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Abstract Two different models for the evolution of incompressible binary fluid mixtures
in a three-dimensional bounded domain are considered. They consist of the 3D incompress-
ible Navier-Stokes equations, subject to time-dependent external forces and coupled with
either a convective Allen-Cahn or Cahn-Hilliard equation. Such systems can be viewed as
generalizations of the Navier-Stokes equations to two-phase fluids. Using the trajectory
approach, the authors prove the existence of the trajectory attractor for both systems.
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1 Introduction

Modelling the behavior of binary fluid mixtures can be rather challenging (see, e.g., [57]). A
possible approach is based on the so-called diffuse-interface method (see [5, 14, 53] and references
therein). This method consists in introducing an order parameter, accounting for the presence
of two species, whose dynamics interacts with the fluid velocity. For incompressible fluids a well-
known model, known as Cahn-Hilliard fluid, consists of the classical Navier-Stokes equations
suitably coupled with a convective Cahn-Hilliard equation (see [33, 34], also [6, 17, 37, 42, 48,
54, 61] and references therein). In related contexts there have also been considered models
in which the Cahn-Hilliard equation is replaced by the (convective) Allen-Cahn equation (see,
e.g., [9, 25, 26, 29, 63, 67]) or, in the case of liquid crystals, by the convective Ginzburg-Landau
equation (see [43], also [22, 23, 44, 47] and references therein). Denoting by u = (u1, u2, u3) the
velocity field and by φ the order parameter, the Cahn-Hiliard-Navier-Stokes and the Allen-Cahn-
Navier-Stokes systems can be written in a unified form. Indeed, if we assume that the density
is constant and equal to one, the kinematic viscosity ν(φ) > 0 and temperature differences are
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negligible, we have

∂tu + u · ∇u − div(ν(φ)Du) + ∇p = κμ∇φ+ g, (1.1)

div u = 0, (1.2)

∂tφ+ u · ∇φ+AK(φ)μ = 0, (1.3)

μ = −εΔφ+ αf(φ), (1.4)

in Ω × (0,+∞), where Ω is a bounded domain in R3 with a sufficiently smooth boundary Γ,
Du = ∇u+∇uT

2 is the deformation tensor, g = g(t) is an external body force and κ > 0 is a
capillarity (stress) coefficient. Moreover, the operator AK has a twofold definition according to
the case K = CH (Cahn-Hilliard fluid) or K = AC (Allen-Cahn fluid), namely,

ACH(φ)μ = −div(M(φ)∇μ), AAC(φ)μ = μ,

where M(φ) > 0 is the mobility of the mixture. The so-called chemical potential μ is obtained
as a variational derivative of the following free energy functional

F(φ) =
∫

Ω

(ε
2
|∇φ|2 + αF (φ)

)
dx. (1.5)

Here F (r) =
∫ r

0
f(y)dy, r ∈ R, and ε, α are two positive parameters describing the interaction

between the two phases. In particular, we recall that ε is related with the thickness of the
interface separating the two fluids. It is thus reasonable to assume from now on that ε ≤ α

(since, in practice, α is always of the order of 1
ε ). This restriction is only needed in the case

K = AC (see [32]). The potential F is a double-well logarithmic-type function defined on a
bounded interval (see [15]). In this case, F is usually named singular (or nonsmooth) potential.
However, F is often replaced by a polynomial approximation of the type, e.g., F (r) = c1r

4−c2r2,
where c1 and c2 are given positive constants. We also note that (1.1) can be equivalently
rewritten in the following form:

∂tu + u · ∇u − div(ν(φ)Du) + ∇p̃ = −κdiv(∇φ ⊗∇φ) + g, (1.6)

with p̃ = p− κ( ε
2 |∇φ|2 + αF (φ)), on account of (see, e.g., [1])

κμ∇φ = κ∇
(ε

2
|∇φ|2 + αF (φ)

)
− κdiv(∇φ⊗∇φ). (1.7)

The stress tensor κdiv(∇φ⊗∇φ) (also named Korteweg force) is considered the main contribu-
tion in (1.7) modelling capillary forces due to surface tension at the interface between the two
phases of the fluid. However, we prefer to using equation (1.1) instead of (1.6), since energy
estimates can be obtained more conveniently (see, e.g., Theorem 3.1).

Systems like (1.1)–(1.4) in the case K = CH have been investigated in a number of papers
(see, for instance, [12, 13, 36, 39, 41, 46] ). However, confining ourselves to the most theoretical
aspects (i.e., well-posedness, regularity, asymptotic behavior), to the best of our knowledge
the first results can be found in [62], where the 2D case with smooth potential and constant
viscosity and mobility was analyzed on the whole R2. A more refined analysis for bounded
domains which includes the 3D case is contained in [10] (see also [11] for the nonhomogeneous
case). In that contribution both singular and smooth potentials were considered as well as
concentration dependent viscosity and nonconstant degenerate mobility (i.e., M(±1) = 0). We
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recall that this assumption forces φ to take values in a given bounded interval (i.e., the domain of
F ). More recently, singular potentials without nonconstant mobility and viscosity depending on
φ have been considered in [1]. In this case the analysis requires nontrivial arguments, especially
to establish some regularity properties of weak solutions. Non-Newtonian Cahn-Hilliard fluids
were examined in [21, 40], while the compressible case has been recently carefully studied in [3].
All these contributions are mainly concerned with existence, uniqueness and regularity issues
(see also [4] for the asymptotic limit as ε goes to 0, with α = ε−1 and κ = ε). Regarding the
longtime behavior, results about the stability of some stationary solutions were given in [2, 10],
while a theorem about the convergence to single equilibria was proven in [1] via �Lojasiewicz-
Simon approach. More recently, the 2D case on bounded domains with smooth potentials
and constant viscosity has been investigated in [31] within the theory of dissipative dynamical
systems. In particular, existence of global and exponential attractors have been established and
an estimate of the fractal dimension of the global attractor in terms of ν, ε and α has been
obtained. It has also been proven the convergence to single stationary solutions along with
an explicit rate estimate (see also [68] for further results). The existence of a strong global
attractor A for the above system in 2D has also been established in [2] for a singular potential,
but no further properties of A have been demonstrated: for instance, the finite dimensionality.

Similar results have been proven in [32] for K = AC always in two-dimensional bounded
domains (see [35, 60, 66] for related results on nematic liquid crystal dynamics). Existence of a
weak solution for compressible Allen-Cahn-Navier-Stokes systems has been recently proven in
[28].

This paper is devoted to the analysis of the global dynamics of solutions to system (1.1)–
(1.4) in the 3D case and, in contrast with most of the quoted papers, here we allow the presence
of a time-dependent external nongradient force (see, e.g., [8] for its role in coarsening processes).
The existence of a weak global attractor in the three dimensional case for K = CH with g = 0
was firstly established in [2] for singular potentials, following the approach developed in [20].
Here we follow a different strategy which allows us to say more on the global longterm dynamics
under rather general conditions (e.g., on the body force g).

