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Abstract Two different models for the evolution of incompressible binary fluid mixtures
in a three-dimensional bounded domain are considered. They consist of the 3D incompress-
ible Navier-Stokes equations, subject to time-dependent external forces and coupled with
either a convective Allen-Cahn or Cahn-Hilliard equation. Such systems can be viewed as
generalizations of the Navier-Stokes equations to two-phase fluids. Using the trajectory
approach, the authors prove the existence of the trajectory attractor for both systems.
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1 Introduction

Modelling the behavior of binary fluid mixtures can be rather challenging (see, e.g., [57]). A
possible approach is based on the so-called diffuse-interface method (see [5, 14, 53] and references
therein). This method consists in introducing an order parameter, accounting for the presence
of two species, whose dynamics interacts with the fluid velocity. For incompressible fluids a well-
known model, known as Cahn-Hilliard fluid, consists of the classical Navier-Stokes equations
suitably coupled with a convective Cahn-Hilliard equation (see [33, 34], also [6, 17, 37, 42, 48,
54, 61] and references therein). In related contexts there have also been considered models
in which the Cahn-Hilliard equation is replaced by the (convective) Allen-Cahn equation (see,
e.g., [9, 25, 26, 29, 63, 67]) or, in the case of liquid crystals, by the convective Ginzburg-Landau
equation (see [43], also [22, 23, 44, 47] and references therein). Denoting by w = (u1, us, u3) the
velocity field and by ¢ the order parameter, the Cahn-Hiliard-Navier-Stokes and the Allen-Cahn-
Navier-Stokes systems can be written in a unified form. Indeed, if we assume that the density
is constant and equal to one, the kinematic viscosity v(¢) > 0 and temperature differences are
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negligible, we have

v+ u - Vu — div(v(¢)Du) + Vp = kuVo + g, (1.1)
dive =0, (1.2)
6 +u- Vo + A (@) =0, (1.3)
j=—eAd+af(9), (1.4)

in Q x (0,+00), where  is a bounded domain in R with a sufficiently smooth boundary T,

T
Du = w is the deformation tensor, g = g(t) is an external body force and k > 0 is a
capillarity (stress) coefficient. Moreover, the operator Ax has a twofold definition according to

the case K = CH (Cahn-Hilliard fluid) or K = AC (Allen-Cahn fluid), namely,

Acu(®)p = —diviM(¢)Vu),  Aac(d)p = u,

where M(¢) > 0 is the mobility of the mixture. The so-called chemical potential p is obtained
as a variational derivative of the following free energy functional

F@) = [ (51968 +aF(©)da. (1.5)

Here F(r) = for fly)dy, r € R, and ¢, « are two positive parameters describing the interaction
between the two phases. In particular, we recall that ¢ is related with the thickness of the
interface separating the two fluids. It is thus reasonable to assume from now on that ¢ < «
(since, in practice, « is always of the order of %) This restriction is only needed in the case
K = AC (see [32]). The potential F' is a double-well logarithmic-type function defined on a
bounded interval (see [15]). In this case, F is usually named singular (or nonsmooth) potential.
However, F is often replaced by a polynomial approximation of the type, e.g., F(r) = c1rt—car?,
where ¢; and c¢p are given positive constants. We also note that (1.1) can be equivalently
rewritten in the following form:

Ou+ u - Vu — div(v(¢)Du) + Vp = —rdiv(Ve @ Vo) + g, (1.6)

with p = p — k(5|Ve|? + aF(¢)), on account of (see, e.g., [1])
KV = HV(%|V¢|2 + aF(¢)) — kdiv(Ve @ Vo). (1.7)

The stress tensor kdiv(Ve ® V¢) (also named Korteweg force) is considered the main contribu-
tion in (1.7) modelling capillary forces due to surface tension at the interface between the two
phases of the fluid. However, we prefer to using equation (1.1) instead of (1.6), since energy
estimates can be obtained more conveniently (see, e.g., Theorem 3.1).

Systems like (1.1)—(1.4) in the case K = C'H have been investigated in a number of papers
(see, for instance, [12, 13, 36, 39, 41, 46] ). However, confining ourselves to the most theoretical
aspects (i.e., well-posedness, regularity, asymptotic behavior), to the best of our knowledge
the first results can be found in [62], where the 2D case with smooth potential and constant
viscosity and mobility was analyzed on the whole R?. A more refined analysis for bounded
domains which includes the 3D case is contained in [10] (see also [11] for the nonhomogeneous
case). In that contribution both singular and smooth potentials were considered as well as
concentration dependent viscosity and nonconstant degenerate mobility (i.e., M(£+1) = 0). We
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recall that this assumption forces ¢ to take values in a given bounded interval (i.e., the domain of
F). More recently, singular potentials without nonconstant mobility and viscosity depending on
¢ have been considered in [1]. In this case the analysis requires nontrivial arguments, especially
to establish some regularity properties of weak solutions. Non-Newtonian Cahn-Hilliard fluids
were examined in [21, 40], while the compressible case has been recently carefully studied in [3].
All these contributions are mainly concerned with existence, uniqueness and regularity issues

Land k = €). Regarding the

(see also [4] for the asymptotic limit as & goes to 0, with o = ¢~
longtime behavior, results about the stability of some stationary solutions were given in [2, 10],
while a theorem about the convergence to single equilibria was proven in [1] via Lojasiewicz-
Simon approach. More recently, the 2D case on bounded domains with smooth potentials
and constant viscosity has been investigated in [31] within the theory of dissipative dynamical
systems. In particular, existence of global and exponential attractors have been established and
an estimate of the fractal dimension of the global attractor in terms of v, € and « has been
obtained. It has also been proven the convergence to single stationary solutions along with
an explicit rate estimate (see also [68] for further results). The existence of a strong global
attractor A for the above system in 2D has also been established in [2] for a singular potential,
but no further properties of 4 have been demonstrated: for instance, the finite dimensionality.

Similar results have been proven in [32] for K = AC always in two-dimensional bounded
domains (see [35, 60, 66] for related results on nematic liquid crystal dynamics). Existence of a
weak solution for compressible Allen-Cahn-Navier-Stokes systems has been recently proven in
[28].

This paper is devoted to the analysis of the global dynamics of solutions to system (1.1)-
(1.4) in the 3D case and, in contrast with most of the quoted papers, here we allow the presence
of a time-dependent external nongradient force (see, e.g., [8] for its role in coarsening processes).
The existence of a weak global attractor in the three dimensional case for K = CH with g =0
was firstly established in [2] for singular potentials, following the approach developed in [20].
Here we follow a different strategy which allows us to say more on the global longterm dynamics
under rather general conditions (e.g., on the body force g).

