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Abstract The author surveys a few examples of boundary layers for which the Prandtl
boundary layer theory can be rigorously validated. All of them are associated with the in-
compressible Navier-Stokes equations for Newtonian fluids equipped with various Dirichlet
boundary conditions (specified velocity). These examples include a family of (nonlinear
3D) plane parallel flows, a family of (nonlinear) parallel pipe flows, as well as flows with
uniform injection and suction at the boundary. We also identify a key ingredient in estab-
lishing the validity of the Prandtl type theory, i.e., a spectral constraint on the approximate
solution to the Navier-Stokes system constructed by combining the inviscid solution and
the solution to the Prandtl type system. This is an additional difficulty besides the well-
known issue related to the well-posedness of the Prandtl type system. It seems that the
main obstruction to the verification of the spectral constraint condition is the possible
separation of boundary layers. A common theme of these examples is the inhibition of
separation of boundary layers either via suppressing the velocity normal to the boundary
or by injection and suction at the boundary so that the spectral constraint can be verified.
A meta theorem is then presented which covers all the cases considered here.
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1 Introduction

One of the most useful models in fluid dynamics is the following incompressible Navier-
Stokes equations for Newtonain fluids:

∂u
∂t

+ (u · ∇)u − νΔu + ∇p = f , (1.1)

∇ · u = 0, (1.2)

where u is the Eulerian fluid velocity, p is the kinematic pressure, ν is the kinematic viscosity
and f is a (given) applied external body force. The system is customary equipped with initial
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condition

u
∣∣
t=0

= u0 (1.3)

and boundary conditions

u
∣∣
∂Ω

= given, (1.4)

where we have considered the physically most important case with fluid velocity specified at
the boundary (the classical no-slip boundary condition is the case with the given velocity on
the boundary to be identically zero).

For many practical fluids like air and water, the kinematic viscosity is small. If we formally
set the viscosity to zero, we arrive at the classical Euler equations for incompressible inviscid
fluids

∂u0

∂t
+ (u0 · ∇)u0 + ∇p0 = f , (1.5)

∇ · u0 = 0, (1.6)

and equipped with the same initial condition (1.3). However, the boundary conditions cannot
be the same since we have dropped the viscous (diffusion) term which has the highest spatial
derivative. The classical boundary condition associated is to specify the normal velocity at the
boundary

u0 · n∣∣
∂Ω

= given, (1.7)

but we may need to augment the system with additional boundary conditions in the case when
there is injection at the boundary (see Example 4.3 below).

A natural question then is if such a heuristic inviscid limit procedure can be rigorously jus-
tified, i.e., if the solution of the Navier-Stokes equations converge to that of the Euler equations
at vanishing viscosity: u → u0, as ν → 0? This is the well-known problem of vanishing viscosity
and remains a major conundrum in applied mathematics and theoretical fluid dynamics.

The difficulty associated can be partially understood via the following simple example of
linear plane parallel channel flow.

Example 1.1 (Linear Plane Parallel Channel Flow) Here we consider a two dimensional
channel, i.e., assuming the fluids occupying the domain (with the y variable suppressed) Ω =
R1 × (0, H), and we consider the following ansatz (with characteristic boundary condition):

u = (u1(z, t), 0), p ≡ 0, u1

∣∣
z=0,H

= given.

It is easy to check that this form is preserved under the Navier-Stokes dynamics and the Euler
dynamics provided that the initial data and the external forcing satisfy the same ansatz.

Utilizing the proposed ansatz, the Navier-Stokes equations reduce to the following simple
heat equation with small diffusive coefficient (and possibly inhomogeneous boundary condition):

∂u1

∂t
− ν

∂2u1

∂z2
= f1, u1

∣∣
z=0,H

= given.

The Euler system reduces to the following ODE (with no boundary condition): ∂u0
1

∂t = f1. It is
then easy to see [34] that there exists two boundary layers (one at z = 0 and another at z = H) in
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the sense that there exists two smooth functions θ0, θH such that u1−u0
1 ≈ θ0( z√

νt
)+θH(H−z√

νt
).

Consequently, we observe that vorticities are generated in the NSE near the boundary and
vortex sheets form at the boundary in the vanishing viscosity limit. This implies that the
problem of vanishing viscosity is a genuine singular problem since singular structure (vortex
sheet) form at the boundary. This also indicates that no uniform (in viscosity) estimates in the
space of H1 or L∞ is possible. This gives us a hint on the possible difficulty associated with
the nonlinear problem since a common technique in passing the limit in the nonlinear term is
to obtain uniform estimates in space with derivative (see [15]).

