2

∑
K∈M

mK(w(0)
K )2

� −
N∑

n=0

t
(n)
δ

∑
(K,L)∈E

TK|L
( a

α2
(u(n+1)

L − u
(n+1)
K )2

− a+ b

αβ
(u(n+1)

L − u
(n+1)
K )(v(n+1)

L − v
(n+1)
K ) − b

β2
(v(n+1)

L − v
(n+1)
K )2

)
.

It follows from the elementary relation

a+ b

αβ
� a

2α2
+

(a+ b)2

2aβ2
(3.22)

for all s1, s2 ∈ R that

1
2

∑
K∈M

mK(w(N+1)
K )2 +

a

2α2

N∑
n=0

t
(n)
δ

∑
(K,L)∈E

TK|L(u(n+1)
L − u

(n+1)
K )2

� 1
2

∑
K∈M

mK(w(0)
K )2 +

∣∣∣(a+ b)2

2aβ2
− b

β2

∣∣∣ N∑
n=0

t
(n)
δ

∑
(K,L)∈E

TK|L(v(n+1)
L − v

(n+1)
K )2,

which is bounded because of (3.20) and the Hypotheses H. This completes the proof of Lemma
3.2.

If r−1
B is locally Lipschitz continuous, we can obtain further relationship between uD and

vD, that leads to the error estimates given in Section 5.

Lemma 3.3 In addition to the assumptions of Lemma 3.2, suppose that there exists a
positive constant lB such that

lB|s1 − s2| � |rB(s1) − rB(s2)| for all s1, s2 ∈
[
0,max

{
η
(
U +

α

β
V

)
, V +

β

α
U

}]
. (3.23)

Then, there exists a positive constant C independent of D and k such that
N∑

n=0

t
(n)
δ

∑
K∈M

mK(η(u(n+1)
K ) − v

(n+1)
K )2 � C

k
.

Proof We deduce from (3.20) that

k

N∑
n=0

t
(n)
δ

∑
K∈M

mK(η(u(n+1)
K ) − v

(n+1)
K )2

� k

lB

N∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))(η(u(n+1)
K ) − v

(n+1)
K ) � C

for some positive constant C. This concludes the proof.
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3.4 Space and Time Translates of Approximate Solutions

We now turn to the space and time translates estimates. We use here methods which have
been presented for example by Eymard, Gutnic and Hilhorst [8] and by Eymard, Gallouët,
Hilhorst and Slimane [7]. The results of the current subsection together with the technical
Lemma A.2 will imply the relative compactness of the sequence of approximate solutions.

Lemma 3.4 We assume that
(1) D = (M, E , (xK)K∈M, (t(n))n∈{0,··· ,N+1}) is an admissible discretization of QT in the

sense of Definition 2.3,
(2) the hypotheses H are satisfied,
(3) the functions uD and vD are derived from the scheme (2.1)– (2.2) and given by the

formulas (2.3).
Then there exists a positive constant C, which does not depend on D and k such that∫ T

0

∫
Ωξ

(uD(x+ ξ, t) − uD(x, t))2dxdt � C|ξ|(2 size (D) + |ξ|), (3.24)∫ T

0

∫
Ωξ

(vD(x + ξ, t) − vD(x, t))2dxdt � C|ξ|(2 size (D)) + |ξ|) (3.25)

for all ξ ∈ R
d and for Ωξ defined as in Lemma A.2.

Proof Inequalities (3.24) and (3.25) follow from the estimates (3.14). We refer to [6, Lemma
3.3] for more details.

Lemma 3.5 Let the assumptions of Lemma 3.4 be satisfied. Then, there exists some
constant Ck > 0, which does not depend on D, but which depends on all the data including k,
such that ∫

Ω×(0,T−τ)

(uD(x, t+ τ) − uD(x, t))2dxdt � Ck(size (D) + τ), (3.26)∫
Ω×(0,T−τ)

(vD(x, t+ τ) − vD(x, t))2dxdt � Ck(size (D) + τ) (3.27)

for all τ ∈ (0, T ).

Proof In order to apply Lemma A.1 (see Appendix), we follow the same steps as in [8,
Lemma 5.5]. The only difference appears in the nonlinear part of the equations. However, these
can be easily estimated using the regularity properties of functions rA and rB, as well as L∞

estimates (3.6) in Theorem 3.1.