The choice of the notion of attractor we are looking for is indeed essential, due the lack of
uniqueness. In the classical theory of dissipative systems, it is usually required that the solution
operator, which maps the initial condition to the solution, be well defined and continuous in a
proper phase space. This theory has been successfully applied to many nonlinear differential
equation of mathematical physics (see, for instance, [55, 59, 64] and references therein). On
the other hand, concerning ill-posed problems, there exist basically two approaches to handle
dissipative systems without uniqueness (see, however, [24] for a method inspired by nonstandard
analysis). The first one allows the solution operator to be multi-valued and, accordingly, extends
the theory of global attractors to the case of semigroups of multi-valued maps (see [16, 51, 52],
while for 3D incompressible Navier-Stokes, see [7, 20, 38, 56] and references therein). The second
is a more geometric approach which consists in taking as phase space the so-called trajectory
space and the translation semigroup acting on them. This operator is single-valued so that
the usual theory of attractors can be adapted (see [18, 19], also [30] and the pioneering [58]).
We intend to apply this approach which seems more effective in presence of time-dependent
body forces. It is also worth mentioning that, compared to the Navier-Stokes equation, the
main technical difficulty of the paper is finding suitable dissipative estimates for the Leray-
Hopf solutions of (1.1)—(1.4) subject to the boundary and initial conditions detailed below (see
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Proposition 3.2 and Lemma 4.2), which requires employing different arguments when K = AC
and K = CH.
System (1.1)—(1.4) is subject to given initial conditions

Ult:-,— = Ug, (b‘t:-,- = ¢0, in Q, (18)

for a fixed 7 > 0.
As far as boundary conditions are concerned, for the velocity field we assume no-slip bound-
ary conditions

u=0, onT x(7,+0), (1.9)
while for ¢ we choose no-flux boundary conditions, namely,
Ond =0, onT x(1,400), (1.10)
if K = AC, and
On® =0nAdp =0, onl x (1,+0), (1.11)

in the case K = C'H. However, the validity of our results can also be proven when other types
of boundary conditions are imposed (see, for instance, [10]).
Noting that in the case K = CH, we have

Onp =0, onT x (7,400).

So that, setting,
1
= — d .

where || is the Lebesgue measure of €, we have the mass conservation,

(p)a = (po)a, Vi>T. (1.13)

Concerning the nonlinearity, we suppose that f € C*(R;R) satisfies

liminf f'(y) > 0,
ly|—+oo (1.14)
W < er(T+yP), VyeR,

where ¢y is some positive constant. Note that the derivative f of the typical double-well
potential F' satisfies both assumptions (1.14). We also assume that both the viscosity and
mobility functions v, M belong to C*(R,RT) and satisfy

vi >v(s) >y >0, my>M(s)>my>0, VseR (1.15)

The plan of the paper goes as follows. In Section 2, we introduce the functional setup and
the class of Leray-Hopf solutions for problems (1.1)-(1.4), (1.9), (1.10) (if K = AC) or (1.11)
(if K = CH) and (1.8). In Section 3, we prove the existence of weak solutions and define the
corresponding trajectory space. Section 4, is devoted to establish the existence of the trajectory
attractor for our problems.
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2 Functional Setup and Leray-Hopf Solutions

The main goal of this section is to introduce the class of weak solutions which we use to
define the trajectory dynamical systems in both the cases K = AC and K = CH. This is a
natural generalization of the well-known notion of Leray-Hopf solution (see, e.g., [59, Chapter
6]).

First we need to fix some notation. If X is a (real) Hilbert space with inner product (-, -)x,
the induced norm will be denoted by | - |x and X* will be the dual space. Moreover, we set
X = X3 endowed with the product structure. Let us now introduce the classical functional
spaces related to Navier-Stokes equations (see, for instance, [65])

- : L% (%)
H={ueCP ) :divu=0, inQ} )

H' (Q
V={ueCr): :divu=0, inQ} ( ).
The canonical scalar product of the Hilbert space H is denoted by (-, -) and | - | is the induced
norm. Moreover, the scalar product and the related norm in the Hilbert space V are defined by

3

(w,0) = > (0., 00,0), [l = ((u,u))z.

i=1

We recall that the norm in V is equivalent to the standard H!(Q)-norm, due to the Poincaré
inequality

lv| < Callv|, YveV (2.1)

and, because of Korn’s inequality, V can also be normed by |Dv|. As usual, we identify H
with its dual so that we will have the Hilbert triplet V < H = H* — V*. The duality pairing
between V* and V are indicated by (-, -). Then we introduce the positive (monotone) operator
Ap(¢) by the formula

Ao(¢) : D(Ao(9)) — H,  Ao(¢)u = —Pdiv(v(¢)Du), (2.2)

where D(A4¢(¢)) = {u € H*(Q) NV : Ag(¢) € H} and P is the Leray-Helmholtz projector in
L2(©) on H (and its extensions). Note that Ag(¢) is also symmetric and invertible on H, as it
can be easily seen from the following standard calculation:

(Ao(@)u, v) = (v(¢) Du, Dv) = (u, Ao(¢)v), Vu,v € D(Ao(¢)). (2.3)

Moreover, |Ao(¢)|zcv,v+) < C, for some positive constant C' that depends only on v;.
To give a rigorous and unified formulation of the order parameter equations, we define first
the self-adjoint positive operator on L?(Q)

App = (=A+e o)y, Vi€ D(Ay) ={y € H*(Q) : Ontp =0, on T}, (2.4)
where v > 0 is such that (see (1.14))

liminf f'(y) > 2.
ly|—+o00
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Then, we set

A(9)¢p = —div(M(9)V), Vi € D(Az(¢)) = D(A1). (2.5)

Note that Ay is a nonnegative (symmetric) monotone operator on L?(Q2), but is positive on
Ly(Q) = {y € L*(Q) : (¥)a = 0}

and As(¢) is a bounded from H'(Q) N LE(Q) into (H'(Q) N L3(2))* (see (1.15)). In addition,
we need to introduce the bilinear operators By and By (and the related trilinear forms by and
b1) and Ry:

(Bo(u,v),w) = /Q[('u, -V)v] - wdz := bo(u, v, w),

(B (u, 6), )12 = / (- V)l = b (u, 6, 10),

Q

(Ro(€, ), w) = /Q £V - wiz,

As is well-known, Bg(u,u) € V* for all w € V. On the other hand, B;(u, ¢) maps V x H'(Q)
into (H'(Q2))* and Ry maps L*(Q) x H?(Q2) into V*. We also recall the following inequality
(see e.g., [64]):

3 3
[(Ro(A10,0),v)| = |b1(v, ¢, A19)| < collvll|olFn 6154, (2.6)
for allv € V, ¢ € D(A;), which implies
[Ro(A16, 0)[lv= < coldl 71181 75 a,)- (2.7)

Let us now set

2 elVyli. + ()3,  if K=CH,
14l = 2 . . (2.8)
elVYli. + ay|y)i., if K =AC.
Then we introduce
H x H'(Q), if K = AC,
Vi = 1 . (2.9)
{(v,9) e Hx H(Q) : [(¢)o] < M}, if K=CH,

where M > 0 is given (see (1.12)-(1.13)). We endow H x H'(Q) with the norm (cf. (2.8))

1
o, )% = ~[v* + 1l17,

and we observe that Yo is a complete metric space with respect to the metric induced by the
H x H'-norm.

