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1 Introduction

The Keldys-Fichera boundary value problem for linear equations with nonnegative charac-
teristic form of second order is well-known. Oleinik and Radkevich made a detailed discussion
on this subject (see [8]). Ma and Yu [7] investigated the existence of the Keldys-Fichera bound-
ary value problem of degenerate quasilinear elliptic equations of second order and discussed
the maximum principle, the comparison principle and the modular estimate by using the acute
angle principle for weakly continuous mappings. Chen and Xuan discussed this boundary
value problem for degenerate elliptic equations, and obtained the existence and uniqueness
of the solutions by using the pseudo-monotone operator method in [2, 3]. Li [6] studied the
Keldys-Fichera boundary value problem for a class of quasilinear elliptic equations with double
degenerate and proved the existence of solution by means of the weighted Sobolev space and
the pseudo-monotone operator method. Wang [10] investigated the regularity of a type of ellip-
tic equation by using the compactness method and obtained an optimal Hölder estimates. In
this paper, we study the regularity of the Keldys-Fichera boundary value problem by using the
reversed Hölder inequality, the generalized poincaré inequalities to discuss the W 1,p-solutions
and the interior regularity of weak solutions for the following equations:{

Lu = Di[aij(x, u)Dju + bi(x)u] − c(x, u) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Σ2 ∪ Σ3,
(1.1)
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where Ω ⊂ Rn is an open set, and Σi (i = 1, 2, 3) are defined by

Σ3 = {x ∈ ∂Ω | aij(x, 0)NiNj > 0} ,

Σ2 = {x ∈ ∂Ω\Σ3 | bi(x) · Ni > 0} ,

Σ1 = ∂Ω\(Σ2 ∪ Σ3),

where
−→
N = (N1, · · · , Nn) is the unit outward normal vector on ∂Ω.

An important example relating to degenerate elliptic equations is the following well-known
Tricomi equation, which is of especially interest in the aerodynamics,

y
∂2u

∂x2
+

∂2u

∂y2
= 0, (x, y) ∈ R2. (1.2)

The Tricomi equation is a mixed equation of elliptic-hyperbolic type. As y > 0, equation (1.2)
is elliptic and when y < 0 it is hyperbolic. Equation (1.2) can be divided into two equations to
be considered respectively as follows

y
∂2u

∂x2
+

∂2u

∂y2
= 0 for (x, y) ∈ R2

+. (1.3)

where R2
+ = {(x, y) ∈ R2 | y > 0}, and

∂2u

∂y2
− y

∂2u

∂x2
= 0 for (x, y) ∈ R2

+. (1.4)

It is easy to see that equation (1.3) is a degenerate elliptic equation and (1.4) is a hyperbolic
equation in R2

+. If ui(x, y) (i = 1, 2) are respectively the solutions of (1.3) and (1.4), with

u1(x, 0) = u2(x, 0), ∀x ∈ R1,

then the function

u(x, y) =

{
u1(x, y), as y ≥ 0,

u2(x,−y), as y ≤ 0

is a weak solution of Tricomi equation (1.2).
Generally, most of the mixed equations of elliptic-hyperbolic type can be divided into the

degenerate elliptic and Hyperbolic equations to be discussed respectively. In general, for degen-
erate elliptic boundary value problem with Dirichlet boundary condition, the set of degenerate
points on boundary ∂Ω is of nozero measure. It implies that the Dirchlet boundary value
problem for degenerate elliptic is not well-posed anymore, and instead of it the Keldys-Fichera
boundary value problem works. On the well-posedness of Keldys-Fichera boundary value prob-
lem for degenerate elliptic equations, the readers are referred to [8].