The choice of the notion of attractor we are looking for is indeed essential, due the lack of
uniqueness. In the classical theory of dissipative systems, it is usually required that the solution
operator, which maps the initial condition to the solution, be well defined and continuous in a
proper phase space. This theory has been successfully applied to many nonlinear differential
equation of mathematical physics (see, for instance, [55, 59, 64] and references therein). On
the other hand, concerning ill-posed problems, there exist basically two approaches to handle
dissipative systems without uniqueness (see, however, [24] for a method inspired by nonstandard
analysis). The first one allows the solution operator to be multi-valued and, accordingly, extends
the theory of global attractors to the case of semigroups of multi-valued maps (see [16, 51, 52],
while for 3D incompressible Navier-Stokes, see [7, 20, 38, 56] and references therein). The second
is a more geometric approach which consists in taking as phase space the so-called trajectory
space and the translation semigroup acting on them. This operator is single-valued so that
the usual theory of attractors can be adapted (see [18, 19], also [30] and the pioneering [58]).
We intend to apply this approach which seems more effective in presence of time-dependent
body forces. It is also worth mentioning that, compared to the Navier-Stokes equation, the
main technical difficulty of the paper is finding suitable dissipative estimates for the Leray-
Hopf solutions of (1.1)–(1.4) subject to the boundary and initial conditions detailed below (see
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Proposition 3.2 and Lemma 4.2), which requires employing different arguments when K = AC

and K = CH .
System (1.1)–(1.4) is subject to given initial conditions

u|t=τ = u0, φ|t=τ = φ0, in Ω, (1.8)

for a fixed τ ≥ 0.
As far as boundary conditions are concerned, for the velocity field we assume no-slip bound-

ary conditions

u = 0, on Γ × (τ,+∞), (1.9)

while for φ we choose no-flux boundary conditions, namely,

∂nφ = 0, on Γ × (τ,+∞), (1.10)

if K = AC, and

∂nφ = ∂nΔφ = 0, on Γ × (τ,+∞), (1.11)

in the case K = CH . However, the validity of our results can also be proven when other types
of boundary conditions are imposed (see, for instance, [10]).

Noting that in the case K = CH , we have

∂nμ = 0, on Γ × (τ,+∞).

So that, setting,

〈φ(t)〉Ω =
1
|Ω|

∫
Ω

φ(t)dx, (1.12)

where |Ω| is the Lebesgue measure of Ω, we have the mass conservation,

〈φ(t)〉Ω = 〈φ0〉Ω, ∀ t ≥ τ. (1.13)

Concerning the nonlinearity, we suppose that f ∈ C1(R; R) satisfies⎧⎨⎩ lim inf
|y|→+∞

f ′(y) > 0,

|f(y)| ≤ cf (1 + |y|3), ∀y ∈ R,
(1.14)

where cf is some positive constant. Note that the derivative f of the typical double-well
potential F satisfies both assumptions (1.14). We also assume that both the viscosity and
mobility functions ν, M belong to C1(R,R+) and satisfy

ν1 ≥ ν(s) ≥ ν0 > 0, m1 ≥ M(s) ≥ m0 > 0, ∀ s ∈ R. (1.15)

The plan of the paper goes as follows. In Section 2, we introduce the functional setup and
the class of Leray-Hopf solutions for problems (1.1)–(1.4), (1.9), (1.10) (if K = AC) or (1.11)
(if K = CH) and (1.8). In Section 3, we prove the existence of weak solutions and define the
corresponding trajectory space. Section 4, is devoted to establish the existence of the trajectory
attractor for our problems.
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2 Functional Setup and Leray-Hopf Solutions

The main goal of this section is to introduce the class of weak solutions which we use to
define the trajectory dynamical systems in both the cases K = AC and K = CH . This is a
natural generalization of the well-known notion of Leray-Hopf solution (see, e.g., [59, Chapter
6]).

First we need to fix some notation. If X is a (real) Hilbert space with inner product ( · , · )X ,

the induced norm will be denoted by | · |X and X∗ will be the dual space. Moreover, we set
X = X3 endowed with the product structure. Let us now introduce the classical functional
spaces related to Navier-Stokes equations (see, for instance, [65])

H = {u ∈ C∞
0 (Ω) : div u = 0, in Ω}L

2(Ω)
,

V = {u ∈ C∞
0 (Ω) : div u = 0, in Ω}H

1(Ω)
.

The canonical scalar product of the Hilbert space H is denoted by ( · , · ) and | · | is the induced
norm. Moreover, the scalar product and the related norm in the Hilbert space V are defined by

((u,v)) =
3∑

i=1

(∂xiu, ∂xiv), ‖u‖ = ((u,u))
1
2 .

We recall that the norm in V is equivalent to the standard H1(Ω)-norm, due to the Poincaré
inequality

|v| ≤ CΩ‖v‖, ∀v ∈ V (2.1)

and, because of Korn’s inequality, V can also be normed by |Dv|. As usual, we identify H

with its dual so that we will have the Hilbert triplet V ↪→ H ≡ H∗ ↪→ V∗. The duality pairing
between V∗ and V are indicated by 〈 · , · 〉. Then we introduce the positive (monotone) operator
A0(φ) by the formula

A0(φ) : D(A0(φ)) → H, A0(φ)u = −Pdiv(ν(φ)Du), (2.2)

where D(A0(φ)) = {u ∈ H2(Ω) ∩ V : A0(φ) ∈ H} and P is the Leray-Helmholtz projector in
L2(Ω) on H (and its extensions). Note that A0(φ) is also symmetric and invertible on H, as it
can be easily seen from the following standard calculation:

(A0(φ)u,v) = (ν(φ)Du, Dv) = (u, A0(φ)v), ∀u,v ∈ D(A0(φ)). (2.3)

Moreover, |A0(φ)|L(V;V∗) ≤ C, for some positive constant C that depends only on ν1.
To give a rigorous and unified formulation of the order parameter equations, we define first

the self-adjoint positive operator on L2(Ω)

A1ψ = (−Δ + ε−1αγ)ψ, ∀ψ ∈ D(A1) = {ψ ∈ H2(Ω) : ∂nψ = 0, on Γ}, (2.4)

where γ > 0 is such that (see (1.14))

lim inf
|y|→+∞

f ′(y) > 2γ.
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Then, we set

A2(φ)ψ = −div(M(φ)∇ψ), ∀ψ ∈ D(A2(φ)) = D(A1). (2.5)

Note that A2 is a nonnegative (symmetric) monotone operator on L2(Ω), but is positive on

L2
0(Ω) = {ψ ∈ L2(Ω) : 〈ψ〉Ω = 0}

and A2(φ) is a bounded from H1(Ω) ∩ L2
0(Ω) into (H1(Ω) ∩ L2

0(Ω))∗ (see (1.15)). In addition,
we need to introduce the bilinear operators B0 and B1 (and the related trilinear forms b0 and
b1) and R0:

(B0(u,v),w) =
∫

Ω

[(u · ∇)v] · wdx := b0(u,v,w),

(B1(u, φ), ψ)L2 =
∫

Ω

[(u · ∇)φ]ψdx := b1(u, φ, ψ),

(R0(ξ, φ),w) =
∫

Ω

ξ∇φ · wdx.

As is well-known, B0(u,u) ∈ V∗ for all u ∈ V. On the other hand, B1(u, φ) maps V ×H1(Ω)
into (H1(Ω))∗ and R0 maps L2(Ω) × H2(Ω) into V∗. We also recall the following inequality
(see e.g., [64]):

|(R0(A1φ, φ),v)| = |b1(v, φ, A1φ)| ≤ c0‖v‖|φ|
1
2
H1 |φ|

3
2
D(A1) (2.6)

for all v ∈ V, φ ∈ D(A1), which implies

‖R0(A1φ, φ)‖V∗ ≤ c0|φ|
1
2
H1 |φ|

3
2
D(A1). (2.7)

Let us now set

‖ψ‖2
H1 =

{
ε|∇ψ|2L2 + 〈ψ〉2Ω, if K = CH,

ε|∇ψ|2L2 + αγ|ψ|2L2 , if K = AC.
(2.8)

Then we introduce

YK =

{
H ×H1(Ω), if K = AC,

{(v, ψ) ∈ H ×H1(Ω) : |〈ψ〉Ω| ≤M}, if K = CH,
(2.9)

where M ≥ 0 is given (see (1.12)–(1.13)). We endow H ×H1(Ω) with the norm (cf. (2.8))

‖(v, ψ)‖2
K =

1
κ
|v|2 + ‖φ‖2

H1 ,

and we observe that YCH is a complete metric space with respect to the metric induced by the
H ×H1-norm.

We now have all the ingredients to introduce the notion of Leray-Hopf solution to our
problems.