Lemma 3.6 Let the assumptions of Lemma 3.4 hold. Set wD = 1
αuD + 1

β vD. Then, there
exists a constant C > 0, which is independent of the discretization parameters D and of k, such
that ∫

Ωξ×(0,T )

(wD(x+ ξ, t) − wD(x, t))2dxdt � C|ξ|(2size (D) + |ξ|) (3.28)

for all ξ ∈ R
d and Ωξ = {x ∈ R

d, [x, x+ ξ] ⊂ Ω}. Moreover∫
Ω×(0,T−τ)

(wD(x, t+ τ) − wD(x, t))2dxdt � C(size (D) + τ) (3.29)
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for all τ ∈ (0, T ).

Proof The space translate estimate (3.28) immediately follows from Lemma 3.4. The proof
of (3.29) is similar to that of Lemma 3.5. We present below the essential steps of the argument.
We define

A(t) :=
∫

Ω

(wD(x, t + τ) − wD(x, t))2dx,

which can be easily transformed into

A(t) =
∑

K∈M
mK(w(n(t+τ)+1)

K − w
(n(t)+1)
K )2

=
∑

k∈M

(
(w(n(t+τ)+1)

K − w
(n(t)+1)
K )

n(t+τ)∑
n=n(t)+1

mK(w(n+1)
K − w

(n)
K )

)
.

Since
w

(n+1)
K − w

(n)
K =

1
α

(u(n+1)
K − u

(n)
K ) +

1
β

(v(n+1)
K − v

(n)
K ),

we can apply discrete integration by parts in the scheme (2.2) to obtain

A(t) =
a

α

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

TK|L(u(n+1)
L − u

(n+1)
K )(w(n(t+τ)+1)

K − w
(n(t+τ)+1)
L )

+
a

α

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

TK|L(u(n+1)
L − u

(n+1)
K )(w(n(t)+1)

L − w
(n(t)+1)
K )

+
b

β

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

TK|L(v(n+1)
L − v

(n+1)
K )(w(n(t+τ)+1)

K − w
(n(t+τ)+1)
L )

+
b

β

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

TK|L(v(n+1)
L − v

(n+1)
K )(w(n(t)+1)

L − w
(n(t)+1)
K ).

Next we estimate the second term in the sum above, to obtain

a

α

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

√
TK|L (u(n+1)

L − u
(n+1)
K ) ·

√
TK|L (w(n(t)+1)

L − w
(n(t)+1)
K )

� a

2α

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

TK|L(u(n+1)
L − u

(n+1)
K )2

+
a

2α

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

TK|L(w(n(t)+1)
L − w

(n(t)+1)
K )2

� a

2α

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

TK|L(u(n+1)
L − u

(n+1)
K )2

+
a

α3

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

TK|L(u(n(t)+1)
L − u

(n(t)+1)
K )2
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+
a

αβ2

n(t+τ)∑
n=n(t)+1

t
(n)
δ

∑
(K,L)∈E

TK|L(v(n(t)+1)
L − v

(n(t)+1)
K )2,

where the first inequality follows from the relation s1s2 � 1
2 (s21 + s22) for all s1, s2 ∈ R and the

second one follows from the simple inequality (s1 + s2)2 � 2(s21 + s22) for all s1, s2 ∈ R. To
conclude the proof we integrate above inequalities over R with respect to the time variable t.
Finally we apply Lemma A.1 (for details see [8, Lemma 5.5]).

4 Convergence Proof with k Fixed

In this section, we state convergence results with k fixed. This differs from next section
where we will obtain convergence results which permit us to pass to the limit as k tends to
infinity.