Boundary layer is not only a mathematical challenge, it is also of great importance in
application. Indeed, in the absence of body force, it is the vorticities generated in the boundary
layer and later advected into the main stream that drive the flow. The interested reader is
referred to [27] for much more on the physics of the boundary layer theory.

Due to the existence of boundary layers, it is natural to study effective equations for the
boundary layer directly. We briefly touch on the Prandtl boundary layer theory in Section 2.
Suppose that the well-posedness of the Prandtl equations is established together with appropri-
ate decay estimates at infinity. We naturally combine the solution of the Prandtl equation and
that of the Euler equation to form an approximate solution to the Navier-Stokes system. The
general belief is that these kind of approximate solution would converge to that of the Navier-
Stokes system (1.1) at vanishing viscosity. However, no general results like this is known, even
in the case of very well-behaved Euler system and Prandtl system. Indeed, we illustrate that a
spectral constraint is involved to ensure the convergence. The obstruction to the verification of
the spectral constraint lies in the advection normal to the boundary near the boundary. This
mathematical difficulty is associated with the physical mechanism of boundary layer separation.
We illustrate the approximation procedure and the difficulty involved in Section 3. We also
provide a meta theorem which states that we do have convergence under the assumptions that
the Prandtl type system is well behaved and that a suitable spectral constraint is satisfied.
The relationship between the spectral constraint and inhibition to boundary layer separation
mechanism will be briefly discussed as well. In Section 4, we provide three nonlinear examples
where the conditions of the meta theorem are satisfied. These examples include the nonlinear
3D plane parallel channel flow, nonlinear parallel pipe flow, and the case of channel flow with
uniform injection and suction at the boundary. We provide summary in the last section.

One of the main contributions of this manuscript is the identification of a spectral constraint
on approximate solutions constructed via Prandtl theory in order to ensure the rigorous validity
of the Prandtl theory.

We choose to focus on boundary layers associated with the incompressible Navier-Stokes
system equipped with Dirichlet boundary condition in this manuscript. Other types of boundary
layer may emerge if different types of boundary conditions are imposed or different type of
physical mechanisms are incorporated in the model (see [17] among others).

2 The Prandtl Theory

Since the example above suggests that the solution to the Navier-Stokes system (1.1) and
that of the Euler system (1.5) are close to each other except in the boundary layers, it is natural
to derive an effective equation for the NSE (1.1) within the boundary layers. We assume a flat
boundary at z = 0 for simplicity. Noticing that the example also suggests that the solution
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to the NSE in the boundary layer follows the stretched coordinate Z = z√
ν
, Prandtl [24, 27]

proposed the following seminal Prandtl’s equation which can be formally derived by utilizing the
stretched coordinate and omitting lower order terms in the Navier-Stokes system (for simplicity
we present the two dimensional version with the y coordinate suppressed):

∂tu1 + u1∂xu1 + u3∂zu1 − ν∂2
zzu1 + ∂xp

0
∣∣
z=0

= f1
∣∣
z=0

, (2.1)

∂xu1 + ∂zu3 = 0, (2.2)

together with the following initial and boundary conditions:

u1

∣∣
z=0

= u3

∣∣
z=0

= 0, u1

∣∣
z=∞ = u0

1(x, 0, t), u1

∣∣
t=0

= u01. (2.3)

The external forcing f is usually set to zero in most theoretical studies.
A natural question then is the validity of the Prandtl theory. In particular, the following

two important issues need to be addressed:
(1) Well-posedness of the Prandtl system (2.1);
(2) Matching of the solutions of the Prandtl system (2.1) and the Euler system (1.5) to that

of the Navier-Stokes system (1.1).
The well-posedness of the Prandtl system is a very challenging problem due to its degeneracy

and nonlinearity. There is a very nice treatise on the Prandtl system by Oleinik [22] together
with the recent progress (see [37]) as well as the very interesting finite time blow-up result
(see [8]). There are also interesting results suggesting various instability within the Prandtl
system (see [11, 12]). More results can be found in the references therein. Even with the
well-posedness of the Prandtl system, the matching problem seems to be a challenge and is
essentially open in the general case. There are interesting partial results, especially those for
self-similar solution in a wedge (see [9, 28]), half space in the analytic setting (see [3, 25, 26]),
and the case of channel flow with uniform injection and suction at the boundary (see [31, 32]
and Section 4 below). It seems that the difficulty of the matching lies in the physical mechanism
of separation of variables which can be interpreted as the verification of a spectral constraint
on the approximate solution as we illustrate in the next section.