Problem PK Let τ ∈ R and T > τ . Given g ∈ L2([τ, T ]; V∗) and (u0, φ0) ∈ H ×H1(Ω),
we find

(u, φ) ∈ L∞([τ, T ]; YK) ∩ L2([τ, T ]; V ×D(A1)), (2.10)
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such that

∂tu ∈ L
4
3 ([τ, T ]; V

∗), ∂tφ ∈ L2([τ, T ]; (H1(Ω))∗) (2.11)

and, if K = CH ,

μ ∈ L2([τ, T ];H1(Ω)), φ ∈ L2([τ, T ];H3(Ω)), (2.12)

which solves

∂tu +A0(φ)u +B0(u,u) − κR0(εA1φ, φ) = g, in V
∗, a.e. in (τ,+∞), (2.13)

μ = εA1φ+ αfγ(φ), a.e. in Ω × (τ,+∞), (2.14)

∂tφ+AK(φ)μ +B1(u, φ) = 0, in (H1(Ω))∗, a.e. in (τ,+∞), (2.15)

and fulfills initial conditions (1.8) and, if K = CH , mass conservation (1.13). Here AK = I, if
K = AC and AK = A2, if K = CH.

Remark 2.1 Note that μ does no longer appear in equation (2.13). More precisely, the term
μ∇φ (see (1.1)) has been replaced by A1φ∇φ because f ′

γ(φ)∇φ = ∇Fγ(φ) can be incorporated
into the pressure gradient term.

Remark 2.2 It follows from (2.3), the assumption on ν(φ) and (2.11) that A0(φ)u ∈
L2([τ, T ]; V∗) and (see (2.7))

B0(u,u), R0(A1φ, φ) ∈ L
4
3 ([τ, T ]; V

∗). (2.16)

Thus, from equation (2.13), we deduce that ∂tu ∈ L
4
3 ([τ, T ]; V∗). In addition, we can also easily

deduce that u ∈ C([τ, T ]; V∗) ∩ Cw([τ, T ]; H). Hence, the velocity initial datum makes sense
in the usual way. On the other hand, we have B1(u, φ) ∈ L2([τ, T ]; (H1(Ω))∗). Then, it is
not difficult to deduce that ∂tφ ∈ L2([τ, T ]; (H1(Ω))∗) and, on account of (2.11), this entails
φ ∈ C([τ, T ];L2(Ω)). Therefore, the initial condition for φ makes sense as well. Summing up,
we have (u, φ) ∈ Cw([τ, T ]; YK) so that initial conditions (1.8) hold weakly.

3 Weak Solutions and Dissipative Estimates

Here we first prove an existence theorem for PK by means of a classical Faedo-Galerkin
scheme. Let us consider the following energy functional LK : YK → R+,

LK(u, φ) = ‖(u, φ)‖2
K + 2α(FK(φ), 1)L2 + cFK , (3.1)

where FAC = Fγ while FCH = F . Moreover, cFK > 0 is sufficiently large so that

2α(FK(ψ), 1)L2 + cFK ≥ 0 (3.2)

for all ψ ∈ H1(Ω). Note that such a constant exists, since FK is bounded below, due to the
first assumption of (1.14). In addition, thanks to the same assumption, we can find positive
constant cfγ , c′f , c′′f , and cM such that, for all y ∈ R,

|Fγ(y)| − cfγ ≤ 2fγ(y)y, (3.3)

Fγ(y) − fγ(y)y ≤ c′f |y|2 + c′′f , (3.4)

|F (y)| ≤ 2f(y)(y −M) + cM , (3.5)

F (y) − f(y)(y −M) ≤ c′f |y −M |2 + cM . (3.6)
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Let us now set

ρAC = min
{ ν0
κC2

Ω

, 1,
αcfγ

1 + αcfγ + 2αc′f

}
, (3.7)

where CΩ is the Poincaré constant (see (2.1)). We also set

ρCH = min
{ ν0
κC2

Ω

,
εm0

C̃2
Ω

,
ε2m0

C̃2
Ω(ε + 2αc′f C̃

2
Ω)

}
, (3.8)

where C̃Ω is the Poincaré-Wirtinger constant, that is,

|ψ − 〈ψ〉Ω|L2 ≤ C̃Ω|∇ψ|L2 , ∀ψ ∈ H1(Ω). (3.9)

We now state and prove the following basic result.

Theorem 3.1 Let assumptions (1.14) be satisfied. If g ∈ L2([τ, T ]; V∗) and (u0, φ0) ∈ YK .
Then there exists a solution (u, φ) to P K such that, if K = AC, the following inequality holds:

−
∫ T

τ

LAC(u(s), φ(s))Λ′(s)ds+ ρAC

∫ T

τ

LAC(u(s), φ(s))Λ(s)ds

+
∫ T

τ

(ν0
κ
‖u(s)‖2 + 2|μ(s)|2L2

)
Λ(s)ds

≤
∫ T

τ

( 2
κ
〈g(s),u(s)〉 + ΘAC

)
Λ(s)ds (3.10)

for any Λ ∈ C∞
0 ((τ, T ); R+), where

ΘAC = α|Ω|(cfγ + 2c′′f ) + ρACCFAC .

Instead, if K = CH, then (u, φ) satisfies

−
∫ T

τ

LCH(u(s), φ(s))Λ′(s)ds+ ρCH

∫ T

τ

LCH(u(s), φ(s))Λ(s)ds

+
∫ T

τ

(ν0
κ
‖u(s)‖2 + m0|∇μ(s)|2L2

)
Λ(s)ds

≤
∫ T

τ

( 2
κ
〈g(s),u(s)〉 + ΘCH

)
Λ(s)ds (3.11)

for any Λ ∈ C∞
0 ((τ, T ); R+), where ρ = ρCH and

ΘCH = 2αρc′′f |Ω| + α(εC̃−2
Ω − ρ)cM0 |Ω| + ρcFCH .

Proof The existence argument does not depend on K but for some details. Let {wj} ⊂ V

be a sequence which is dense and orthogonal in V (see, for instance, [45, Chapter 1, 6.3 ] or [65,
Chapter 1, 2.6]), and let {qj} be the sequence of eigenfunctions of A1. Then set

um(x, t) =
m∑

i=1

aj,m(t)wj(x), φm(x, t) =
m∑

i=1

bj,m(t)qj(x), (3.12)
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where aj,m, bj,m are functions to be determined in C1([τ, T ]) in such a way that (um, φm) satisfy
the following Cauchy problem P m

K :

dum

dt
+ νP0,mA0(φm)um + P0,mB0(um,um) − κP0,mR0(μm, φm) = gm, (3.13)

μm = εP1,mA1φm + αP1,mfγ(φm), (3.14)
dφm

dt
+ P1,mAK(φm)μm + P1,mB1(um, φm) = 0, (3.15)

um(τ) = u0,m, φm(τ) = φ0,m. (3.16)

Here P0,m (respectively, P1,m) is the orthogonal projector from H (respectively, L2(Ω)) onto
the linear space 〈u1, · · · ,um〉 (respectively, 〈φ1, · · · , φm〉). Moreover, we have

gm(t) = P0,mg(t), u0,m = P0,mu0, φ0,m = P1,mφ0,

so that gm → g strongly in L2([τ, T ]; V∗) and (u0,m, φ0,m) → (u0, φ0) strongly in YK . Note
that, in equation (3.13), the (approximated) chemical potential μm appears again since it
allows us to simplify the computations (see Remark 2.1). On the other hand, due to the
incompressibility and boundary conditions (1.11), we always have

(R0(μm, φm),v) = (R0(εA1φm, φm),v), ∀v ∈ V. (3.17)

Problem P m
K has clearly a maximal solution (um, φm) ∈ C0([τ, Tm); YK) on some time interval

[τ, Tm), Tm ∈ (τ, T ].
Let us now take the scalar product in H of equation (3.13) with 2

κum. Then the scalar
product in L2(Ω) of equations (3.14) and (3.15) with 2∂tφm and 2μm, respectively, and add the
resulting relations. Then, observing in particular that