Theorem 4.1 We suppose that the hypotheses H are satisfied. Let (uD, vD) be the approx-
imate solution defined by (2.1), (2.2) and (2.3) and (uk, vk) ∈ L2(0, T ; H1(Ω))2 be the unique
classical solution of Problem Pk. Then the sequence (uD, vD) converges strongly in L2(QT )2 to
(uk, vk) as size (D) tends to zero. Hence, the sequence wD = 1

αuD + 1
β vD converges strongly

in L2(QT ) to the function wk = 1
αu

k + 1
β v

k as size (D) tends to zero. Moreover, there exist
positive constants C1 which do not depend on k, such that∫

Ωξ×(0,T )

(uk(x+ ξ, t) − uk(x, t))2dxdt

+
∫

Ωξ×(0,T )

(vk(x+ ξ, t) − vk(x, t))2dxdt � C1|ξ|2, (4.1)∫
Ωξ×(0,T )

(wk(x+ ξ, t) − wk(x, t))2dxdt � C1|ξ|2, (4.2)∫
Ω×(0,T−τ)

(wk(x, t + τ) − wk(x, t))2dxdt � C1τ, (4.3)

‖rA(uk) − rB(vk)‖L2(QT ) � C1k
− 1

2 , (4.4)

where τ ∈ (0, T ), ξ ∈ R
d and Ωξ = {x ∈ R

d, [x, x + ξ] ⊂ Ω}.
In addition to the above, if there exists a positive constant lB satisfying (3.23), then

‖η(uk) − vk‖L2(QT ) � C2k
− 1

2 (4.5)

holds for some positive constant C2 independent of k.

Proof In view of the estimates (3.24), (3.26) and Proposition A.2 which is a consequence of
the Fréchet-KolmogorovTheorem [2, Theorem IV.25, p. 72], we deduce the relative compactness
of the set (uD) so that there exists a sequence of (uDm)∞m=1 and a function Uk, such that uDm

converges to Uk strongly in L2(QT ) as m tends to infinity.
The same conclusion holds for the v-component. Indeed, the inequalities (3.25) and (3.27)

permit to apply the compactness result in Lemma A.2 for the sequence (vDm)∞m=1. There exists
a function Vk such that vDm converges to Vk strongly in L2(QT ) as m tends to infinity. We use
[6, Theorem 3.10] to get Uk,Vk ∈ L2(0, T ;H1(Ω)).
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Next we show that (Uk, Vk) is a weak solution of Problem Pk, in the sense of Definition
1.1. Let ψ ∈ Ψ, where Ψ is the class of test functions from Definition 1.1. We multiply the
first equation of (2.2) by ψ(xK , t

(n)). Then we sum over all K ∈ M and n ∈ {0, · · · , N − 1} to
obtain

T u
1m − T u

2m + T u
3m = 0,

where

T u
1m =

N−1∑
n=0

∑
K∈M

mK(u(n+1)
K − u

(n)
K )ψ(xK , t

(n)),

T u
2m = a

N−1∑
n=0

t
(n)
δ

∑
K∈M

∑
L∈NK

TK|L(u(n+1)
L − u

(n+1)
K )ψ(xK , t

(n)),

T u
3m =

N−1∑
n=0

t
(n)
δ

∑
K∈M

mKαk(rA(u(n+1)
K ) − rB(v(n+1)

K ))ψ(xK , t
(n)).

The complete proof, that

lim
m→∞ T u

1m = −
∫

Ω

u0(x)ψ(x, 0)dx −
∫ T

0

∫
Ω

Uk(x, t)ψt(x, t)dxdt

and

lim
m→∞ T u

2m = −a
∫ T

0

∫
Ω

Uk(x, t)Δψ(x, t)dxdt,

can be found in [8, Lemma 5.5]. Let us focus on the proof that

lim
m→∞ T u

3m = αk

∫ T

0

∫
Ω

(rA(Uk(x, t)) − rB(Vk(x, t)))ψ(x, t)dxdt. (4.6)

We write

N−1∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))ψ(xK , t
(n))

−
∫ T

0

∫
Ω

ψ(rA(Uk) − rB(Vk))dxdt

=
N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

(rA(u(n+1)
K ) − rB(v(n+1)

K ))ψ(xK , t
(n))dxdt

−
N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

ψ(rA(Uk) − rB(Vk))dxdt

−
∑

K∈M

∫ t(N+1)

t(N)

∫
K

ψ(rA(Uk) − rB(Vk))dxdt.