We now have all the ingredients to introduce the notion of Leray-Hopf solution to our
problems.

Problem P Let 7 € R and T > 7. Given g € L*([7,T]; V*) and (uo, ¢o) € H x H'(Q),
we find

(u,¢) € L>=([7,T); Yg) N L*([7, T); V x D(Ay)), (2.10)
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such that
dyu € L3 (1, T VY),  0v¢ € L*([r, T); (H ())*) (2.11)
and, if K = CH,
peL*([r, T HY(Q), ¢ € L*([r,T]; H*(Q)), (2.12)
which solves
dru + Ag(d)u + Bo(u,u) — kRo(eA19,0) = g, in V* ae. in (7, +00), (2.13)
p=cAi1p+af,(p), ae. inQx(r,+00), (2.14)
01+ A (¢)pu + Bi(u,¢) =0, in (H'(Q))*, a.e. in (1, +00), (2.15)

and fulfills initial conditions (1.8) and, if K = C'H, mass conservation (1.13). Here Ax = I, if
K = AC and Ag = Ay, it K = CH.

Remark 2.1 Note that u does no longer appear in equation (2.13). More precisely, the term
pVé (see (1.1)) has been replaced by A1¢V¢ because f!(¢)Vd = VF,(¢) can be incorporated
into the pressure gradient term.

Remark 2.2 It follows from (2.3), the assumption on v(¢) and (2.11) that Ag(¢d)u €
L3([r,T); V*) and (see (2.7))

Bo(u,u), Ro(A1¢,¢) € L3 ([r, T); V*). (2.16)

Thus, from equation (2.13), we deduce that 0;u € L3 ([7,T]; V*). In addition, we can also easily
deduce that w € C([r,T];V*) N Cy([7, T]; H). Hence, the velocity initial datum makes sense
in the usual way. On the other hand, we have Bi(u,¢) € L*([r,T]; (H*(Q))*). Then, it is
not difficult to deduce that 9,¢ € L%([r,T]); (H'(2))*) and, on account of (2.11), this entails
¢ € C([r,T); L?(2)). Therefore, the initial condition for ¢ makes sense as well. Summing up,
we have (u,¢) € Cy([7,T); Yi) so that initial conditions (1.8) hold weakly.

3 Weak Solutions and Dissipative Estimates

Here we first prove an existence theorem for Pk by means of a classical Faedo-Galerkin
scheme. Let us consider the following energy functional Lr : Y — Ry,

Li(u,d) = || (u,9)|[% + 2a(Fr (6), 1) 12 + (3.1)
where Fyc = F, while Fog = F. Moreover, cp, > 0 is sufficiently large so that
20(F (¥), )2+ cpe >0 (3.2)

for all ¢» € H'(2). Note that such a constant exists, since Fy is bounded below, due to the
first assumption of (1.14). In addition, thanks to the same assumption, we can find positive
constant ¢y, ¢, ¢, and ¢y such that, for all y € R,

IEy (y)| — e, <2f5(y)y,
Ey(y) — [y < Gyl + ¢,
Fy)l < 2f(y)(y — M) + e,
F(y) = f(y)(y — M) < |y — M|> + cur.
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Let us now set

. 1y acy, }
= Y ]‘7 ) 3.7
pAC = nin { kC3 1+ oacy, + 2ac’f (3.7)

where Cgq is the Poincaré constant (see (2.1)). We also set

IZ0) Emyo 52m0 } (3 8)
RO’ C3 7 C3(e +20c,C3) 1

pcH = min {

where Cq is the Poincaré-Wirtinger constant, that is,

[ — (Whalrz < Cal V|2, W € HY(Q). (3.9)

We now state and prove the following basic result.

Theorem 3.1 Let assumptions (1.14) be satisfied. If g € L*([7,T); V*) and (ug, ¢o) € Yk
Then there exists a solution (u, @) to Py such that, if K = AC, the following inequality holds:

— [ Lactuls). o)A (s + pac [ Lac(uls),ol)A(s)ds
T 14
[ (Rl +2(s) ) A)as

< /TT (Zla(s).uls)) +©ac)Als)ds (3.10)

K
for any A € C§°((r,T); Ry), where
Oac = a|Q(cy, +2¢F) + pacCrac.

Instead, if K = CH, then (u, @) satisfies

T T
[ Lon(u(s), ()N (s)ds + por / Con(u(s), d(s)A(s)ds

T

+/T (%\u(s)n? +molVa(s)l3: ) Als)ds

T

< [ (Clatsuo) + cn)Aas (3.11)

K
for any A € C5°((7,T); Ry), where p = pcm and

Ocn = 20pcf|] + a(eCy” = p)eary | + perey -

Proof The existence argument does not depend on K but for some details. Let {w;} CV
be a sequence which is dense and orthogonal in V (see, for instance, [45, Chapter 1, 6.3 ] or [65,
Chapter 1, 2.6]), and let {¢;} be the sequence of eigenfunctions of A;. Then set

m

um(xat) = Z aj,m(t)wj(x)a ¢m(xat) = ij,m(t)%' ((E), (312)

i=1
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where a; ,,, b m are functions to be determined in C'([7,T]) in such a way that (w,, ¢y, ) satisfy
the following Cauchy problem P:

d:—tm + VP m Ao () Um + PomBo(Wm, Um) — £Po mRo(fm, Pm) = Gons (3.13)
tom, = Py m A10m + aP1 i fry (Om)s (3.14)
d:% + Pl Ag ($m) tm + Pt B1 (W, ¢m) = 0, (3.15)
U (T) = Uom;  Om(T) = Po,m- (3.16)

Here Py, (respectively, Pi ,,) is the orthogonal projector from H (respectively, L?(£2)) onto
the linear space (w1, -, un,) (respectively, (¢1, -, ¢m)). Moreover, we have

9n(t) = Pomg(t), wom = Pomuo, ¢o,m = Prmdbo,

so that g,, — g strongly in L2([7,T]; V*) and (w0, d0.m) — (w0, o) strongly in Y. Note
that, in equation (3.13), the (approximated) chemical potential f,, appears again since it
allows us to simplify the computations (see Remark 2.1). On the other hand, due to the
incompressibility and boundary conditions (1.11), we always have

(RO(,uma ¢m)7v) = (RO(€A1¢m7 ¢m)a ’U), Vv e V. (317)

Problem P has clearly a maximal solution (t,,, ¢m) € C°([7,Tm); Yi) on some time interval
[7,Tw), T, € (7,T).