There is a slightly different approach to the boundary layer problem advocated by Lyusternik
and Vishik [33] as well as Lions [16]. In this alternative approach, the effective equation is in
terms of the difference of the solutions to the Navier-Stokes system and that of the Euler
system, i.e., approximating u − u0 in the boundary layer. Following the same argument as in
the derivation of the original Prandtl theory, we deduce the following Prandtl type system for
θ ≈ u− u0 (we consider the 2D case again suppressing the y dependence):

∂tθ1 + (u0
1

∣∣
z=0

+ θ1)∂xθ1 + θ1∂xu
0
1

∣∣
z=0

+ θ3∂zθ1 + u0
3∂zθ1 − ν∂2

zzθ1 = 0, (2.4)

∂xθ1 + ∂zθ3 = 0, (2.5)

together with the following boundary and initial conditions:

θ1
∣∣
z=0

= −u0
1

∣∣
z=0

, θ1
∣∣
z=∞ = 0, θ3

∣∣
z=0

= 0, θ
∣∣
t=0

= 0. (2.6)

The term u0
3 can be replaced by ∂zu

0
3

∣∣
z=0

z if needed (so that the system can be written in terms
of the stretched coordinate Z). The quantity θ is usually called corrector in the literature (see
[33, 16]). The issues associated with this alternative approach is exactly the same as Prandtl’s
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original approach, i.e., we need to deal with the well-posedness of the Prandtl type system
(2.4) and the matching issue. An obvious advantage of this alternative approach is that the
matching problem is conceptually simple in the sense that ua = u0 + θ should be a natural
candidate for approximate solution to the Navier-Stokes system, and our goal is to demonstrate
that u − ua → 0, as ν → 0. A disadvantage of this approach is the complexity of the Prandtl
type system (2.4) versus the original Prandtl system (2.1) since it has now variable coefficients
among others. This is on top of the degeneracy and nonlinearity.

3 Matching, Convergence and Spectral Constraint

We follow the alternative approach of Vishik, Lyusternik and Lions by working with the
Prandtl type system (2.4) instead of the original Prandtl system (2.1). As we have discussed
earlier, the matching issue here is conceptually simple in the sense that, provided that the
Prandtl type system (2.4) is well-poseded and the solutions decay fast enough at infinity, there
is a natural candidate for approximate solution to the Navier-Stokes equations:

ua = u0 + θ. (3.1)

Our goal is to show that the approximation is valid in the sense that the approximation error
defined as

ue = u − ua (3.2)

is small in some appropriate sense.
It is a straightforward calculation to check that the approximate solution ua satisfies the

same Navier-Stokes system with an extra body force

∂ua

∂t
+ (ua · ∇)ua − νΔua + ∇pa = f + fe, (3.3)

∇ · ua = 0, (3.4)

where fe is an additional external forcing due to approximation error and it satisfies the following
type of estimates: fe ≈ √

νψ( z√
ν
).

We may then deduce that the approximation error ue satisfies the following error equations
(A subtle issue that we have omitted here is that the boundary condition for the approximation
error is not necessarily zero. In fact, ue constructed above will not satisfy the homogeneous
Dirichlet boundary condition although the corrector θ decay at infinity. This complication can
be resolved by utilizing truncation at the stream function level. The truncation introduces
additional error that is of the same order as the error represented in the extra body force fe.
See [31, 32] for details related to Example 4.3, and [18] for details related to Example 4.1):

∂ue

∂t
+ (u · ∇)ue + (ue · ∇)ua − νΔue + ∇q = fe, (3.5)

∇ · ue = 0, (3.6)

ue
∣∣
∂Ω

= 0, (3.7)

ue
∣∣
t=0

= 0. (3.8)

Our overall GOAL is to demonstrate that ue is small in some appropriate sense (in various
spaces).
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For this purpose, we multiply the error equation (3.5) by ue and integrate over the domain,
and we have

1
2

d‖ue‖2
L2

dt
+ ν‖∇ue‖2

L2 +
∫

Ω

(ue · ∇)ua · ue =
∫

Ω

fe · ue. (3.9)

It is then easy to see that a sufficient condition for ue → 0 in L2 is the following spectral
constraint on the approximate solution ua:

inf
v∈A

∫
Ω
(ν|∇v|2 + (v · ∇)ua · v)

‖v‖2
L2

≥ Λ > −∞, (3.10)

where Λ should be a constant independent of the viscosity ν, and the admissible set A is defined
as

A = {v ∈ (H1
0 (Ω))d, ∇ · v = 0, v �= 0}. (3.11)

This admissible set can be replaced by smaller sets if the flow satisfies certain symmetry as
those illustrated in Examples 4.1 and 4.2 below.