Thanks to the regularity of the function ψ, the last sum above converges to zero. Moreover,

N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

(rA(u(n+1)
K ) − rB(v(n+1)

K ))ψ(xK , t
(n))dxdt
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−
N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

ψ(rA(Uk) − rB(Vk))dxdt

=
N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

(ψ(xK , t
(n)) − ψ(x, t))(rA(u(n+1)

K ) − rB(v(n+1)
K )dxdt

+
N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

ψ(rA(u(n+1)
K ) − rA(Uk))dxdt

−
N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

ψ(rB(v(n+1)
K ) − rB(Vk))dxdt. (4.7)

Next we show that the three terms above tend to zero as m→ ∞. First we take their absolute
value and apply the triangle inequality. The Cauchy-Schwarz inequality applied to the first
sum of the right-hand side of (4.7) yields

N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

|ψ(xK , t
(n)) − ψ(x, t)||rA(u(n+1)

K ) − rB(v(n+1)
K )|dxdt

�
( N−1∑

n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

(ψ(xK , t
(n)) − ψ(x, t))2dxdt

) 1
2

×
( N−1∑

n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

(rA(u(n+1)
K ) − rB(v(n+1)

K )2dxdt
) 1

2
.

The first term of above product converges to zero, as m → ∞, since ψ is smooth enough.
The second term is bounded. Indeed, it is sufficient to remark that rA(u(n+1)

K ), rB(v(n+1)
K ) are

bounded for all K ∈ M and n ∈ {0, · · · , N}. The last two terms in (4.7) are similar, and we
show how the proof goes with the first one. Indeed, let LA be the local Lipschitz constant of
rA valid over the finite interval [0, U + α

βV ]. Then we have

N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

|ψ||rA(u(n+1)
K ) − rA(Uk)|dxdt

� LA‖ψ‖L∞(QT )

N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

|uDm − Uk|dxdt

� LA(Tmeas(Ω))
1
2 ‖ψ‖L∞(QT )

( N−1∑
n=0

∑
K∈M

∫ t(n+1)

t(n)

∫
K

|uDm − Uk|2dxdt
) 1

2
,

which converges to zero since uDm → Uk as m→ ∞ in L2(QT ). Therefore, we obtain (4.6).
In a similar fashion, we deduce from the second equation of (2.2) that∫

Ω

v0(x)ψ(x, 0)dx +
∫ T

0

∫
Ω

Vk(x, t)ψt(x, t)dxdt + b

∫ T

0

∫
Ω

Vk(x, t)Δψ(x, t)dxdt

+ βk

∫ T

0

∫
Ω

(rA(Uk(x, t)) − rB(Vk(x, t)))ψ(x, t)dxdt = 0

for all ψ ∈ Ψ. Hence, (Uk, Vk) is a weak solution of Problem Pk. Since Problem Pk is a
uniformly parabolic system, (uk, vk) must coincide with the classical solution of Problem Pk.
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Because the solution is unique, the original sequence (uD, vD) converges the solution of Problem
Pk. The assertions (4.1)–(4.5) follow immediately from Lemmas 3.2–3.4 and 3.6.

5 The Case That k Tends to Infinity

In this section, we investigate the convergence of the finite volume scheme when size (D)
tends to zero and k tends to infinity.

5.1 The limit as size(D) tends to zero and k tends to infinity

We state the main convergence results of this paper.
It is now possible to pass to the limit as k tends to infinity.

Theorem 5.1 Let (uk
D, v

k
D) be the sequence of approximate solutions of Problem Pk, defined

by (2.1), (2.2) and (2.3). Then

uk
D → f(w) and vk

D → g(w)

strongly in L2(QT ) as size (D) tends to zero and k tends to infinity, where f and g are defined
in Section 1 and where w is the unique weak solution of the problem (1.5).

Proof We follow the same procedure as in [1]. Let wk
D = 1

αu
k
D + 1

β v
k
D. The estimates

from Lemma 3.6, which are uniform with respect to k, permit to apply Lemma A.2. As a
consequence we deduce the relative compactness in L2(QT ) of the sequence {wk

D}. Then, there
exist a function w ∈ L2(QT ) and a subsequence {wki

Dm
} such that wki

Dm
converges to w strongly

in L2(QT ) and a.e. in QT as ki tends to infinity and size (Dm) tends to zero. Theorem 3.1
implies that w is nonnegative and bounded in QT . The inequality (3.15), namely

ki‖rA(uki

Dm
) − rB(vki

Dm
)‖2

L2(QT ) � C

where the positive constant C is independent of ki and size (Dm), implies that

rA(uki

Dm
) − rB(vki

Dm
) → 0, in L2(QT ),

and consequently almost everywhere, as size (Dm) tends to zero and ki tends to infinity. Then

vki

Dm
= η(uki

Dm
) + eki

Dm
,

where eki

Dm
tends to zero almost everywhere as size (Dm) tends to zero and ki tends to infinity.