Let us now take the scalar product in H of equation (3.13) with %um Then the scalar
product in L?(€2) of equations (3.14) and (3.15) with 20;¢,, and 2,,, respectively, and add the
resulting relations. Then, observing in particular that

(P B1(wm, &), tim) 12 = (Po,m Ro(km, dm), wm),
we obtain the following energy equality:

[ @ + el Vom ) + arlom (O3 + 2a(Fy (6m(0), V2]

+ 2o D) Do (O + 2 Ak S ) (1), s ()12 = = (W (8), 9, (0): (319)

Note that, setting

a2, if K = AC,
bl = {|\/ML<¢><t>> V)2 if K = CH, (319
we have
(AKMm (t)v Hm (t))L2 =Lk (M(t)) (320)

Thus, recalling (1.15), on account of (3.1) and (3.18), we obtain the following energy inequality,
for almost any ¢ € [1,T},),

d

G700 (00,000 () + 22t (]2 + 2L (1 (1) < gy (1)

O 3. (3.21)
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This inequality immediately implies that the maximal solution (w,, ¢,n) can be defined up to
the given final time T

In the case K = CH, we need to recover the H'-norm of the chemical potential ,,. To do
that, from equation (3.14) we easily deduce, for all ¢ € [, T],

[{em ()l = o P f(dm(®))al < c(1+ [dm()|Zs), (3.22)

where c is a positive constant that depends at most on €2, «a, ¢, 19, but is independent of time,
initial data and m. From now on ¢ will denote a positive constant of this kind. Such a constant
may vary even from line to line.

Integrating both sides of (3.21) between 7 and ¢, we deduce that {u,,} is bounded in
Le°([r, T);H) N L2([7, T); V) and {¢p} is bounded in L ([, T]; H*(R)). Moreover, if K = AC,
on account of (3.20) and (3.21), we have that {{,,} is bounded in L?([r,T]; L*(2)). Thus,
recalling (3.14), we also have that {¢,,} is bounded in L?([7,T|; D(A;)). In the case K = CH,
due to (3.20)—(3.22), we have that {u,} is bounded in L*([r,T]; H'(£2)). Thus (3.14) entails
that {¢,,} is bounded in L?([r,T]; D(A;) N H3(Q)). In addition from (3.13) (see also (2.6)—
(2.7)), we also recover that {9y, } is bounded in L3 ([r, T]; V*) and, from (3.15), we infer that
{0¢¢m} is bounded in L2([r, T]; (H*(Q))*).

Summing up, using well-known compactness arguments, we can find a pair (u, ¢) such that,
up to subsequences,

Uy, — U weakly star in L ([, T]; H), weakly in L?([r,T];V), (3.23)
Oty — Oyu weakly in L3 ([r, T]; V*), (3.24)
Uy, — U strongly in L?([r, T]; H), ( )
bm — & weakly star in L>([r, T]; H(Q)) and weakly in L*([7,T]; D(A1)),  (3.26)
M — [ weakly in L*([7,T] x Q), ( )
Orpm — Or¢p weakly in L*([7, T1; (H'(2))"), (3.28)
b — & strongly in L2([7. T); H'()) N C(r, T]: L3(9). (3.29)

If K =CH, we also have
i — o weakly in L2([7, T]; HY(Q)), ém — ¢  weakly in L*([r,T]; H3(Q)). (3.30)

Observe that (u, ¢) satisfies all the regularity properties listed in (2.10)—(2.12). Now, employing
standard techniques, and using the above convergence properties, we can now show that (up to
subsequences)

Bo(Wm, ) = Bo(w,w),  Ro(tm, dm) = Ro(u,¢), in L3 (|7, T]; V¥,

whereas f(¢,,) converges strongly to f,(¢) in C([r,T]; L*(2)), as m — oo. Consequently,
we can pass to the limit in (3.13)—(3.15) and find that (u,¢) solves (2.13)-(2.15). It is also
standard to recover initial conditions (1.8) (see also Remark 2.2).

Let us now prove inequality (3.10) first (i.e., K = AC). On account of ( 3.18), we have

LAt (1), 6m (1)) + pLacun(0) 6 (1)) < AL (D), (3.31)
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where p = pac is given by (3.7) and

2
Ay = =2 + plal? = 2|l — €2 = )| Va7

+ 204[p(F,Y(¢m) - f7(¢m)¢m7 1)L2 - (1 - p)(f'y((bm)(bmv 1)L2]

+ %(um, 9un) + plom|Tz + prac (3.32)

Then, from (3.3)-(3.4), it follows

21/0
A < —(=2 = pCB )l 2 = 232

—e(2=p)|Vomt)[7> — [cr, (1 = p) = p — 20 ]|l 7 2
2

—a(l = p)(|Fy(ém)], 1)Lz + ;(um,gm)

+ a|Q(ey, +2¢5)) + perac

and, thanks to (3.7), we deduce
d Vo 2 2
aﬁAc(um, bm) + pLac(Um, Pm) + ;H’U/H +2|pz-
2
< —(wm:gm) + alQ(es, +2¢5)) + persc- (3.33)

Thus, if we fix a time T > 7 and take A € C°((7,T); Ry), from (3.33) we infer
T T
[ Lac(n() on@N G5 + pac [ Lac(un () om()A()ds

+ /TT (%||um(s)||2 + 2|Mm(8)|2L2>A(s)ds

< /T (%(gm(s)a um(s)) + alQf(cyp, +2¢F) + pAchAc)A(s)ds. (3.34)

Observe now that (3.25) and (3.29) imply

H(’U«m, ¢m)||L2([T,T];YK) - ”(ua ¢)||L2([T,T];YK)' (3'35)

Hence, up to subsequences, we also have |[(wn,(s), om(s))||x — |[(u(s), d(s))||x as m — +oo,
almost everywhere in [7, 7.
On the other hand, on account of (1.14), we have that

T
[ U G (s)) = Py (651, Ve s
< Qy (|9l Lo (fr, 1), () (T = T)|Dm — Dl 11:L2(02)) (3.36)

for some nonnegative increasing continuous function ). Then, up to subsequences, we infer
that (see (3.29)) (Fy(¢m), 1)z — (Fy(4),1) e strongly in L2([7,7T]) and almost everywhere

n [7,7]. On the other hand, for any functions A € C°((7,T);Ry), it is not difficult to see,
from (3.21), that Lac(um(s), dm(s))A'(s) attains its supremum on [, T]. Thus, the Lebesgue
dominated convergence theorem implies that (see (2.6))

/ Lac(tm(s), dm(s)) A (s)ds — / Lac(uls), ()N (s)ds, asm — +oo.  (3.37)
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Moreover, we have (see (3.23))

umA? > uA?,  weakly in L*([r,T); V),

umA% — MA%, weakly in L*([7, T]; L*(Q2)).