2 Recapitulation on Known Results

In this section, we present some known results in [7] for Keldys-Fichera boundary value
problem for the degenerate quasilinear elliptic equation. Let Ω be a bounded domain in
Rn, n ≥ 2 with piecewise C1-boundary ∂Ω. Suppose that the coefficients of equation (1.1)
satisfy Carathéodory conditions and

(H1) Symmetry: aij(x, z) = aji(x, z) for all x, z ∈ Ω;



Regularity of Keldys-Fichera Boundary Value Problem 715

(H2) There exist a constant β > 0 and a nonnegative continuous function λ(x) on Ω such
that

β−1aij(x, 0)ξiξj ≤ aij(x, z)ξiξj ≤ βaij(x, 0)ξiξj , (2.1)

λ(x)|ξ|2 ≤ aij(x, 0)ξiξj ; (2.2)

(H3) Ω′ = {x ∈ Ω | λ(x) = 0} is a set of zero measure in Rn, and there are bounded

subdomains with the cone property Ωn ⊂⊂ Ω\Ω′, such that Ωn ⊂ Ωn+1 and
∞⋃

n=1
Ωn = Ω\Ω′;

(H4) bi(x) ∈ C1(Ω) (1 ≤ i ≤ n), and

|aij(x, z)| ≤ C, (2.3)

C[|z|k + |z|2] − g1(x) ≤ c(x, z)z − 1
2
Dibi(x)z2, (2.4)

|c(x, z)| ≤ C|z|k−1 + g2(x), (2.5)

where k > 1, C > 0 are constants, g1 ∈ L1(Ω), g2 ∈ Lk′
(Ω), 1

k + 1
k′ = 1.

Let X be a linear space, X1, X2 be the completion of X respectively with the norms ‖ · ‖1

and ‖ · ‖2. Denote by

X = {v ∈ C1(Ω), v|Σ3 = 0 and ‖v‖2 < ∞}
endowed with the norm

‖v‖2 =
[ ∫

Ω

(|∇v|2 + |v|2)dx +
∫

∂Ω

|v|2ds
] 1

2
+

[ ∫
Ω

|v|kdx
] 1

k

.

Let X1 be the completion of X under the norm

‖v‖1 =
[ ∫

Ω

(aij(x, 0)DivDjv + |v|2)dx
] 1

2
+

[ ∫
Σ1∪Σ2

|−→b · −→N |v2ds
] 1

2
+

[ ∫
Ω

|v|kdx
] 1

k

,

where
−→
b = {b1(x), b2(x), · · · , bn(x)}. Obviously, X is a separable normed space, X1 is a

reflexive Banach space, and X2 is a separable Banach space.
A weak solution of (1.1) is defined to be an element u ∈ X1 such that∫

Ω

[aij(x, u)DjuDiv + bi(x)uDiv + c(x, u)v + fv] dx

−
∫

Σ1

−→
b · −→Nuvds = 0, ∀v ∈ X2. (2.6)

Firstly, we introduce the acute angle principle for weakly continuous operator.

Definition 2.1 (see [7]) Let X1, X2 be two Banach spaces. A mapping G : X1 → X∗
2 is

called to be weakly continuous, if for any xn, x0 ∈ X1, xn ⇀ x0 in X1, there exists a subsequence
{xnk

} such that
lim

x→∞〈Gxnk
, y〉 = 〈Gx0, y〉, ∀y ∈ X2.

Theorem 2.1 Suppose that G : X1 → X∗
2 is weakly continuous. If there exists a bounded

open set Ω ⊂ X1, such that
〈Gu, u〉 ≥ 0, ∀u ∈ ∂Ω ∩ X,

then the equation Gu = 0 has a solution in X1.
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Theorem 2.2 Under the conditions (H1)– (H4), if f ∈ Lk′
(Ω), then problem (1.1) has a

weak solution in X1.

Now, we present the known results in [7] about the maximum principle, L∞-modular es-
timates and the comparison principle for weak solutions of degenerate elliptic Keldys-Fichera
boundary value problem. Let Ω ⊂ Rn be a bounded domain. We firstly consider the linear
case. Give the following operator:

L1u = Di(aij(x)Dju + bi(x)u) − c(x)u,

bi ∈ C1(Ω) and aij(x) = aji(x), furthermore,

0 ≤ aij(x)ξiξj , ∀x ∈ Ω, ξ ∈ Rn.