(P1,mB1(um, φm), μm)L2 = (P0,mR0(μm, φm),um),

we obtain the following energy equality:

d
dt

[ 1
κ
|um(t)|2 + ε|∇φm(t)|2L2 + αγ|φm(t)|2L2 + 2α(Fγ(φm(t)), 1)L2

]
+

2
κ
|
√
ν(φm(t))Dum(t)|2 + 2(AK(φm)μm(t), μm(t))L2 =

2
κ

(um(t), gm(t)). (3.18)

Note that, setting

LK(μ(t)) =

{
|μ(t)|2L2 , if K = AC,

|
√
M(φ(t))∇μ(t)|2L2 , if K = CH,

(3.19)

we have

(AKμm(t), μm(t))L2 = LK(μ(t)). (3.20)

Thus, recalling (1.15), on account of (3.1) and (3.18), we obtain the following energy inequality,
for almost any t ∈ [τ, Tm),

d
dt

LK(um(t), φm(t)) +
ν0
κ
‖um(t)‖2 + 2LK(μm(t)) ≤ κ

ν0
|gm(t)|2

V∗ . (3.21)
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This inequality immediately implies that the maximal solution (um, φm) can be defined up to
the given final time T .

In the case K = CH , we need to recover the H1-norm of the chemical potential μm. To do
that, from equation (3.14) we easily deduce, for all t ∈ [τ, T ],

|〈μm(t)〉Ω| = |α〈P1,mf(φm(t))〉Ω| ≤ c(1 + |φm(t)|3L3), (3.22)

where c is a positive constant that depends at most on Ω, α, ε, ν0, but is independent of time,
initial data and m. From now on c will denote a positive constant of this kind. Such a constant
may vary even from line to line.

Integrating both sides of (3.21) between τ and t, we deduce that {um} is bounded in
L∞([τ, T ]; H)∩L2([τ, T ]; V) and {φm} is bounded in L∞([τ, T ];H1(Ω)). Moreover, if K = AC,
on account of (3.20) and (3.21), we have that {μm} is bounded in L2([τ, T ];L2(Ω)). Thus,
recalling (3.14), we also have that {φm} is bounded in L2([τ, T ];D(A1)). In the case K = CH ,
due to (3.20)–(3.22), we have that {μm} is bounded in L2([τ, T ];H1(Ω)). Thus (3.14) entails
that {φm} is bounded in L2([τ, T ];D(A1) ∩ H3(Ω)). In addition from (3.13) (see also (2.6)–
(2.7)), we also recover that {∂tum} is bounded in L

4
3 ([τ, T ]; V∗) and, from (3.15), we infer that

{∂tφm} is bounded in L2([τ, T ]; (H1(Ω))∗).
Summing up, using well-known compactness arguments, we can find a pair (u, φ) such that,

up to subsequences,

um → u weakly star in L∞([τ, T ]; H), weakly in L2([τ, T ]; V), (3.23)

∂tum → ∂tu weakly in L
4
3 ([τ, T ]; V

∗), (3.24)

um → u strongly in L2([τ, T ]; H), (3.25)

φm → φ weakly star in L∞([τ, T ];H1(Ω)) and weakly in L2([τ, T ];D(A1)), (3.26)

μm → μ weakly in L2([τ, T ] × Ω), (3.27)

∂tφm → ∂tφ weakly in L2([τ, T ]; (H1(Ω))∗), (3.28)

φm → φ strongly in L2([τ, T ];H1(Ω)) ∩ C([τ, T ];L2(Ω)). (3.29)

If K = CH , we also have

μm → μ weakly in L2([τ, T ];H1(Ω)), φm → φ weakly in L2([τ, T ];H3(Ω)). (3.30)

Observe that (u, φ) satisfies all the regularity properties listed in (2.10)–(2.12). Now, employing
standard techniques, and using the above convergence properties, we can now show that (up to
subsequences)

B0(um,um) ⇀ B0(u,u), R0(μm, φm) ⇀ R0(μ, φ), in L
4
3 ([τ, T ]; V

∗),

whereas fγ(φm) converges strongly to fγ(φ) in C([τ, T ];L2(Ω)), as m → ∞. Consequently,
we can pass to the limit in (3.13)–(3.15) and find that (u, φ) solves (2.13)–(2.15). It is also
standard to recover initial conditions (1.8) (see also Remark 2.2).

Let us now prove inequality (3.10) first (i.e., K = AC). On account of ( 3.18), we have

d
dt

LAC(um(t), φm(t)) + ρLAC(um(t), φm(t)) ≤ Λ1
m(t), (3.31)
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where ρ = ρAC is given by (3.7) and

Λ1
m := −2ν0

κ
‖um‖2 + ρ|um|2 − 2|μm|2L2 − ε(2 − ρ)|∇φm|2L2

+ 2α[ρ(Fγ(φm) − fγ(φm)φm, 1)L2 − (1 − ρ)(fγ(φm)φm, 1)L2 ]

+
2
κ

(um, gm) + ρ|φm|2L2 + ρcFAC . (3.32)

Then, from (3.3)–(3.4), it follows

Λ1
m ≤ −

(2ν0
κ

− ρC2
Ω

)
‖um‖2 − 2|μm|2L2

− ε(2 − ρ)|∇φm(t)|2L2 − [cfγα(1 − ρ) − ρ− 2αc′fρ]|φm|2L2

− α(1 − ρ)(|Fγ(φm)|, 1)L2 +
2
κ

(um, gm)

+ α|Ω|(cfγ + 2c′′f )) + ρcFAC ,

and, thanks to (3.7), we deduce

d
dt

LAC(um, φm) + ρLAC(um, φm) +
ν0
κ
‖u‖2 + 2|μ|2L2

≤ 2
κ

(um, gm) + α|Ω|(cfγ + 2c′′f)) + ρcFAC . (3.33)

Thus, if we fix a time T > τ and take Λ ∈ C∞
0 ((τ, T ); R+), from (3.33) we infer

−
∫ T

τ

LAC(um(s), φm(s))Λ′(s)ds+ ρAC

∫ T

τ

LAC(um(s), φm(s))Λ(s)ds

+
∫ T

τ

(ν0
κ
‖um(s)‖2 + 2|μm(s)|2L2

)
Λ(s)ds

≤
∫ T

τ

( 2
κ

(gm(s),um(s)) + α|Ω|(cfγ + 2c′′f ) + ρACcFAC

)
Λ(s)ds. (3.34)

Observe now that (3.25) and (3.29) imply

‖(um, φm)‖L2([τ,T ];YK) → ‖(u, φ)‖L2([τ,T ];YK). (3.35)

Hence, up to subsequences, we also have ‖(um(s), φm(s))‖K → ‖(u(s), φ(s))‖K as m → +∞,
almost everywhere in [τ, T ].

On the other hand, on account of (1.14), we have that∫ T

τ

[(Fγ(φmk
(s)) − Fγ(φ(s)), 1)L2 ]2ds

≤ Qγ(|φ|L∞([τ,T ];H1(Ω)))(T − τ)|φm − φ|C([τ,T ];L2(Ω)) (3.36)

for some nonnegative increasing continuous function Qγ . Then, up to subsequences, we infer
that (see (3.29)) (Fγ(φm), 1)L2 → (Fγ(φ), 1)L2 strongly in L2([τ, T ]) and almost everywhere
on [τ, T ]. On the other hand, for any functions Λ ∈ C∞

0 ((τ, T ); R+), it is not difficult to see,
from (3.21), that LAC(um(s), φm(s))Λ′(s) attains its supremum on [τ, T ]. Thus, the Lebesgue
dominated convergence theorem implies that (see (2.6))∫ T

τ

LAC(um(s), φm(s))Λ′(s)ds →
∫ T

τ

LAC(u(s), φ(s))Λ′(s)ds, as m→ +∞. (3.37)
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Moreover, we have (see (3.23))

umΛ
1
2 → uΛ

1
2 , weakly in L2([τ, T ]; V),

μmΛ
1
2 → μΛ

1
2 , weakly in L2([τ, T ];L2(Ω)).