Hence, we deduce, for all t € (7, T],

[ Tu[PAGs)ds < tmint [ (9)]*AGs)ds, (3.39)
[ A ds < timint [ (932 ()0 (3.39)

Therefore, we can pass to the limit in (3.34) thanks to (3.37)—(3.39), and inequality (3.10)
follows.
It remains to prove (3.11) (i.e., K = CH). Recalling (3.18), we deduce

d
&ﬁCH (um (t)a ¢m (t)) + p'CCH (um (t)v ¢m (t)) < A?n (t)v (340)
where p = pog is given by (3.8) and
—l[m|® + plem|* = 20/ M($m) VI 12

+ 2C(ﬁm75m)ll2 - 8(2< - p)|v$m|%2
+ 204[/)(F(¢m) - f((bm)ama 1)L2 - (C - p)(f(¢m)$m7 1)L2]

2
+ —(m, Gin) + PMom + peroy (3.41)

2V0

A2, =

where
am(t) = () — Mo, m, T (t) = i (t) — (m (b))
with
MO,m = <¢O,m>ﬂ~

Observe that |My | < M and (¢,,(t))a = (F,,(t))a = 0 for all ¢ € [, T].
Using (3.5), (3.6), (3.9) and recalling (1.15), from (3.41), we infer

2u, ~
A2, < —(=2 = pC8) 2 = (2mo — (CBe™) [V, 2
= &(¢ ~ p = 20p¢;Ce )|V, 3 — al¢ — IF ()]s

2
+ (U, gn) + 20p¢7 | + (€ = p)ear | + peroy - (3.42)
Let us now choose ¢ = 66’52m0 and recall (3.8) so that from (3.40) and (3.42), we obtain

d v
i Lon (m bm) + pLen (W bm) + 2t 2 4 110| V1

2 ~—
< (i, g,0) + 2000710 + a(eCo* = p)eas || + percs- (3.43)
0

Arguing as in the previous case K = AC, from (3.43) we infer (3.11).

Following [19], we define the trajectory space for Pg.
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Definition 3.1 The trajectory space TR(g, K) for a given g € L2 (R4 ;V*) consists of all

loc
the pairs (u, @) satisfying (2.10)~(2.15) and either (3.10), if K = AC, or (3.11), if K = CH, on
any time interval [7,T] C Ry. Similarly, we can define TR(g, K) for a given g € L2 _(R; V*),
by letting [1,T] CR .

The following result is a direct consequence of Theorem 3.1.

Corollary 3.1 Let (1.14) hold and let g € L2 _(R4;V*). Then, for any (ug, o) € Yk there

loc

exists a trajectory (u,¢) € TR(g, K) such that w(0) = ug and ¢(0) = ¢y.

Moreover, arguing as in [19, Chapter XV, Corollary 1.5], we obtain an inequality which is
equivalent to (3.10)—(3.11), namely,

Corollary 3.2 Suppose that [ satisfies (1.14) and let g € L (R4;V*). Any (u,¢) €
TR(g, K) is such that

L (u(t), ¢(t)) = L (u(7), 6(T))

4 / (o Lxculs), 6()) + “2uls) |2 + o Lic (u(s)) ) ds

<2 [ g(s),uts)ds + Ol - 1) (3.44)

K
for almost all t,7 € Ry witht > 1. Here coc =2 and ocg = 1.
Similarly, we also get the following results (see [19, Chapter XV, Corollary 1.6]).

Corollary 3.3 Suppose that f satisfies (1.14) and let g € LE (Ry;V*). Any (u, ) €
TR(g, K) is such that

Cac(u(t), (1)) — Lxc(u(r), 6(r)) + pic / Cic(u(s), ¢(s))ds

# [ (B + oxcLacu(s)) s

b4k
< -
< [ 3Fiat)

for almost all t, 7 € Ry witht > 7.

Feds + O (t — 1) (3.45)

Remark 3.1 Inequality (3.45) holds for any ¢ > 7. Indeed, define the function (see [19,
Theorem I1.1.7])

6(0) 1= L), 0(0) + | (o Lrc(u(t). 6(0) + L) + ox L () ) ds

_ / (9(s), u(s))ds — O,

K

and note that G is lower semicontinuous, since (u,®) € Cy,([0,T]; Yi) for all T > 0 implies
that ¢ — ||(u(t), ¢(t))||x is lower semicontinuous. The other summands are continuous (see
also (2.6)).

Let us recall, for the reader’s convenience, a weak formulation of Gronwall’s inequality taken
from [19, Chapter XV, Lemma 1.2].
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Proposition 3.1 Let y,a € L{ (Ry) and suppose that the following inequality holds:

_ /0 y(s)N (s)ds + 1 /O y(s)A(s)ds < /O a(s)A(s)ds (3.46)

for any A € C°(R4;Ry) and for some nn € R. Then

y(t)e™ < y(r)e'” —l—/ a(s)eds (3.47)

for almost all t,7 € Ry such that t > 1.

In order to establish the existence of the trajectory attractor, the following uniform estimate
plays an essential role.

Proposition 3.2 Suppose that f satisfies (1.14) and let g € L (Ry;V*). If (u,¢) €
TR(g, K), then the following estimate holds:

t

Crc(ult), 90 = Lic(ulr). 6™ + [ (52 [uls)] + ou Lic(u(s)) e“ds

< [ (21g00 T

for almost allt, 7 € Ry \ Qu,¢, t > T, where Qu.¢ has zero Lebesgue measure.

2.+ ®K>epKSds (3.48)

The proof follows from estimates (3.10)—(3.11) and Proposition 3.1.