In view of the hypotheses H(4) the function η is well defined on [0,∞). Moreover,

f−1(uki

Dm
) = wki

Dm
− 1
β
eki

Dm
→ w, a.e. in QT .

Hypotheses H(4) ensures that the function f is continuous. Then Lebesgue’s dominated con-
vergence theorem implies

uki

Dm
→ f(w) and vki

Dm
→ g(w)

strongly in L2(QT ) as size (Dm) tends to zero and ki tends to infinity. Lemma 3.4 and [6,
Theorem 3.10] imply f(w), g(w) ∈ L2(0, T ;H1(Ω)).



Fast Reversible Reaction 649

Next we identify the limit function w. Let ψ ∈ Ψ, where Ψ is the class of test functions
from Definition 1.1. We multiply (3.21) by ψ(xK , t

(n)) and sum over all K ∈ M and n ∈
{0, · · · , N − 1}. Then, letting size (Dm) → 0 and ki → ∞ yields

−
∫

Ω

w0(x)ψ(x, 0)dx −
∫ T

0

∫
Ω

w(x, t)ψt(x, t)dxdt

+
∫ T

0

∫
Ω

( a
α
f(w(x, t)) +

b

β
g(w(x, t))

)
Δψ(x, t)dxdt = 0.

Obviously, a
αf(w) + b

β g(w) = φ(w). Therefore, w is the weak solution of (1.5). Since the weak
solution of (1.5) is unique, the original sequences {uk

D} and {vk
D} converge to f(w) and g(w),

respectively. Thus, the proof is complete.

5.2 The rate of convergence with respect to k

We can obtain the convergence rates with respect to k under additional conditions on rB .

Theorem 5.2 We assume that the hypotheses H hold and moreover that there exists a
positive constant satisfying (3.23). Let (uk, vk) be the weak solution of Problem Pkand w be
that of (1.5). Then, there exists a positive constant C independent of k such that∥∥∥w −

( 1
α
uk +

1
β
vk

)∥∥∥
L2(QT )

+ ‖f(w) − uk‖L2(QT ) + ‖g(w) − vk‖L2(QT )

+
∥∥∥ ∫ t

0

(
φ(w) −

( a
α
uk +

b

β
vk

))∥∥∥
L∞(0,T ;H1(Ω))

� Ck−
1
2 .

Proof We define errors as follows:

eu := f(w) − uk, ev := g(w) − vk, ew :=
1
α
eu +

1
β
ev, eφ := φ(w) −

( a
α
uk +

b

β
vk

)
.

Since φ(w), uk, vk ∈ L2(0, T ;H1(Ω)) and C2,1(Ω × [0, T ]) is dense in H1(QT ), we deduce from
the weak formulations of (1.5) and (1.1) that

−
∫ T

0

∫
Ω

ewψtdxdt+
∫ T

0

∫
Ω

∇eφ · ∇ψdxdt = 0

for all functions ψ ∈ H1(QT ) with ψ( · , T ) = 0. For fixed t0 ∈ (0, T ], take

ψ(x, t) =

⎧⎨⎩
∫ t0

t

eφ(x, s)ds, if 0 ≤ t < t0, a.e. x ∈ Ω,

0, otherwise,

to get ∫ t0

0

∫
Ω

ew(x, t)eφ(x, t)dxdt +
∫ t0

0

∫
Ω

∇eφ(x, t) · ∇
∫ t0

t

eφ(x, s)dsdxdt = 0.

Therefore, we easily obtain

a

α2
‖eu‖2

L2(Ω×(0,t0)) +
b

β2
‖ev‖2

L2(Ω×(0,t0))
+
a+ b

αβ

∫ t0

0

∫
Ω

(f(w) − uk)(η(f(w)) − η(uk))dxdt

+
1
2

∥∥∥∇∫ t0

0

eφ

∥∥∥2

L2(Ω)
= −a+ b

αβ

∫ t0

0

∫
Ω

eu(η(uk) − vk)dxdt. (5.1)
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The third term of left-hand side is positive because η is an increasing function. The right-hand
side can be estimated by means of the elementary relation (3.22) as follows:∣∣∣a+ b

αβ

∫ t0

0

∫
Ω

eu(η(uk) − vk)dxdt
∣∣∣ � a

2α2
‖eu‖2

L2(Ω×(0,t0))
+

(a+ b)2

2aβ2
‖η(uk) − vk‖2

L2(Ω×(0,t0)).