Hence, we deduce, for all t ∈ (τ, T ],∫ t

τ

‖u(s)‖2Λ(s)ds ≤ lim inf
m→∞

∫ t

τ

‖um(s)‖2Λ(s)ds, (3.38)∫ t

τ

|μ(s)|2L2Λ(s)ds ≤ lim inf
m→∞

∫ t

τ

|μm(s)|2L2Λ(s)ds. (3.39)

Therefore, we can pass to the limit in (3.34) thanks to (3.37)–(3.39), and inequality (3.10)
follows.

It remains to prove (3.11) (i.e., K = CH). Recalling (3.18), we deduce

d
dt

LCH(um(t), φm(t)) + ρLCH(um(t), φm(t)) ≤ Λ2
m(t), (3.40)

where ρ = ρCH is given by (3.8) and

Λ2
m = −2ν0

κ
‖um‖2 + ρ|um|2 − 2|

√
M(φm)∇μm|2L2

+ 2ζ(μm, φm)L2 − ε(2ζ − ρ)|∇φm|2L2

+ 2α[ρ(F (φm) − f(φm)φm, 1)L2 − (ζ − ρ)(f(φm)φm, 1)L2]

+
2
κ

(um, gm) + ρM0,m + ρcFCH , (3.41)

where

φm(t) := φm(t) −M0,m, μm(t) := μm(t) − 〈μm(t)〉Ω

with

M0,m := 〈φ0,m〉Ω.

Observe that |M0,m| ≤M and 〈φm(t)〉Ω = 〈μm(t)〉Ω = 0 for all t ∈ [τ, T ].
Using (3.5), (3.6), (3.9) and recalling (1.15), from (3.41), we infer

Λ2
m ≤ −

(2ν0
κ

− ρC2
Ω

)
‖um‖2 − (2m0 − ζC̃2

Ωε
−1)|∇μm|2L2

− ε(ζ − ρ− 2αρc′f C̃
2
Ωε

−1)|∇φm|2L2 − α(ζ − ρ)|F (φm)|L1

+
2
κ

(um, gm) + 2αρc′′f |Ω| + α(ζ − ρ)cM0 |Ω| + ρcFCH . (3.42)

Let us now choose ζ = εC̃−2
Ω m0 and recall (3.8) so that from (3.40) and (3.42), we obtain

d
dt

LCH(um, φm) + ρLCH(um, φm) +
ν0
κ
‖um‖2 +m0|∇μm|2L2

≤ 2
ν0

(um, gm) + 2αρc′′f |Ω| + α(εC̃−2
Ω − ρ)cM0 |Ω| + ρcFCH . (3.43)

Arguing as in the previous case K = AC, from (3.43) we infer (3.11).

Following [19], we define the trajectory space for PK .
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Definition 3.1 The trajectory space T R(g,K) for a given g ∈ L2
loc(R+; V∗) consists of all

the pairs (u, φ) satisfying (2.10)–(2.15) and either (3.10), if K = AC, or (3.11), if K = CH, on
any time interval [τ, T ] ⊂ R+. Similarly, we can define T R(g,K) for a given g ∈ L2

loc(R; V∗),
by letting [τ, T ] ⊂ R .

The following result is a direct consequence of Theorem 3.1.

Corollary 3.1 Let (1.14) hold and let g ∈ L2
loc(R+; V∗). Then, for any (u0, φ0) ∈ YK there

exists a trajectory (u, φ) ∈ T R(g,K) such that u(0) = u0 and φ(0) = φ0.

Moreover, arguing as in [19, Chapter XV, Corollary 1.5], we obtain an inequality which is
equivalent to (3.10)–(3.11), namely,

Corollary 3.2 Suppose that f satisfies (1.14) and let g ∈ L2
loc(R+; V∗). Any (u, φ) ∈

T R(g,K) is such that

LK(u(t), φ(t)) − LK(u(τ), φ(τ))

+
∫ t

τ

(
ρKLK(u(s), φ(s)) +

ν0
κ
‖u(s)‖2 + σKLK(μ(s))

)
ds

≤ 2
κ

∫ t

τ

〈g(s),u(s)〉ds+ ΘK(t− τ) (3.44)

for almost all t, τ ∈ R+ with t ≥ τ . Here σAC = 2 and σCH = 1.

Similarly, we also get the following results (see [19, Chapter XV, Corollary 1.6]).

Corollary 3.3 Suppose that f satisfies (1.14) and let g ∈ L2
loc(R+; V∗). Any (u, φ) ∈

T R(g,K) is such that

LK(u(t), φ(t)) − LK(u(τ), φ(τ)) + ρK

∫ t

τ

LK(u(s), φ(s))ds

+
∫ t

τ

( ν0
2κ

‖u(s)‖2 + σKLK(μ(s))
)

ds

≤
∫ t

τ

4κ
ν0

|g(s)|2
V∗ds+ ΘK(t− τ) (3.45)

for almost all t, τ ∈ R+ with t ≥ τ .

Remark 3.1 Inequality (3.45) holds for any t ≥ τ . Indeed, define the function (see [19,
Theorem II.1.7])

G(t) := LK(u(t), φ(t)) +
∫ t

0

(
ρKLK(u(t), φ(t)) +

ν0
κ
‖u(s)‖2 + σKLK(μ(s))

)
ds

− 1
κ

∫ t

0

〈g(s),u(s)〉ds− ΘKt,

and note that G is lower semicontinuous, since (u, φ) ∈ Cw([0, T ]; YK) for all T > 0 implies
that t �→ ‖(u(t), φ(t))‖K is lower semicontinuous. The other summands are continuous (see
also (2.6)).

Let us recall, for the reader’s convenience, a weak formulation of Gronwall’s inequality taken
from [19, Chapter XV, Lemma 1.2].
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Proposition 3.1 Let y, a ∈ L1
loc(R+) and suppose that the following inequality holds:

−
∫ ∞

0

y(s)Λ′(s)ds+ η

∫ ∞

0

y(s)Λ(s)ds ≤
∫ ∞

0

a(s)Λ(s)ds (3.46)

for any Λ ∈ C∞
0 (R+; R+) and for some η ∈ R. Then

y(t)eηt ≤ y(τ)eητ +
∫ t

τ

a(s)eηsds (3.47)

for almost all t, τ ∈ R+ such that t ≥ τ .

In order to establish the existence of the trajectory attractor, the following uniform estimate
plays an essential role.

Proposition 3.2 Suppose that f satisfies (1.14) and let g ∈ L2
loc(R+; V∗). If (u, φ) ∈

T R(g,K), then the following estimate holds:

LK(u(t), φ(t))eρK t − LK(u(τ), φ(τ))eρK τ +
∫ t

τ

( ν0
2κ

‖u(s)‖2 + σKLK(μ(s))
)

eρKsds

≤
∫ t

τ

(4κ
ν0

|g(s)|2
V∗ + ΘK

)
eρKsds (3.48)

for almost all t, τ ∈ R+ \Qu,φ, t ≥ τ, where Qu,φ has zero Lebesgue measure.

The proof follows from estimates (3.10)–(3.11) and Proposition 3.1.

Remark 3.2 In order to prove estimate (3.48), we have employed both assumptions of
(1.14). However, the first assumption of (1.14 ) can be replaced by a weaker one. Indeed, we
can only assume that f ∈ C(R; R) satisfies, for any y ∈ R, the following inequalities⎧⎪⎨⎪⎩

|F (y)| ≤ 2f(y)(y − λK) + c1,K ,

F (y) − f(y)(y − λK) ≤ c2,K(y − λK)2 + c3,K ,

|f(y)| ≤ c4,K(1 + |y|3),

where ci,K , i = 1, · · · , 4, are nonnegative constants and λAC = 0 or λCH = M. Note that, in
the case K = CH , we can no longer recovery the regularity φ ∈ L2

loc(R;H3(Ω)) (see (2.12)).
Indeed, we cannot have f(φ) ∈ H1(Ω) so that from (2.14) we cannot deduce the H3-regularity
of φ(t).