Remark 3.2 In order to prove estimate (3.48), we have employed both assumptions of
(1.14). However, the first assumption of (1.14 ) can be replaced by a weaker one. Indeed, we
can only assume that f € C(R;R) satisfies, for any y € R, the following inequalities

|F(y)] <2f(y)(y — Ax) + c1.x,
Fy) — f( )y —Ak) < corx(y—Ax)* + es k.,
[f(y)| < cax(1+|yl*),

where ¢; i, 1 = 1,---,4, are nonnegative constants and Aagc = 0 or A\cg = M. Note that, in
the case K = CH, we can no longer recovery the regularity ¢ € L _(R; H3(Q)) (see (2.12)).
Indeed, we cannot have f(¢) € H(€) so that from (2.14) we cannot deduce the H3-regularity

of ¢(t).

We conclude this section with a basic dissipative estimate which holds under an additional
assumption on g. Let us recall the definition of the Banach space of translation-bounded
functions in Li, (R4; X), X being a real Banach space and p > 1, i.e.,

T+1
LERes X) = {9 € LReiX) & olpqm, 0= 500 [ l(o)fids < 4o} (349)

TERL

For any g € L(R; V*) and any given p > 0, we set

h
Bla) = s sup(p [ lglt+ o) erds
hel1,2] t>0 0 e

- 1), (3.50)
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and it is easy to show that (see [19, Chapter V])

2p
2 2
o 119w vy < Bo(9) < 7 llgllzzm, v (3.51)

We can now prove the following proposition.

Proposition 3.3 If f satisfies (1.14) and g € L}(Ry;V*), then any (u,$) € TR(g, K)
satisfies the estimate

Lic(ult), o)~ Lic(ulr). 6" + [ (F2[ul)] + oueLic(u(s)))e“ds

4
< (5B (9) + Ok ) (@ = o7) (3.52)

for almost allt, 7 € Ry \ Qu,¢, t +1> 7, where Qu,o has zero Lebesgue measure.

Proof To get (3.52), we need to estimate the last term on the right hand side of (3.48).

Let t,7 € Ry such that ¢ > 74 1. Take an integer m € N such that h := € [1,2] and define
tj=1+jh,j=0,1,--- ,m—1. A simple calculation yields the followmg inequality:
bk prcs be
i (V_OHQ(S)W*"‘@K)G ds = Z —Hg ||V*+@K)e ds
4H t T
< [1/ B,(g )"'@KPK} LePrt — ePKT),
0

and (3.52) follows from (3.48).

4 Trajectory Attractors

In order to define the dynamical system, we need to introduce first the appropriate functional
framework following [19] (see also [18]).
Let us consider the space

Zy([r,T] := {(v,9) € L=([r,T); Yg) N L*([7,T); V x D(Ay)) :
v € L3([r, T;V*), oy € L2([r, T); (H(2))")
and o € L*([r,T); H}(Q)) if K = CH} (4.1)

for any fixed T > 7 > 0, endowed with the following norm:

||(U7¢)||22K[T,T] = ||(’U w)”%‘”( [7,T);Y k) + H(vaw)H%Q([T,T];VXD(Al))

+ H&t””2 v T 10011 2 r7s 1 020y + SR NN T2 70 99

where d4c = 0 and dcy = 1. It is easy to see that Zx[r,T] is Banach space. Moreover, we
also introduce the Banach space Z;' i defined by

Zh e ={(v,9) € L®(Ry; Yi) N LE(R 15V x D(Ay)) :

O € L (Ry;V*), 9 € LRy (H'(Q))")
and ¢ € L(Ry; H3(Q)) if K = CH}, (4.2)
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and the function space Zﬁo'q i defined as follows
Zio i = A{(0,9) € L (Ry; Yie) N Lo (R V x D(A1)) -
O € L (Ry; V), 0 € L2 (R ; (H(Q))

loc loc

and ¥ € L} (Ry; H3(Q)) if K =CH}. (4.3)

loc

This space Zl‘gc’ x 1s the inductive limit of the topological spaces {Zx[0,T]} 70 defined here
below (see [19, Chapter XII, Definition 1.3]).

Definition 4.1 We denote by Zx[0,T] the space Zk[0,T] endowed with the convergence
topology: a sequence (vy,,) € Zx[0,T] converge to (v,v) if and only if (v, ¥n) — (Vn,Yn)
s-weakly in ([0, T); Yi) and weakly in L2([0,T]; Vx D(Ay)), v, — dyv weakly in L3 (0, T);
V*), Oupn — O weakly in L2([0,T]; (HY(Q))*), and, if K = CH, %, — v weakly in
L*([0,T); H3(Q)).

We recall that ngc’ i is a Hausdorff and Fréchet-Urysohn space with a countable topology
base (see [19, Chapter XII]).

Observe now that a function g, € LZ(R;;V*) if and only if is translation-compact in
(Ry;V*) (see [19, Chapter V, Proposition 4.1]). Thus, if we consider the translation

semigroup

L%u,loc
(T(t)go)(s) = go(s + 1),
and we define the following hulls of g, as

L, (Ry V™) (R4 3V)

H*(go) = {T(t)go.t > 0} . Hi(gy) = Wﬁ“% 7

it turns out that H* (g,) = H,(g,). Moreover, we have that H;,(g,) is metrizable and complete
and T(t)H (go) = Hi (gy), for all t > 0, with attractor w(H,(g,)) (see [19, Chapter V, Lemma
4.1 and Proposition 4.2]).

Remark 4.1 If g, is periodic, quasi-periodic or almost periodic, then g, is translation-
compact in the space L (Ri;V*) (see [19, Chapter V]).

Recalling Definition 3.1, from Corollary 3.1 and Proposition 3.3, we deduce the following
proposition.

Proposition 4.1 Suppose that f satisfies (1.14) and assume g, € L?(R4;V*). Then
TR(9,K)C 2 C 2}, Vg EH(g) (4.4)

We can now define the trajectory dynamical system. Indeed, let us consider the family of
trajectory spaces

{TR(9.K) | g €H (90},
where g, € L?(R;V*) is fixed. Then set
Trrgy(K) = |J TR(g.K).
geH(gy)

This is a topological space endowed with the topology of Zﬁo'q - However, in order to prove that
it is closed in Zﬁo'q » We must require more on the symbol g,. Indeed, we have the following
lemma.
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Lemma 4.1 Suppose that f satisfies (1.14) and let g, be translation-compact either in
(Ry;H) or in LY (R4 ;V*). Then Tp+(qg,)(K) C Z;K is closed in ngC’K.

loc

L2

w,loc

The proof goes essentially as in [18, Proposition 8.3].
We now define the translation semigroup {Tx(t),t > 0} acting on Zngc, 5 by the formula

Tr(t)(u(-),¢(-)) = (u(t + -),0(t +-)), =0, (4.5)

where the pair on the right-hand side is a solution with symbol T(t)g,.
Arguing as in [19, Propsositions 1.1 and 1.3], we can prove the following theorem.