Such kind of spectral constraints are ubiquitous in classical fluid stability analysis (see [6])
and in terms of estimating bulk dissipative quantities associated with incompressible flows (see
[5]). However, we believe that this is the first time that such a spectral constraint is identified
in terms of boundary layers associated with incompressible flows.

Heuristically, the tangential derivative part of the advection term does not pose any seri-
ous difficulty in terms of the spectral constraint, since we anticipate that the behavior of the
tangential derivative of the approximate solution ua is very much the same as that of ua itself.
Indeed, we formally have

∣∣∣
∫

Ω

v1∂xua · v
∣∣∣ ≤ ‖∂xua‖L∞‖v‖2

L2 ≤ C‖v‖2
L2 .

The difficulty associated with the verification of this spectral constraint (3.10) lies in the ad-
vection normal to the boundary term. Indeed, heuristic calculations lead to

∣∣∣
∫

Ω

v3∂zua · v
∣∣∣ ∼ 1√

ν
‖v‖2

L2 ,

∣∣∣
∫

Ω

v3∂zv · ua
∣∣∣ ∼ ‖v‖L2‖∇v‖L2 ,

∣∣∣
∫

Ω

v3∂zv · θ
∣∣∣ ∼ √

ν‖∇v‖L2 ,

and these estimates are not sufficient for the spectral constraint. This advection normal to the
boundary is the physical mechanism that is responsible for the possible separation of boundary
layers. If the separation of the boundary is inhibited, we would anticipate the verification of the
spectral constraint which further leads to the validity of the Prandtl type theory. Therefore,
we have the following meta theorem.

Theorem 3.1 (Meta Theorem on the Validity of Prandtl Type Theory) Suppose that the
following two conditions are satisfied:

(1) The well-posedness of the Prandtl type system (2.4) together with appropriate decay at
infinity;
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(2) The verification of the spectral constraint (3.10) on the approximate solution (3.1).
Then the Prandtl type approximation is valid in the sense that

‖ue‖L∞(L2) ≤ Cν
3
4 , (3.12)

‖ue‖L2(H1) ≤ Cν
1
4 . (3.13)

The spectral constraint (3.10) can be verified in the case of no normal flow near the boundary.

The verification of the spectral constraint (3.10) under the assumption that there is no
normal to the boundary flow near the boundary is obvious.

4 Nonlinear Examples of Boundary Layers

The purpose of this section is to provide examples where the assumptions in the meta
theorem presented in the previous section are satisfied so that the Prandtl theory is validated.
Besides, the trivial plane parallel flows presented in Example 1.1, we show that certain type of
nonlinear flows verify the assumptions as well. These examples include a class of 3D nonlinear
plane parallel flows, nonlinear parallel pipe flows, and the case of channel flow with injection
and suction at the boundary. The first two special type of nonlinear flows were proposed in
[35] where the vanishing viscosity problem was resolved following a strategy due to Kato [14].
The case of channel flow with injection and suction at the boundary was investigated in [1] for
vanishing viscosity and in [31, 32] for the boundary layer issue.

The common feature for the nonlinear 3D plane parallel channel flow and the nonlinear
parallel pipe flow is the suppression of normal velocity. Indeed, the normal velocity in these
two models are identically zero which leads to the verification of the spectral constraint. For
the channel flow with uniform injection and suction at the boundary, the suction makes the
boundary layer narrower which leads to stabilization (verification of the spectral constraint).

The next example is a slight generalization of the nonlinear parallel channel flow proposed
in [35].

Example 4.1 (Nonlinear Plane Parallel 3D Channel Flow) In this case, the domain is
assumed to be a channel of the form Ω = R1 ×R1 × (0, 1) with periodicity assumed in the x, y
direction.

We consider the following family of plane parallel flow:

u = (u1(t, z), u2(t, x, z), 0), u
∣∣
z=j

= (βj
1(t), β

j
2(t, x), 0), j = 0, 1

provided that the initial data and external forcing also satisfy the same ansatz, i.e.,

u0 = (u1,0(z), u2,0(x, z), 0), f = (f1(t, z), f2(t, x, z), 0).