We conclude this section with a basic dissipative estimate which holds under an additional
assumption on g. Let us recall the definition of the Banach space of translation-bounded
functions in Lp

loc(R+;X), X being a real Banach space and p > 1, i.e.,

Lp
b(R+;X) :=

{
g ∈ Lp

loc(R+;X) : ‖g‖p
Lp

b(R+;X)
= sup

τ∈R+

∫ τ+1

τ

‖g(s)‖p
Xds < +∞

}
. (3.49)

For any g ∈ L2
b(R+; V

∗) and any given ρ > 0, we set

βρ(g) = sup
h∈[1,2]

sup
t≥0

(
ρ

∫ h

0

‖g(t+ s)‖2
V∗eρsds

1
eρh − 1

)
, (3.50)
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and it is easy to show that (see [19, Chapter V])

ρ

eρ − 1
‖g‖2

L2
b(R+;V∗) ≤ βρ(g) ≤ 2ρ

eρ − 1
‖g‖2

L2
b(R+;V∗). (3.51)

We can now prove the following proposition.

Proposition 3.3 If f satisfies (1.14) and g ∈ L2
b(R+; V∗), then any (u, φ) ∈ T R(g,K)

satisfies the estimate

LK(u(t), φ(t))eρK t − LK(u(τ), φ(τ))eρK τ +
∫ t

τ

( ν0
2κ

‖u(s)‖2 + σKLK(μ(s))
)

eρKsds

≤
( 4κ
ρKν0

βρK
(g) + ΘK

)
(eρK t − eρKτ ) (3.52)

for almost all t, τ ∈ R+ \Qu,φ, t+ 1 ≥ τ, where Qu,φ has zero Lebesgue measure.

Proof To get (3.52), we need to estimate the last term on the right-hand side of (3.48).
Let t, τ ∈ R+ such that t ≥ τ + 1. Take an integer m ∈ N such that h := t−τ

m ∈ [1, 2] and define
tj = τ + jh, j = 0, 1, · · · ,m− 1. A simple calculation yields the following inequality:∫ t

τ

(4κ
ν0

‖g(s)‖2
V∗ + ΘK

)
eρKsds =

m−1∑
j=0

∫ tj+1

tj

(4κ
ν0

‖g(s)‖2
V∗ + ΘK

)
eρsds

≤
[4κ
ν0

βρ(g) + ΘKρK

]
ρ−1

K (eρK t − eρKτ ),

and (3.52) follows from (3.48).

4 Trajectory Attractors

In order to define the dynamical system, we need to introduce first the appropriate functional
framework following [19] (see also [18]).

Let us consider the space

ZK [τ, T ] := {(v, ψ) ∈ L∞([τ, T ]; YK) ∩ L2([τ, T ]; V ×D(A1)) :

∂tv ∈ L
4
3 ([τ, T ]; V

∗), ∂tψ ∈ L2([τ, T ]; (H1(Ω))∗)

and ψ ∈ L2([τ, T ];H3(Ω)) if K = CH} (4.1)

for any fixed T > τ ≥ 0, endowed with the following norm:

‖(v, ψ)‖2
ZK [τ,T ] = ‖(v, ψ)‖2

L∞([τ,T ];YK) + ‖(v, ψ)‖2
L2([τ,T ];V×D(A1))

+ ‖∂tv‖2

L
4
3 ([τ,T ];V∗)

+ ‖∂tψ‖2
L2([τ,T ];(H1(Ω))∗) + δK‖ψ‖2

L2([τ,T ];H3),

where δAC = 0 and δCH = 1. It is easy to see that ZK [τ, T ] is Banach space. Moreover, we
also introduce the Banach space Z+

b,K defined by

Z+
b,K := {(v, ψ) ∈ L∞(R+; YK) ∩ L2

b(R+; V ×D(A1)) :

∂tv ∈ L
4
3
b (R+; V

∗), ∂tψ ∈ L2
b(R+; (H1(Ω))∗)

and ψ ∈ L2
b(R+;H3(Ω)) if K = CH}, (4.2)
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and the function space Z+
loc,K defined as follows

Z+
loc,K := {(v, ψ) ∈ L∞

loc(R+; YK) ∩ L2
loc(R+; V ×D(A1)) :

∂tv ∈ L
4
3
loc(R+; V

∗), ∂tψ ∈ L2
loc(R+; (H1(Ω))∗)

and ψ ∈ L2
loc(R+;H3(Ω)) if K = CH}. (4.3)

This space Z+
loc,K is the inductive limit of the topological spaces {ΞK [0, T ]}T>0 defined here

below (see [19, Chapter XII, Definition 1.3]).

Definition 4.1 We denote by ΞK [0, T ] the space ZK [0, T ] endowed with the convergence
topology: a sequence (vn, ψn) ∈ ZK [0, T ] converge to (v, ψ) if and only if (vn, ψn) → (vn, ψn)
∗-weakly in L∞([0, T ]; YK) and weakly in L2([0, T ]; V×D(A1)), ∂tvn → ∂tv weakly in L

4
3 ([0, T ];

V∗), ∂tψn → ∂tψ weakly in L2([0, T ]; (H1(Ω))∗), and, if K = CH, ψn → ψ weakly in
L2([0, T ];H3(Ω)).

We recall that Z+
loc,K is a Hausdorff and Fréchet-Urysohn space with a countable topology

base (see [19, Chapter XII]).
Observe now that a function g0 ∈ L2

b(R+; V∗) if and only if is translation-compact in
L2

w,loc(R+; V∗) (see [19, Chapter V, Proposition 4.1]). Thus, if we consider the translation
semigroup

(T(t)g0)(s) = g0(s+ t),

and we define the following hulls of g0 as

H+(g0) = {T(t)g0, t ≥ 0}L2
loc(R+;V∗)

, H+
w(g0) = {T(t)g0, t ≥ 0}L2

w,loc(R+;V∗)
,

it turns out that H+(g0) ≡ H+
w(g0). Moreover, we have that H+

w(g0) is metrizable and complete
and T(t)H+

w(g0) = H+
w(g0), for all t ≥ 0, with attractor ω(H+

w(g0)) (see [19, Chapter V, Lemma
4.1 and Proposition 4.2]).

Remark 4.1 If g0 is periodic, quasi-periodic or almost periodic, then g0 is translation-
compact in the space L2

loc(R+; V∗) (see [19, Chapter V]).

Recalling Definition 3.1, from Corollary 3.1 and Proposition 3.3, we deduce the following
proposition.

Proposition 4.1 Suppose that f satisfies (1.14) and assume g0 ∈ L2
b(R+; V∗). Then

T R(g,K) ⊂ Z+
b,K ⊂ Z+

loc,K , ∀ g ∈ H+(g0). (4.4)

We can now define the trajectory dynamical system. Indeed, let us consider the family of
trajectory spaces

{T R(g,K) | g ∈ H+(g0)},

where g0 ∈ L2
b(R+; V∗) is fixed. Then set

TH+(g0)(K) =
⋃

g∈H+(g0)

T R(g,K).

This is a topological space endowed with the topology of Z+
loc,K . However, in order to prove that

it is closed in Z+
loc,K , we must require more on the symbol g0. Indeed, we have the following

lemma.
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Lemma 4.1 Suppose that f satisfies (1.14) and let g0 be translation-compact either in
L2

w,loc(R+; H) or in L2
loc(R+; V∗). Then TH+(g0)(K) ⊂ Z+

b,K is closed in Z+
loc,K.