Theorem 4.1 Let the assumptions of Proposition 4.1 hold. Then {Tk(t)} is continuous in
the topological space Zﬂ;c’ x and

Tx (£)(Tr+ (gy) (K)) € Trg(g,) (K), VE=0.

We recall the definition of trajectory attractor in our case (see [19, Chapter XII, Definition
2.2)).

Definition 4.2 The trajectory attractor of the semigroup {Tk(t),t > 0} on Ty+(g,)(K) is
a set Ayt (g,)(K) C Ty (g,)(K) such that:

(1) Agpgt(g,) (K) is compact in Ty+ (g y(K);

(il) Ay (g, (K) is strictly invariant, that is,

T i () Ar+(go) (K) = Apgr(gy) (K), VI >0; (4.6)

(iil) Ape+(g,)(K) is a uniformly attracting set for the semigroup {Tk(t),t > 0}, that is, for
every neighborhood O = O( Ayt (g,)(K)) in the topology of Tr+ (g,)(K), there exists t+ > 0 such
that

Tic () (To+ (g,)(K)) € O, Vit > t+. (4.7)

On account of Definition 3.1, observe that we can also define the spaces Zi[r,T] on a
given bounded interval [7,7] C R and then introduce Zj x and Zjoc g taking R in place of
R.. Let us indicate by G(g,) the set of all complete symbols in H,} (g,), that is, the functions
f € L (R;V*) such that f,(s) =Ly f(t+s), s > 0, belongs to H.!(g,) for all t € R. We can
now give the following definition (see [18, Section 4]).

Definition 4.3 For any given f € G(g,), the kernel Kg 5 of system (2.13)-(2.15), with f
in place of g, consists of all solutions to Pk on R which satisfy either (3.10), if K = AC, or
(3.11), if K = CH, on any time interval [7,T] C R, and that are bounded in Zp f .

We are finally ready to state the main result of this paper.

Theorem 4.2 Suppose that [ satisfies (1.14) and let g, be translation-compact either in
(Ry;H) or in L?

qu’loc R V). Then the translation semigroup {Tk (), t > 0} acting on
Tri+ (g (K) admits a uniform (with respect to g € H*(gy)) trajectory attractor A+ (g, )(K)
that satisfies properties (i)—(ili) of Definition 4.2. The set Ayg+(g,)(K) is bounded in Z;,'K and

compact in Zl'gc - Moreover, we have

s (g0) (K) = Aurr (g0 (K) = T Kk (g = Ty | Koy
feG(gy)
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The proof of Theorem 4.2 is based on the following lemma.
Lemma 4.2 Suppose that [ satisfies (1.14) and let g, € Li(Ry;V*). Then, there exists
Ry > 0, depending only on vy, 11, Kk, €, a, ||, and ||g||L§(R+;V*), such that

1Tk (8)(w, D)%y < Qe (ll(w, D) Toe o.115v,)) < + Ric, VE=1, (4.8)

for any g € H'(g,) and any trajectory (u,¢) € TR(g, K). Here Qk is a monotone, positive
non-decreasing function that is independent of time and (u, ¢).

Proof Using estimate (3.52) and recalling (3.1)—(3.2), we deduce

HTK(t)(uv(b)||2L°°(R+;YK)
< (1w, )T oo 0, 17:7,6) + 201 Fic (D) oo (0,13:L1 0y + i JePX°

8K 9

Here we have also used (3.51) and the fact that 3,(g) < 8,(g,) for all g € H*(g) (see [19,
Chapter XV, Remark 1.3]). Integrating (3.52) from ¢ to ¢ + 1 and using (4.9), we deduce, for
all ¢t > 1,

t+1
/t (5olu(s)l? + onLic((s)) ) ds < Quc(l(ut, 8) [Fw o )" + Rie- - (4.10)

Here Qi stands for a monotone, positive non-decreasing function that is independent of time
and (u,¢), while Rx denotes a positive constant depending on vy, 11, K, &, a, ||, and
gl z2®. ;v+)- Both Qk(-) and Rk may vary from line to line in the course of this proof.

For estimating the remaining norms (see (4.2)) we have to consider the cases K = AC and
K = CH separately. In the former one, recalling (1.14) and (3.19) and using (4.9)-(4.10), from
(2.14), we deduce that

t+1 t+1
/t A1 $(8)2ads < &2 / [14(5) 22 + 02(1 + |6(5)[%0)]ds
< Qac([[(w, &) [T o, 1157,y Je 4" + Rac (4.11)

for all t > 1. In the case K = C'H, we have to control the chemical potential p in L?([t,t +
1;H(£2)). Recalling (3.19), it suffices to estimate the spatial average of p. From (2.14), we
deduce (see (1.14))

t+1 t+1
/t (u(s))3ds < ¢ / (14 [6(s)[%0)ds

for all ¢ > 1. The above inequality, together with (1.15) and estimates (4.10)—(4.11), yields

t+1
/ [1(8) 71 ds < Qem ([[(w, D)7 0,13:7,))¢ """ + Ren (4.12)
t

for all ¢ > 1. Taking advantage of estimate (4.12), it is not difficult to show first an estimate
similar to (4.11). Then, using well-known elliptic regularity results, we infer

t+1
|6(8)|Frads < Qo ([[(w, §) oo (10, 1):3,0) )€ + Romr (4.13)
; ([0,1;Y k)



Trajectory Attractors for Binary Miztures in 3D 673

Using well-known inequalities to estimate Bo(u,u) and Ro(A1¢,¢) in V* (see (2.7)), and ex-
ploiting the above estimates, it is easy to show that

1Ro(A1d, O 4 1y gy T IB0(s @ g ey 1B D)2t 0750 (@)
< Qi ([l(w, )T (o, 1;vi0))e <" + R, Vi1 (4.14)

Then, by comparison in equations (2.13) and (2.15), thanks to (4.11) and (4.13), we get

[Orull 4 - +||at¢||L2([t,t+1];(H1(Q))*)§QK(”(uv¢)||2L°°([0,1];YK)eipt)+RK~ (4.15)
L3 ([t t+1];V*)

Collecting estimates (4.9)—(4.11), (4.13), (4.15), we obtain (4.8). The lemma is proven.

Proof of Theorem 4.2 On account of (4.8), we consider, for instance, the set
Br(Z ) = {(0.6) € 23 N T g (K) : | (0,0) 5, < 2Ric), (4.16)

which is bounded and absorbing for the semigroup {Tx(¢), ¢ > 0} in the space Z;f - This set
is precompact and also closed by Lemma 4.1. Moreover, it is metrizable in ZlJc:c, x (see, eg.,
[19, Chapter XI, Theorem 1.7]). The proof thus follows from [19, Chapter XIV, Theorem 2.1].