Let X̃1 be the completion of C1(Ω) with the norm

‖u‖
�X1

=
[ ∫

Ω

(aij(x)DiuDju + u2)dx +
∫

Σ1∪Σ2

|−→b · −→N |u2ds
] 1

2
.

We say that u ∈ X̃1 ∩W 1,p(Ω)∩Lq(Ω) (1 < p ≤ 2, 1
p + 1

q = 1) satisfies L1u ≥ 0 (or L1u ≤ 0) in

weak sense, if ∀v ∈ X̃1∩W 1,p(Ω)∩Lq(Ω) with v|Σ2∪Σ3 = 0, v ≥ 0 in Ω, the following inequality
holds: ∫

Ω

[aij(x)DjuDiv + bi(x)uDiv + c(x)uv]dx −
∫

Σ1

−→
b · −→Nuvds ≤ 0 (or ≥ 0). (2.7)

Theorem 2.3 Let Σ2 ∪ Σ3 �= ∅, and b∗(x) < c(x), ∀x ∈ Ω, where

b∗(x) = max
{

Dibi(x),
1
2
Dibi(x)

}
. (2.8)

If u ∈ X̃1 ∩ W 1,p(Ω) ∩ Lq(Ω) ( 1
p + 1

q = 1) satisfies L1u ≥ 0 (or L1u ≥ 0) in weak sense, then
the nonnegative maximum (nonpositive minimum) of u must be achieved in Σ2 ∪ Σ3.

Here we present the modular estimate theorem for weak solutions of equations (1.1). The
condition (H2) is changed to read

0 ≤ aij(x, 0)ξiξj , ∀x ∈ Ω, ξ ∈ Rn. (2.9)

Theorem 2.4 Assume that Σ2 ∪ Σ3 �= ∅ and L satisfies (H1), (H3), (2.9) and

b∗(x) < c(x, z)z−1 for (x, z) ∈ Ω × R. (2.10)

If u ∈ X̃1 ∩ W 1,p(Ω) ∩ Lk(Ω) ( p
p−1 ≤ k) satisfies (2.6), ∀v ∈ X̃1 ∩ W 1,p(Ω) ∩ Lk(Ω) with

v|Σ2∪Σ3 = 0, then

|u| = max
{

sup
Ω

∣∣∣ f
C ∗

∣∣∣, sup
Σ2∪Σ3

|u|
}

= M ,

where C∗(x) = inf
z∈R1

[c(x, z)z−1 − Dibi(x)].

Finally, we present the comparison principle.

Theorem 2.5 Let b∗(x) ≤ c(x, z)z−1, ∀(x, z) ∈ Ω × R1. If f(x) ≤ 0 and u is a weak
solution of (1.1) in X1 ∩ W 1,p(Ω)

(
1 < p, p

p−1 ≤ k
)
, then u(x) ≥ 0 on Ω.

Remark 2.1 In the degenerate elliptic equations, if the terms Di(bi(x)u) ≡ 0, 1 ≤ i ≤ n,
hold then in all the theorems of this section, the condition u ∈ X̃1∩W 1,p(Ω)∩Lk(Ω)

(
1
p + 1

k = 1
)

can be relaxed as that u ∈ X̃1.
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3 W 1,p-Solutions of the Quasilinear Equations

We start with an abstract regularity result which is useful for the existence problem of
Wm,p(Ω)-solutions of degenerate quasilinear elliptic equations of order 2m. Let X, X1, X2 be
the spaces defined in Definition 2.1, and Y be a reflective Banach space, at the same time
Y ↪→ X1.

Lemma 3.1 (see [7]) Under the hypotheses of Theorem 2.1, there exists a sequence of
{un} ⊂ X, un ⇀ u0 in X1 such that 〈Gun, un〉 = 0. Furthermore, if we can derive that
‖un‖Y < C, where C is a constant, then the solution u0 of Gu = 0 belongs to Y .

The proof of Lemma 3.1 is obvious.

Now we return to discuss the existence of W 1,p-solutions of equation (1.1). Let Ω be a
bounded domain of Rn and C∞.