The proof goes essentially as in [18, Proposition 8.3].
We now define the translation semigroup {TK(t), t ≥ 0} acting on Z+

loc,K by the formula

TK(t)(u( · ), φ( · )) = (u(t+ · ), φ(t+ · )), t ≥ 0, (4.5)

where the pair on the right-hand side is a solution with symbol T(t)g0.
Arguing as in [19, Propsositions 1.1 and 1.3], we can prove the following theorem.

Theorem 4.1 Let the assumptions of Proposition 4.1 hold. Then {TK(t)} is continuous in
the topological space Z+

loc,K and

TK(t)(TH+(g0)
(K)) ⊆ TH+(g0)

(K), ∀ t ≥ 0.

We recall the definition of trajectory attractor in our case (see [19, Chapter XII, Definition
2.2]).

Definition 4.2 The trajectory attractor of the semigroup {TK(t), t ≥ 0} on TH+(g0)(K) is
a set AH+(g0)(K) ⊂ TH+(g0)

(K) such that:
( i ) AH+(g0)

(K) is compact in TH+(g0)(K);
( ii ) AH+(g0)

(K) is strictly invariant, that is,

TK(t)AH+(g0)
(K) = AH+(g0)(K), ∀ t ≥ 0; (4.6)

(iii) AH+(g0)
(K) is a uniformly attracting set for the semigroup {TK(t), t ≥ 0}, that is, for

every neighborhood O = O(AH+(g0)
(K)) in the topology of TH+(g0)(K), there exists t+ ≥ 0 such

that

TK(t)(TH+(g0)(K)) ⊆ O, ∀ t ≥ t+. (4.7)

On account of Definition 3.1, observe that we can also define the spaces ZK [τ, T ] on a
given bounded interval [τ, T ] ⊂ R and then introduce Zb,K and Zloc,K taking R in place of
R+. Let us indicate by G(g0) the set of all complete symbols in H+

w(g0), that is, the functions
f ∈ L2

loc(R; V∗) such that f t(s) = Π+f (t+ s), s ≥ 0, belongs to H+
w(g0) for all t ∈ R. We can

now give the following definition (see [18, Section 4]).

Definition 4.3 For any given f ∈ G(g0), the kernel KK,f of system (2.13)– (2.15), with f

in place of g, consists of all solutions to PK on R which satisfy either (3.10), if K = AC, or
(3.11), if K = CH, on any time interval [τ, T ] ⊂ R, and that are bounded in Zb,K .

We are finally ready to state the main result of this paper.

Theorem 4.2 Suppose that f satisfies (1.14) and let g0 be translation-compact either in
L2

w,loc(R+; H) or in L2
loc(R+; V∗). Then the translation semigroup {TK(t), t ≥ 0} acting on

TH+(g0)
(K) admits a uniform (with respect to g ∈ H+(g0)) trajectory attractor AH+(g0)

(K)
that satisfies properties (i)–(iii) of Definition 4.2. The set AH+(g0)

(K) is bounded in Z+
b,K and

compact in Z+
loc,K . Moreover, we have

AH+(g0)
(K) = Aω(H+(g0))

(K) = Π+KK,G(g0)
= Π+

⋃
f∈G(g0)

KK,f .
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The proof of Theorem 4.2 is based on the following lemma.

Lemma 4.2 Suppose that f satisfies (1.14) and let g0 ∈ L2
b(R+; V∗). Then, there exists

RK > 0, depending only on ν0, ν1, κ, ε, α, |Ω|, and ‖g‖L2
b(R+;V∗), such that

‖TK(t)(u, φ)‖2
Zb

K
≤ QK(‖(u, φ)‖2

L∞([0,1];YK))e
−ρK t +RK , ∀ t ≥ 1, (4.8)

for any g ∈ H+(g0) and any trajectory (u, φ) ∈ T R(g,K). Here QK is a monotone, positive
non-decreasing function that is independent of time and (u, φ).

Proof Using estimate (3.52) and recalling (3.1)–(3.2), we deduce

‖TK(t)(u, φ)‖2
L∞(R+;YK)

≤ (‖(u, φ)‖2
L∞([0,1];YK) + 2α‖FK(φ)‖L∞([0,1];L1(Ω)) + cFK )e−ρK t

+
8κ
ρKν0

2(1 + ρK)‖g0‖2
L2

b
(R+;V∗) + ΘK , ∀ t ≥ 1. (4.9)

Here we have also used (3.51) and the fact that βρ(g) ≤ βρ(g0) for all g ∈ H+(g0) (see [19,
Chapter XV, Remark 1.3]). Integrating (3.52) from t to t + 1 and using (4.9), we deduce, for
all t ≥ 1,∫ t+1

t

( ν0
2κ

‖u(s)‖2 + σKLK(μ(s))
)

ds ≤ QK(‖(u, φ)‖2
L∞([0,1];YK))e

−ρK t +RK . (4.10)

Here QK stands for a monotone, positive non-decreasing function that is independent of time
and (u, φ), while RK denotes a positive constant depending on ν0, ν1, κ, ε, α, |Ω|, and
‖g‖L2

b(R+;V∗). Both QK( · ) and RK may vary from line to line in the course of this proof.

For estimating the remaining norms (see (4.2)) we have to consider the cases K = AC and
K = CH separately. In the former one, recalling (1.14) and (3.19) and using (4.9)–(4.10), from
(2.14), we deduce that∫ t+1

t

|A1φ(s)|2L2ds ≤ ε−2

∫ t+1

t

[|μ(s)|2L2 + α2(1 + |φ(s)|6L6)]ds

≤ QAC(‖(u, φ)‖2
L∞([0,1];YK))e

−ρAC t +RAC (4.11)

for all t ≥ 1. In the case K = CH , we have to control the chemical potential μ in L2([t, t +
1];H1(Ω)). Recalling (3.19), it suffices to estimate the spatial average of μ. From (2.14), we
deduce (see (1.14)) ∫ t+1

t

〈μ(s)〉2Ωds ≤ c

∫ t+1

t

(1 + |φ(s)|6L6)ds

for all t ≥ 1. The above inequality, together with (1.15) and estimates (4.10)–(4.11), yields∫ t+1

t

|μ(s)|2H1ds ≤ QCH(‖(u, φ)‖2
L∞([0,1];YK))e

−ρCH t +RCH (4.12)

for all t ≥ 1. Taking advantage of estimate (4.12), it is not difficult to show first an estimate
similar to (4.11). Then, using well-known elliptic regularity results, we infer∫ t+1

t

|φ(s)|2H3 ds ≤ QCH(‖(u, φ)‖2
L∞([0,1];YK))e

−ρCH t +RCH . (4.13)
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Using well-known inequalities to estimate B0(u,u) and R0(A1φ, φ) in V∗ (see (2.7)), and ex-
ploiting the above estimates, it is easy to show that

‖R0(A1φ, φ)‖
L

4
3 ([t,t+1];V∗)

+ ‖B0(u,u)‖
L

4
3 ([t,t+1];V∗)

+ ‖B1(u, φ)‖L2([t,t+1];(H1(Ω))∗)

≤ QK(‖(u, φ)‖2
L∞([0,1];YK))e

−ρK t +RK , ∀ t ≥ 1. (4.14)

Then, by comparison in equations (2.13) and (2.15), thanks to (4.11) and (4.13), we get

‖∂tu‖
L

4
3 ([t,t+1];V∗)

+ ‖∂tφ‖L2([t,t+1];(H1(Ω))∗) ≤ QK(‖(u, φ)‖2
L∞([0,1];YK)e

−ρt) +RK . (4.15)

Collecting estimates (4.9)–(4.11), (4.13), (4.15), we obtain (4.8). The lemma is proven.

Proof of Theorem 4.2 On account of (4.8), we consider, for instance, the set

BR(Z+
b,K) := {(v, ψ) ∈ Z+

b,K ∩ TH+(g0)
(K) : ‖(v, ψ)‖Z+

b,K
≤ 2RK}, (4.16)

which is bounded and absorbing for the semigroup {TK(t), t ≥ 0} in the space Z+
b,K . This set

is precompact and also closed by Lemma 4.1. Moreover, it is metrizable in Z+
loc,K (see, e.g.,

[19, Chapter XI, Theorem 1.7]). The proof thus follows from [19, Chapter XIV, Theorem 2.1].
Due to compactness arguments, the trajectory attractor attracts the bounded subsets of

Z+
b,K in some strong topologies. Indeed, Theorem 4.2 implies the following corollary.