It is easy to check that this family of solution is invariant under the Navier-Stokes flow. Indeed,
the NSE (1.1) reduces to the following nonlinear system:

∂tu1 − ν∂zzu1 = f1, ∂tu2 + u1∂xu2 − ν∂xxu2 − ν∂zzu2 = f2,

and the Euler system (1.5) reduces to

∂tu
0
1 = f1, ∂tu

0
2 + u0

1∂xu
0
2 = f2,
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and the associated Prandtl type system for the corrector θ0 (for the boundary layer at z = 0)
is given by

∂tθ
0
1 − ν∂zzθ

0
1 = 0,

∂tθ
0
2 − ν∂zzθ

0
2 + θ01∂xθ

0
2 + u0

1(t, 0)∂xθ
0
2 + θ01∂xu

0
2(t, x, 0) = 0,

(β0
1(t) − u0

1(t, 0), β0
2(t, x) − u0

2(t, x, 0)) = (θ01 , θ
0
2)

∣∣
z=0

.

The Prandtl type equation for the corrector θ1 (for boundary layer at z = 1) is derived in a
similar fashion.

It is then straightforward to verify that the assumptions in the meta theorem are satisfied,
i.e., the Prandtl type system is well-posed with solution decay at infinity and the spectral
constraint is verified due to the lack of normal velocity (see [18]). Indeed, one can show that

‖u− u0 − θ0 − θ1‖L∞(L2) ≤ Cν
3
4 ,

‖u− u0 − θ0 − θ1‖L2(H1) ≤ Cν
1
4 ,

‖u− u0 − θ0 − θ1‖L∞(L∞) ≤ Cν
1
4 .

The interested reader is referred to [18] for more details (the uniform in space and time estimate
requires additional tools involving anisotropic Sobolev spaces and related embedding). Related
L∞(L2) result was derived earlier in [35] using Kato type technique and L∞(L∞) type result
has been obtained in [20] using parametrix technique and with different kind of correctors (not
related to the Prandtl approach).

The next example is a slight generalization of the nonlinear parallel pipe flow introduced in
[35].

Example 4.2 (Nonlinear Parallel Pipe Flow) In this case, the domain Ω is set to be a
cylinder with radius 1 parallel to the x axis. Periodicity in x is assumed. The ansatz for flow is

u = uφ(t, r)eφ + ux(t, r, φ)ex, u
∣∣
r=1

= (0, βφ(t), βx(t, φ, x))

with the initial data and external forcing satisfying the same ansatz, and φ denotes the azimuthal
variable and r denotes the radial variable.

It is easy to verify that this family of flow is also invariant under the Navier-Stokes dynamics.
Indeed, the NSE (1.1) reduces to the following form:

−(uφ)2 + r∂rp = 0,

∂tuφ =
ν

r
∂r(r∂ruφ) − ν

r2
uφ + fφ,

∂tux +
uφ

r
∂φux =

ν

r
∂r(r∂rux) +

ν

r2
∂φφux + fx,

while the Euler system reduces to

−(u0
φ)2 + r∂rp

0 = 0, ∂tu
0
φ = fφ, ∂tu

0
x +

u0
φ

r
∂φu

0
x = fx,

and the associated Prandtl type system takes the form

∂tθφ − ν∂2
rrθφ = 0,

∂tθx + θφ∂φu
0
x(t, 1) + θφ∂φθx + u0

φ(t, 1)∂φθx = ν∂2
rrθx.
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It is then straightforward to verify that the assumptions in the meta theorem are satisfied,
i.e., the Prandtl type system is well-posed with solution decay at infinity and the spectral
constraint is verified due to the lack of normal velocity (see [19]). Indeed, one can show that

‖u− u0 − θ‖L∞(L2) ≤ Cν
3
4 , ‖u− u0 − θ‖L2(H1) ≤ Cν

1
4 .

Uniform in space and time estimates can be also derived via appropriate application and gen-
eralization of anisotropic embedding developed earlier (see [34, 29]). The interested reader is
referred to [19] for more details. Related L∞(L2) result was derived earlier in [35] using Kato
type technique and H1 type result can be found in [21] using parametrix technique and an
approach not related to the Prandtl theory.