Theorem 3.1 (see [7]) Under the conditions (H1)– (H4) and f ∈ Lk′
, if there is a real

number β > 1 such that∫
Ω

|λ(x)|−βdx < ∞, λ(x) defined as in (2.2),

then (1.1) has a weak solution u ∈ X1∩W 1,p(Ω), p = 2β
1+β > 1. Moreover, if Σ2∩Σ3 �= ∅, and

when bi �≡ 0 for some 1 ≤ i ≤ n, k ≥ 2β
β−1 , and c(x, z)z−1 − Dibi ≥ α > 0, ∀(x, z) ∈ Ω × R1,

otherwise, c(x, z)z−1 ≥ α > 0, then the solution u ∈ L∞(Ω) provided f ∈ L∞(Ω).

Proof According to Lemma 3.1, it suffices to prove that there is a constant C > 0 such
that for any u ∈ X (X is as that in Section 2) with 〈Lu, u〉 = 0, we have

‖u‖W 1,p ≤ C, p =
2β

1 + β
. (3.1)

From (2.6), we know

〈Lu, u〉 =
∫

Ω

[aij(x, u)DiuDju + bi(x)uDiu + c(x, u)u + fu]dx

−
∫

Σ1

−→
b · −→Nu2ds = 0, u ∈ X.

Due to (H2) and (2.4), we have

〈Lu, u〉 =
∫

Ω

[
aij(x, u)DiuDju + c(x, u)u − 1

2
Dibiu

2 + fu
]
dx

+
1
2

∫
Σ2

−→
b · −→Nu2ds − 1

2

∫
Σ1

−→
b · −→Nu2ds

≥
∫

Ω

[β−1λ(x)|∇u|2 + C|u|k − fu − g1]dx +
1
2

∫
Σ1∪Σ2

|−→b · −→N |u2ds.

Consequently, we have∫
Ω

[g1 + C1|f |k′
]dx ≥

∫
Ω

[
β−1λ(x)|∇u|2 +

C

2
|u|k

]
dx. (3.2)
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By the reversed Hölder inequality (see [1]), we get∫
Ω

λ(x)|∇u|2dx ≥
[ ∫

Ω

|λ|−βdx
]− 1

β
[ ∫

Ω

|∇u| 2β
1+β dx

] 1+β
β

. (3.3)

From (3.2) and (3.3), the estimate (3.1) follows. The second conclusion follows from Theorem
2.4 and Remark 2.1. The proof is completed.

Example 3.1 We consider the W 1,p-solutions of the following Keldys equation:⎧⎨⎩
∂

∂x

(
xα1f1(u)

∂u

∂x

)
+

∂

∂y

(
yα2f2(u)

∂u

∂y

)
− u = f(x),

u|Σ3 = 0,
(3.4)

where Σ2 = ∅, and Ω = (0, 1)× (0, 1), Σ3 = {(x, y) | x = 1, 0 < y ≤ 1 and y = 1, 0 < x ≤ 1},
f1, f2 ∈ C(R) satisfy the condition

0 < C1 ≤ f1(z), f2(z) ≤ C2 < ∞.

It is easy to see that
λ(x, y) = min{C1x

α1 , C2y
α2},

where C1, C2 > 0 are constants. If 0 < α1, α2 < 1
2 , then for β = 2, we have∫ 1

0

∫ 1

0

|λ|−2dxdy ≤ C2
1

∫ 1

0

x−2α1dx

∫ 1

0

y−2α2dy < +∞.

Furthermore, we have c(x, z)z−1 = 1 > 0. Therefore, by Theorem 3.1, equation (3.4) has a
weak solution u ∈ W 1, 43 (Ω) ∩ L∞(Ω) provided f ∈ L∞(Ω).