Corollary 4.1 Let the assumptions of Theorem 4.2 hold. For any BK ⊂ TH+(g0)
(K),

bounded in Z+
b,K , for every T > 0 and each δ ∈ (0, 1], we have

lim
t→+∞ dist

C([0,T ];W− δ
2 ×H1−δ(Ω))

(TK(t)BK|[0,T ],AH+(g0)
(K)|[0,T ]) = 0, (4.17)

lim
t→+∞ dist

L2([0,T ];W
1−δ
2 ×H2−δ)

(TAC(t)BAC|[0,T ],AH+(g0)
(AC)|[0,T ]) = 0, (4.18)

lim
t→+∞ dist

L2([0,T ];W
1−δ
2 ×H3−δ)

(TCH(t)BCH|[0,T ],AH+(g0)(CH)|[0,T ]) = 0, (4.19)

where Wk = (W−k)∗, for k ≤ 0 and Ws := Hs(Ω) ∩ H for s ≥ 0.

Let us now define, for any BK ∈ TH+(g0)(K), the sections

BK(t) = {(v(t), ψ(t)) | (v, ψ) ∈ BK} ⊂ W
− δ

2 ×H1−δ(Ω), t ≥ 0.

Similarly, if we set

AH+(g0)
(K)(t) = {(v(t), ψ(t)) | (v, ψ) ∈ AH+(g0)(K)} ⊂ W

− δ
2 ×H1−δ(Ω), t ≥ 0,

KK,G(g0)
(t) = {(v(t), ψ(t)) | (v, ψ) ∈ KK,G(g0)

} ⊂ W
− δ

2 ×H1−δ(Ω), t ∈ R,

then a further consequence of Theorem 4.2 is as follows (see [19, Chapter XIV, Theorem 2.2,
Definition 2.6, Corollary 2.2]).

Corollary 4.2 Let the assumptions of Theorem 4.2 hold. Then the bounded set

Agl(K) = AH+(g0)
(K)(0) = KK,G(g0) ⊂ YK

is the uniform (with respect to g ∈ H+(g0)) global attractor in W
− δ

2 ×H1−δ(Ω), δ ∈ (0, 1], of
the trajectory space TH+(g0)

(K), that is,
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( I ) Agl(K) is compact in W− δ
2 ×H1−δ(Ω);

( II ) Agl(K) satisfies the attracting property

lim
t→+∞ dist

W
− δ

2 ×H1−δ(Ω)
(BK(t),Agl(K)) = 0

for any bounded set BK ⊂ TH+(g0)(K);
(III) Agl(K) is the minimal set satisfying (I) and (II).

Remark 4.2 Theorem 4.2 and its corollaries also hold in the case g0 ∈ L2
b(R+; V∗), provided

that a different definition of solution is adopted. This new definition is based on inequality (3.52)
instead of (3.10) or (3.11) (see [18, Definition 8.4]). We recall that, by using Definition 3.1, it
is not possible to prove Lemma 4.1 in the sole assumption g0 ∈ L2

b(R+; V
∗) .

We end this section with some additional remarks on the nature of external forces g = g(t, x)
acting on the binary fluid mixture. Suppose that they have the form

g0(t, x) = g+(x) + g1(t, x), (4.20)

when g+ ∈ H does not depend on t and g1 satisfies the following condition:

(T(h)g0)(s) = g1(s+ h) → 0, as h→ +∞, (4.21)

strongly in L2
loc(R+; V∗) or weakly in L2

w,loc(R+; H). It is not difficult to check that, in the first
case, g is either translation-compact in L2

loc(R+; V∗) or in L2
w,loc(R+; H). Thus assumptions of

Theorem 4.2 on the external forces are satisfied and we can prove the following theorem.

Theorem 4.3 Suppose that f satisfies (1.14) and let (4.20)– (4.21) hold. Then the trajectory
attractor coincides with the attractor of the corresponding autonomous system (i.e., the one
obtained by replacing g0 with g+). More precisely, we have

AH+(g0)
(K) = Ag+

(K). (4.22)

The existence of the attractors follows from Theorem 4.2, whereas (4.22) is a consequence
of [19, Chapter XVII, Theorem 1.1].

Let us report a couple of examples of perturbations terms g1 that satisfy condition (4.21).

Example 4.1 Let

g1(t, x) = ϕ0(x)θ(t), (4.23)

where ϕ0 ∈ V∗ and

θ(t) =
sin(t2)
1 + t2

.

Then g1 satisfies (4.21) in the strong topology of L2
loc(R+; V∗).

Example 4.2 Let the function g1 have the form (4.23) with ϕ0 ∈ H and

θ(t) = sin(t3).

It is known that g1(t+ h) → 0 as h → +∞ in the weak topology of L2([t, t+ 1]; H), for every
t ∈ R+. Hence g1 satisfies (4.21) in the weak topology of L2

w,loc(R+; H).
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Remark 4.3 Theorem 4.2 clearly applies to the 2D case which was analyzed in [32, 31] with
a time-independent external force. In the 2D case, thanks to uniqueness, the trajectories can be
described through a family of processes {Ug,K(t, τ)} acting on the phase-space YK , with symbol
g in the hull of some given g0 ∈ L2

b(R+; V∗) (see [49, 50] for possible generalizations). In this
case, the uniform global attractor Agl(K) is compact in YK and, supposing g0 quasiperiodic
with respect to time, one should also prove that Agl(K) has finite fractal dimension. With
such a symbol, the existence of exponential attractors can also be proven (see [27] for 2D
incompressible Navier-Stokes equations). Thus Theorem 4.2 allows us to generalize some of the
results contained in [32, 31] to nonautonomous external forces.

Finally, suppose that f satisfies (1.14). If g0 is translation-compact in L2
w,loc(R+; H), then,

setting g0,m = P0,mg0, we have that g0,m is also translation-compact in L2
w,loc(R+; H). Thus,

following [19, Chapter XVI], the Galerkin approximation problems P m
K (see (3.13)–(3.16)) can

be shown to have the uniform trajectory attractor AH+(g0,m)(K) which is bounded in Z+
b,K and

compact in Z+
loc,K . Consequently, arguing as in the proof of [19, Chapter XVI, Theorem 3.1],

it is possible to prove

Theorem 4.4 For any neighborhood O of the trajectory attractor AH+(g0)(K) in Z+
loc,K ,

there exists m0 = m0(O) ∈ N such that

AH+(g0,m)(K) ⊂ O, ∀m ≥ m0.

In addition, for every T > 0 and δ ∈ (0, 1], we have

lim
m→+∞ dist

C([0,T ];W− δ
2 ×H1−δ(Ω))

(AH+(g0,m)(K)|[0,T ],AH+(g0)
(K)|[0,T ]) = 0,

lim
m→+∞ dist

L2([0,T ];W
1−δ
2 ×H2−δ)

(AH+(g0,m)(AC)|[0,T ],AH+(g0)
(AC)|[0,T ]) = 0,

lim
m→+∞ dist

L2([0,T ];W
1−δ
2 ×H3−δ)

(AH+(g0,m)(CH)|[0,T ],AH+(g0)(CH)|[0,T ]) = 0.

We conclude with a related result for the (uniform) global attractor (see [19, Chapter XVI,
Corollary 2.1]).

Corollary 4.3 Setting (see Corollary 4.2)

Am
gl(K) := AH+(g0,m)(K)(0),

we have, for all δ ∈ (0, 1],

lim
m→+∞ dist

W
− δ

2 ×H1−δ(Ω)
(Am

gl(K),Agl(K)) = 0.
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