Due to compactness arguments, the trajectory attractor attracts the bounded subsets of
Z;r ¢ in some strong topologies. Indeed, Theorem 4.2 implies the following corollary.

Corollary 4.1 Let the assumptions of Theorem 4.2 hold. For any Bg C TH+(QO)(K),
bounded in ZJK, for every T > 0 and each 6 € (0,1], we have

S diStc([o,T] ;w*% x H1=3(92)) (T () Brcitor1, Ares (g (B jo.r1) = 0. (4.17)
tli?oo dis th([O TIW' 2" x H2— 6)(TAC(t)BAC|[0vT]7AH*(QO)(AC)HO,T]) =0, (4.18)
IS o5 apa-s) (T O Bemo ), A g (CH)jo.m) = 0, (4.19)

where Wk = (W=F)* for k <0 and W* := H*(Q) N H for s > 0.
Let us now define, for any Bx € T+ (q4,)(K), the sections
By (t) = {(v(t), v() | (v,9) € Bx} C W2 x H'™(Q), ¢ >0.
Similarly, if we set

(0(), (1)) | (v,9) € Ay (g ()} C W3 x HITH(Q), £ >0,
(1), () | (v,9) €Kiy} CW 2 x HIO(Q),  teR,

At (gg) (K) () =

KK,G(go)(t) =

then a further consequence of Theorem 4.2 is as follows (see [19, Chapter XIV, Theorem 2.2,
Definition 2.6, Corollary 2.2]).

Corollary 4.2 Let the assumptions of Theorem 4.2 hold. Then the bounded set
Ag(K) = Ay (g,)(K)(0) = Kk G(g,) C Y&

is the uniform (with respect to g € H*(g,)) global attractor in W2 x H'7(Q), 6 € (0,1], of
the trajectory space Tyt (g,)(K), that is,
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(1) Ag(K) is compact in W=3 x H'=3(€);
(IT) Ay (K) satisfies the attracting property

tligloo distw,% XHI*&(Q)(BK@); Ag(K)) =0

for any bounded set Bx C Tyt (g,)(K);
(IIT) Ay (K) is the minimal set satisfying (I) and (II).

Remark 4.2 Theorem 4.2 and its corollaries also hold in the case g, € LZ(Ry; V*), provided
that a different definition of solution is adopted. This new definition is based on inequality (3.52)
instead of (3.10) or (3.11) (see [18, Definition 8.4]). We recall that, by using Definition 3.1, it
is not possible to prove Lemma 4.1 in the sole assumption g, € Lﬁ (Ry; V).

We end this section with some additional remarks on the nature of external forces g = g(t, x)
acting on the binary fluid mixture. Suppose that they have the form

gO(tvx) = g+(£L') + gl(tvx)v (420)

when g, € H does not depend on ¢ and g, satisfies the following condition:

(T(h)go)(s) = g1(s+h) — 0, ash— +oo, (4.21)
strongly in Lj, (Ry; V*) or weakly in L2 | .(Ry;H). Tt is not difficult to check that, in the first
case, g is either translation-compact in L12OC (R4;V*) or in Li’IOC(R+; H). Thus assumptions of

Theorem 4.2 on the external forces are satisfied and we can prove the following theorem.

Theorem 4.3 Suppose that f satisfies (1.14) and let (4.20)—(4.21) hold. Then the trajectory
attractor coincides with the attractor of the corresponding autonomous system (i.e., the one
obtained by replacing g, with g ). More precisely, we have

A+ (gg) (K) = Ag, (K). (4.22)

The existence of the attractors follows from Theorem 4.2, whereas (4.22) is a consequence
of [19, Chapter XVII, Theorem 1.1].
Let us report a couple of examples of perturbations terms g, that satisfy condition (4.21).

Example 4.1 Let

g1(t,z) = o (2)0(t), (4.23)
where ¢, € V* and
~ sin(¢?)
O=Tre

Then g, satisfies (4.21) in the strong topology of L2 (R4 ;V*).
Example 4.2 Let the function g; have the form (4.23) with ¢, € H and
6(t) = sin(t?).

It is known that g, (t + h) — 0 as h — +oo in the weak topology of L?([t,t + 1];H), for every
t € R,. Hence g, satisfies (4.21) in the weak topology of L2 | (R ;H).

w,loc
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Remark 4.3 Theorem 4.2 clearly applies to the 2D case which was analyzed in [32, 31] with
a time-independent external force. In the 2D case, thanks to uniqueness, the trajectories can be
described through a family of processes {Ug, i (t, 7)} acting on the phase-space Y, with symbol
g in the hull of some given go € L7(Ry;V*) (see [49, 50] for possible generalizations). In this
case, the uniform global attractor Ay (K) is compact in Yx and, supposing go quasiperiodic
with respect to time, one should also prove that Ay (K) has finite fractal dimension. With
such a symbol, the existence of exponential attractors can also be proven (see [27] for 2D
incompressible Navier-Stokes equations). Thus Theorem 4.2 allows us to generalize some of the
results contained in [32, 31] to nonautonomous external forces.

Finally, suppose that f satisfies (1.14). If g, is translation-compact in L2 , (R, ;H), then,

w,loc
setting g ,, = Fo,mgo, we have that g ., is also translation-compact in LZ}’IOC(R_F;H). Thus,
following [19, Chapter XVT], the Galerkin approximation problems P% (see (3.13)—(3.16)) can
be shown to have the uniform trajectory attractor AH*(go,m) (K) which is bounded in Z;K and
compact in ngg - Consequently, arguing as in the proof of [19, Chapter XVI, Theorem 3.1],

it is possible to prove

Theorem 4.4 For any neighborhood O of the trajectory attractor Ay g )(K) in ZngC’K,
there exists mo = mo(O) € N such that

AH+(90,m,)(K) cO, Ym>my.

In addition, for every T >0 and ¢ € (0, 1], we have

i it o sy (AT a0, B0 At (g,) (B 10,71) = 0,
mEIEw diStLQ([O’T] ;Wl;zé XH2—5) (AH+(QO,7,L) (AC)HOrT] ? AH+(QO) (AC)HOrT]) = 0’
ml_l)r_l‘rloo diStL2([0’T];W% XH:}—S) (AH+ (go,m) (CH)HOvT] ? AH+(QO) (CH)HOvT]) =0.

We conclude with a related result for the (uniform) global attractor (see [19, Chapter X VI,
Corollary 2.1]).

Corollary 4.3 Setting (see Corollary 4.2)

ol (K) := Ayer g, ) (K)(0),
we have, for all § € (0,1],

Gim dist, e o (AR, Ag(K)) = 0.
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