Next we investigate the W 1,p-solutions of the degenerate quasilinear elliptic equations as
follows {

−Di(aij(x, u)Dju + bi(x)u) + c(x, u,∇u) = f(x), x ∈ Ω,

u|Σ2∪Σ3 = 0.
(3.5)

Suppose that
(A1) The conditions (H1) and (H2) in Theorem 2.2 hold, Σi (i = 1, 2, 3) are the same as in

(1.1), and the measure of Σ2 ∪ Σ3 is nonzero on ∂Ω;
(A2) For the function λ(x) in (H2), there exists a real number β0 > 1, such that∫

Ω

|λ(x)|−β0dx < ∞;

(A3) bi ∈ C1(Ω) and there is a function g(x) ∈ L1(Ω) such that

g(x) ≤ c(x, z, ξ)z − 1
2
Dibiz

2, (3.6){
|aij(x, z)| ≤ C,

|c(x, z, ξ)| ≤ C[|z|α1 + |ξ|α2 + 1],
(3.7)

0 ≤ α1 <
n(β0 − 1) + 2β0

n(1 + β0) − 2β0
, 0 ≤ α2 <

n(β0 − 1) + 2β0

n(1 + β0)
.
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Let X = {u ∈ C1(Ω) | u|Σ3 = 0}, and Y be the completion of X with the norm

‖u‖Y =
[ ∫

Ω

aij(x, 0)DiuDjudx
] 1

2
+

[ ∫
Ω

|∇u|pdx
] 1

p

+
[ ∫

Σ1∪Σ2

|−→b · −→N |u2ds
] 1

2
.

Since mesΣ2 ∪Σ3 �= 0, by the generalized Poincaré inequalities (see [9]), we know that ‖u‖Y ≥
C‖u‖W 1,p , i.e., Y ↪→ W 1,p(Ω). For equation (3.5), we always take p = 2β0

1+β0
and

β0 ≥
{

1, if bi ≡ 0, ∀1 ≤ i ≤ n,

n, if bi �≡ 0, for some 1 ≤ i ≤ n.
(3.8)

u ∈ Y is called a weak solution of (3.5). If ∀v ∈ Y ,∫
Ω

[aij(x, u)DjuDiv + biuDiv + c(x, u,∇u)v − fv]dx −
∫

Σ1

−→
b · −→Nuvds = 0. (3.9)

By applying Theorems 2.1, 2.3 and Remark 2.1, we can obtain the following theorem.

Theorem 3.2 Let conditions (A1)– (A3) be satisfied and f ∈ Lp′
(Ω) ( 1

p′ + 1
p = 1). Then

problem (3.5) has a weak solution u ∈ Y . Moreover, if f ∈ L∞(Ω), and

inf
z∈R1
ξ∈Rn

[c(x, z, ξ)z−1 − Dibi(x)] ≥ α > 0, (3.10)

then the solution u ∈ L∞(Ω).

Proof Denote by 〈Gu, v〉 the left part of equality (3.9). It is easy to show that the inner
product 〈Gu, v〉 defines a bounded continuous mapping G : Y → Y ∗ owing to (3.7) and (3.8).
Firstly, we check the acute angle condition. Let u ∈ Y , we have

〈Gu, u〉 =
∫

Ω

[
aij(x, u)DiuDju − 1

2
Dibiu

2 + c(x, u,∇u)u − fu
]
dx

+
1
2

∫
Σ2

−→
b · −→Nu2ds − 1

2

∫
Σ1

−→
b · −→Nu2ds

≥
∫

Ω

[β−1aij(x, 0)DiuDju + g − fu]dx +
1
2

∫
Σ1∪Σ2

|−→b · −→N |u2ds

(due to (2.1) and (3.6))

≥ β−1

2

∫
Ω

λ(x)|∇u|2dx +
β−1

2

∫
Ω

[aij(x, 0)DiuDju + g − fu]dx

+
1
2

∫
Σ1∪Σ2

|−→b · −→N |u2ds (by (2.2))

≥ β−1

2

[ ∫
Ω

|λ|−β0dx
]− 1

β0
[ ∫

Ω

|∇u|pdx
] 2

p

+
β−1

2

∫
Ω

aij(x, 0)DiuDjudx

+
1
2

∫
Σ1∪Σ2

|−→b · −→N |u2ds − C

∫
Ω

|u|pdx − C

∫
Ω

[|g| + |f |p′
]dx

(thanks to the reversed Hölder inequality).