The first term can be absorbed into the left-hand side of (5.1). The estimate (4.5) and the
definition of ew imply the desired estimates.

6 Numerical Example

In this section, we give an example of an application of the finite volume scheme (2.2) in one
space dimension. For the numerical experiments we choose the reaction of the reversible dimeri-
sation of o-phenylenedioxydimethylsilane (2, 2-dimethyl-1, 2, 3-benzodioxasilole) which has been
studied by 1H NMR spectroscopy. The kinetics of this reaction can be described quantitatively
by a bimolecular lO-ring formation reaction and a monomolecular backreaction (for further
details we refer to [12]). Since the reaction is of the type 2A � B, the reaction terms take the
form

rA(u) = k1u
2 and rB(v) = k2v.

Moreover α = 2 and β = 1. For this particular process benzene was chosen as a solvent. Then
it was possible to estimate rate constants for both reactions at the temperature T = 298K,

k1 ≈ 1.072 · 10−4 L2mol−2 and k2 ≈ 2.363 · 10−6 L2mol−2

and diffusion coefficients

a ≈ 1.579 · 10−9 m2s−1 and b ≈ 1.042 · 10−9 m2s−1.

In the first experiment we set k = 1 for the chemical kinetics factor. We remark that it is
equivalent to the situation when coefficients a, b, k1 and k2 are of order 1 and k is of order 104.
In fact, we can multiply the system (1.1) by 109 and change the time scale as t �→ 109t. However
the above reasoning is formally correct and shows in an explicit way the order of the kinetics
factor k; in our example we decided to keep constants in the form given by the spectroscopic
analysis.

Figure 1 Initial data defined in (6.1) and (6.2).
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Figure 2 Numerical solutions uk
D and vk

D.

Figure 1 shows the initial conditions u0 and v0 defined as

u0(x) =

⎧⎪⎨⎪⎩
0 for x ∈ [0, 0.03],

1
2

sin
(50π

7
(x− 0.03)

)
for x ∈ [0.03, 0.1]

(6.1)

and

v0(x) =

⎧⎨⎩
1
4

cos
(50π

7
x
)

for x ∈ [0, 0.07],

0 for x ∈ [0.07, 0.1].
(6.2)

We used a uniform mesh with mesh size h = 0.00025 and initial time step size t(0)δ = 0.1. The
time step sizes are determined by

t
(n+1)
δ =

γ t
(n)
δ

max
x∈Ω

{|uk
D(x, t(n+1)) − uk

D(x, t(n+1))|, |vk
D(x, t(n+1)) − vk

D(x, t(n+1))|}
, (6.3)

while t(n) < T . If n satisfies t(n) < T � t(n+1), then we put N = n and define t(N)
δ := T − t(N).

Here, γ = 0.02. We carried out a numerical simulation until the time T = 1011 [s]. Figure 2
shows the time evolution of the numerical solution (uk

D, v
k
D). The number of time steps was

N = 34. We can obtain numerical solutions efficiently until very large final times.

Next, we deal with the case that the kinetics parameter k is sufficiently large, namely
k = 1010. The numerical solution is regarded as an approximate solution of the nonlinear
diffusion problem (1.5) according to Theorem 5.1. Let us define w0 = 1

αu0 + 1
β v0, where u0

and v0 are given by (6.1) and (6.2). We carried out numerical simulation using initial data
u0 = f(w0) and v0 = g(w0), the same mesh size and initial time step size as above and
γ = 0.002 in (6.3). Here, the functions f and g are defined in Section 1. The numerical solution

wk
D =

1
α
uk
D +

1
β
vk
D

is drawn in Figure 4. The number of time steps was N = 29.
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Figure 3 Initial datum w0.

Figure 4 Numerical solutions wk
D.