According to (A2) and p < 2, from the above inequality, we can derive

〈Gu, u〉 ≥ 0, ∀u ∈ Y, ‖u‖Y = R great enough.
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Next we need to verify the continuous condition in Theorem 2.1.
Let un ⇀ u0 in Y (when β0 = 1, let un ∗−→u0 in Y ), and

lim
n→∞〈Gun − Gu0, un − u0〉 = 0.

One can easily show that

lim
n→∞〈Gun, v〉 = 〈Gu0, v〉, ∀v ∈ Y.

Here we omit the details of proof. Therefore the first conclusion of the theorem follows from
Theorem 2.1.

Finally, by (3.10), we can obtain the second conclusion from Theorem 2.3 and Remark 2.1
by using the same method as the proof of Theorem 2.4 (see [7]). The proof is completed.

4 Interior Regularity

In this section, we concern the interior regularity of weak solutions of equation (3.5). Here
a weak solution u of (3.5) means that u satisfies (3.9) for any v ∈ C1(Ω) with v|Σ3 = 0. We
always assume that

0 ≤ aij(x, z)ξiξj , ∀(x, z) ∈ Ω × R, ξ ∈ Rn,

and the set Ω′ = {x ∈ Ω | aij(x, z)ξiξj = 0 for some ξ ∈ Rn and |ξ| �= 0} is independent of z,
mes Ω′ = 0 in Rn.

Suppose that c(x, z, ξ) ∈ C1(Ω × R × Rn) and

|c(x, z, ξ)| ≤ g(x, z), g ∈ C(Ω × R1). (4.1)

Theorem 4.1 Let (4.1) hold and f ∈ C1(Ω). If u ∈ X̃ ∩ L∞(Ω) is a weak solution of
problem (3.5), X̃ defined as that in Section 2, then u ∈ Cα(Ω\Ω′) ∩ H2

loc(Ω\Ω′), 0 < α < 1.

Proof Since Ω\Ω′ is open, for any x0 ∈ Ω\Ω′, there exists a close ball B2δ(x0) = {x ∈ Ω |
|x−x0| ≤ 2δ} ⊂ Ω\Ω′ for some δ > 0. It suffices to verify that u ∈ Cα(Bδ(x0))∩H2

loc(Bδ(x0)).
Take η ∈ C∞

0 (Ω) such that supp η ⊂ B2δ(x0) and

0 ≤ η(x) ≤ 1, η(x) = 1, as x ∈ Bδ(x0).

Let w = ηu. Then∫
Ω

aij(x, u)DjwDivdx =
∫

Ω

η(x)aij(x, u)DjuDivdx +
∫

Ω

aij(x, u)uDjηDivdx. (4.2)

Putting v = ηv in (3.9), we have∫
Ω

ηaij(x, u)DiuDjvdx

= −
∫

Ω

[aij(x, u)vDiuDjη + biuvDiη + biuηDiv + c(x, u,∇u)ηv − fηv]dx. (4.3)

On the other hand,

−
∫

Ω

aij(x, u)vDiuDjηdx =
∫

Ω

Aij(x, u)DjηDivdx +
∫

Ω

[∂Aij

∂xi
Diη + Aij(x, u)Dijη

]
vdx,



Regularity of Keldys-Fichera Boundary Value Problem 721

where

Aij(x, z) =
∫ z

0

aij(x, y)dy.

Since supp η ⊂ B2δ(x0), from (4.2) and (4.3), we have∫
B2δ

aij(x, u)DjwDivdx

=
∫

B2δ

[Aij(x, u)Djη + bi(x)uη + aij(x, u)uDjη]Divdx

+
∫

B2δ

[∂Aij(x, u)
∂xi

Djη + Aij(x, u)Dijη + fη − bi(x)uDiη
]
vdx. (4.4)

Denote ⎧⎨⎩
gi(x) = Aij(x, u)Djη + aij(x, u)uDjη + bi(x)uη,

g(x) =
∂Aij(x, u)

∂xi
Djη + Aij(x, u)Dijη + fη − bi(x)uDiη − c(x, u,∇u)η.

Because B2δ ⊂ Ω\Ω′, there exists a constant ε > 0 such that

ε|ξ|2 ≤ aij(x, z)ξiξj , ∀(x, z) ∈ B2δ(x0) × R.

Hence w ∈ W 1,2(B2δ) ∩ L∞(B2δ) is a weak solution of the following equation:{
−Di(aij(x, u)Djw) = g − Digi, x ∈ B2δ(x0),
w|∂B2δ

= 0.

Owing to u ∈ L∞(B2δ) and (4.1), g(x), gi(x) ∈ L∞(B2δ), and thanks to the de Giorgi estimates
(see [4]), we get that w ∈ Cα(B2δ), which implies u ∈ Cα(Bδ) for some 0 < α < 1.

Noticing that (4.4) holds true for any v ∈ H1
0 (Bδ), and Dw = Du in Bδ, therefore we obtain∫

Bδ

[aij(x, u)Dju − Aij(x, u)Djη − aij(x, u)uDjη − bi(x)uη]Divdx

−
∫

Bδ

[∂Aij

∂xi
Djη + Aij(x, u)Dijη + fη − bi(x)uDiη − c(x, u,∇u)η

]
vdx

= 0, ∀v ∈ H1
0 (Bδ).

Thus, u restricting on Bδ is a weak solution of the equation

DiAi(x, u,∇u) + B(x, u,∇u) = 0, x ∈ Bδ(x0),

where ⎧⎨⎩
Ai(x, u,∇u) = aij(x, u)Dju − Aij(x, u)Djη − aij(x, u)uDjη − bi(x)uη,

B(x, u,∇u) =
∂Aij

∂xi
Djη + Aij(x, u)Dijη + fη − bi(x)uDiη − c(x, u,∇u)η.

According to the assumptions, it is easy to see that Ai, B ∈ C1(Bδ × R × Rn) and u ∈
W 1,2(Bδ)∩Cα(Bδ). By means of the H2-regularity of quasilinear elliptic equation (see [5]), we
derive that u ∈ H2

loc(Bδ). Thus the theorem is proven.
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Next, we consider the interior W 2,p-regularity of (3.5). Assume that aij(x, z) ∈ C1(Ω) are
independent of z, and

|c(x, z, ξ)| ≤ C(|z|k + |ξ|q + 1), (4.5)

where 0 ≤ k, 0 ≤ q < 2.

Theorem 4.2 Let (4.5) be satisfied, and bi(x) ∈ C1(Ω), f ∈ Lk∗
(Ω), k∗ = k+1

k . If
u ∈ X̃ ∩ Lk+1(Ω) is a weak solution of (3.5), then u ∈ W 2,p

loc (Ω\Ω′), p = min{2, k+1
k , 2

q }.
Furthermore, if aij , b, c ∈ C∞(Ω × R × Rn), and np

n−2p > k + 1, np
n−p > 2, then u ∈ C∞(Ω\Ω′).

Proof As the proof of Theorem 4.1, we can get that w = ηu ∈ W 1,2(B2δ) ∩ Lk+1(B2δ) is
a weak solution of the following equation:{

−Di(aij(x)Djw) = g − Digi, x ∈ B2δ,

w|∂B2δ
= 0,

where {
gi = 2aij(x)uDjη + biηu,

g = DiaijuDjη + aijuDijη + fη − bi(x)uDiη − c(x, u,∇u)η.

By (4.5) and X̃ ∩ Lk+1(Ω) ↪→ w1,2(B2δ) ∩ Lk+1(B2δ), we can see that g ∈ L
�k(B2δ), Digi ∈

L2(B2δ), k̃ = min{k+1
k , 2

q }. According to the Lp-estimates, one can obtain w ∈ W 2,p(B2δ), i.e.,
u ∈ W 2,p(Bδ), p = min{2, k+1

k , 2
q }. The first conclusion is proven. By iteration, one can derive

the second conclusion of this theorem. The proof is completed.
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