We examine the sensitivity of the numerical results to the choice of k with h = 0.00025 and
t
(n)
δ = δ = 10 fixed and the initial data u0, v0 above until T = 104. Numerical results at times
t = 0, 10δ, 20δ, · · · , T − 10δ, T for various choices of k are shown in Figure 5. We can observe
that the larger k, the more rapidly the numerical solutions converge to w-shape, that is, they
approach the chemical equiliblium. Then they are slowly evolving according to the nonlinear
diffusion.

The rates of convergence with respect to k are examined. We regard the numerical solution
wk

D with k = 1010 and initial data u0, v0 above as an “exact” solution, denoted by w, of (1.5).
Numerical solutions are compared with the ‘exact’ solution. We calculate the difference between
rA(uk

D) and rB(vk
D), and the errors, that is,

Er :=
( 1
Tmeas(Ω)

N∑
n=0

t
(n)
δ

∑
K∈M

mK(rA(u(n+1)
K ) − rB(v(n+1)

K ))2
) 1

2 1
k2
,

Eu :=
( 1
Tmeas(Ω)

N∑
n=0

t
(n)
δ

∑
K∈M

mK(f(w(xK , t
(n))) − u

(n+1)
K )2

) 1
2
,

Ev :=
( 1
Tmeas(Ω)

N∑
n=0

t
(n)
δ

∑
K∈M

mK(g(w(xK , t
(n))) − v

(n+1)
K )2

) 1
2
.

Table 1 sums up the computational results. We observe that the convergence rates for Er,
Eu and Ev are of order − 1

2 . They agree with our theoretical results (4.4) and Theorem 5.2.
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(a) k = 40 (b) k = 42

(c) k = 44 (d) k = 46

Figure 5 Numerical solutions uk
D and vk

D for various choices of the parameter k.

Table 1 Errors for Various Choices of k

k Er Eu Ev

40 3.150861 0.170829 0.085569
41 1.684189 0.102105 0.051139
42 0.842005 0.052032 0.026037
43 0.414095 0.025948 0.012977
44 0.195023 0.012807 0.006404
45 0.082297 0.006132 0.003066
46 0.029367 0.002728 0.001364

7 Appendix

The proof of the following result can be found in [8, Lemmas 5.3 and 5.4].

Lemma A.1 We denote by (t(n))n∈Z a strictly increasing sequence of real numbers such
that lim

n→−∞ t(n) = −∞ and lim
n→∞ t(n) = ∞. Moreover, let t(n)

δ := t(n+1) − t(n) be uniformly

bounded. For all t ∈ R we denote by n(t) an integer n, such that t ∈ [t(n), t(n+1)). Let (a(n))n∈Z

be a family of nonnegative real values such that a(n) 	= 0 for finitely many n ∈ Z. Then, for all
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τ ∈ (0,+∞) and ζ ∈ R,∫
R

n(t+τ)∑
n=n(t)+1

(t(n)
δ a(n+1))dt = τ

∑
n∈Z

(t(n)
δ a(n+1)), (A.1)

∫
R

( n(t+τ)∑
n=n(t)+1

t
(n)
δ

)
a(n(t+ζ)+1)dt � (τ + max

n∈Z

t
(n)
δ )

∑
n∈Z

(t(n)
δ a(n+1)). (A.2)

The following lemma is a direct corollary from Fréchet-Kolmogorov Theorem (see [2, The-
orem IV.25, p. 72]).

Lemma A.2 Let O be a bounded and open subset of R
d+1, d = 1, 2 or 3. Let (wn)n∈N be

a sequence of functions wn(x, t) : R
d × R → R, such that

(1) for all n ∈ N, wn ∈ L∞(O) and there exists a constant Cb > 0 which does not depend
on n, such that ‖wn‖L∞(O) � Cb,

(2) there exist positive constants C1, C2 and a sequence of nonnegative real values (μn)n∈N,
such that lim

n→∞μn = 0 and
∫
Oξ,τ

(wn(x + ξ, t + τ) − wn(x, t))2dxdt � C1|ξ| + C2τ + μn for

ξ ∈ R
d, τ ∈ R, n ∈ {0, · · · , N} and Oξ,τ = {(x, t) ∈ R

d+1 : the interval [(x, t), (x + ξ, t +
τ)] lies in O}. Then there exists a subsequence of (wn)n∈N, denoted again by (wn)n∈N and a
function w ∈ L∞(O) such that wn → w in L2(O), as n→ ∞.
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