The previous examples all require special symmetry of the flows and suppressed the normal
velocity completely. The next example is for general Navier-Stokes flows but with uniform
injection and suction at the boundary (non-characteristic boundary).

Example 4.3 (Channel Flow with Uniform Injection and Suction at the Boundary) In
this case, we set the domain to be a 2D channel (3D can be discussed analogously), i.e.,

Ω = R1 × (0, H),

with periodicity assumed in the x direction.
We assume that there exist uniform injection at the top of the channel and uniform suction

at the bottom of the channel, i.e.,

u
∣∣
z=0,H

= (0,−U), U > 0,

where U is a positive constant.
It is worthwhile to point out that an additional (upwind) boundary condition is needed for

the well-posedness of the Euler equation in this case:

u0
1 = 0.

This is a manifestation of the hyperbolic mechanism of the Euler system under this non-
characteristic boundary condition. The local in time well-posedness of the Euler system with
this non-conventional additional upwind boundary condition can be found in [2] for 2D and [23]
for 3D.

It is a pleasant surprise that the Prandtl type system takes the following linear elliptic form
in this case with uniform injection and suction at the boundary despite the nonlinearity of the
Navier-Stokes and Euler systems:

−U ∂θ1
∂z

− ν
∂2θ1
∂z2

= 0, θ1
∣∣
z=0

= −v0
1

∣∣
z=0

, θ1
∣∣
z=∞ = 0,

∂θ1
∂x

+
∂θ3
∂z

= 0.

We notice that the θ1 equation coincides with Friedrichs’ classical example of boundary layer
(see [10]).

In this case, the well-posedness of the Prandtl type equation is trivial. One also notices that
there is only one boundary layer at the downwind location (z = 0) with a thickness proportional
to ν

U . And therefore the spectral constraint (3.10) may be verified for short time at least since
we have∣∣∣

∫
Ω

v3∂zv · θ
∣∣∣ ≤ |zθ|L∞‖∇v‖L2

∥∥∥v3
z

∥∥∥
L2

≤ C|zθ|L∞‖∇v‖2
L2 ≤ C × Cθ(t)ν‖∇v‖2

L2 ,
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thanks to Hardy’s inequality and the explicit form of the boundary layer solution with thickness
proportional to ν

U and initial thickness 0. One can then show that

‖u− u0 − θ‖L∞(L2),L∞(L∞),L2(H1) → 0.

The interested reader is referred to [31, 32] for more details. Further refinements and
generalizations of this example can be found in [13, 36] among others.

The boundary layer in this case with injection and suction can be easily understood at the
linear level. Indeed, we can decompose the velocity field in the following form:

u = (v1,−U + v3), vj

∣∣
z=0,H

= 0, j = 1, 3.

Inserting this into the Navier-Stokes system (1.1) and dropping the nonlinear terms, we arrive
at the following advection-diffusion equation:

∂v1
∂t

− U
∂v1
∂z

− ν
∂2v1
∂z2

= f1, v1
∣∣
z=0,H

= 0,

and the Euler system reduces to the following linear transport equation:

∂v0
1

∂t
− U

∂v0
1

∂z
= f1, v0

1

∣∣
z=H

= 0.

It is then clear that the additional (upwind) boundary condition for the tangential velocity v0
1

is exactly the upwind boundary condition required for transport equation.
The steady state case reduces to Friedrichs’ example and has the following exact solution

(assuming f1 is a constant):

v1(z) = −f1
U
z +

f1H

U(1 − exp(−UH
ν ))

(
1 − exp

(
− Uz

ν

))
.

The existence of a boundary layer at the downwind location (z = 0) with thickness proportional
to ν

U is then transparent

u1 − u0
1 = v1 − v0

1 = boundary layer
(z
ν

)
.

A complete analysis of the boundary layer for the time-dependent linear case can be found in
[4].

5 Summary

We have surveyed a few linear and nonlinear examples where the validity of the Prandtl
type theory can be rigorously established. Besides the well-known issue of well-posedness of
the Prandtl type system, another important ingredient in validating the Prandtl theory is the
spectral constraint (3.10) on the approximate solution. The main obstruction to the verification
of the spectral constraint is the advection normal to the boundary which corresponds to the
mechanism that leads to the separation of boundary layers. For the nonlinear plane parallel
flow and nonlinear parallel pipe flow, the normal velocities are suppressed in both cases (no
separation of boundary layer), and hence we can rigorously demonstrate the validity of the
Prandtl type theory. Another physical mechanism that can be used to inhibit the separation of
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boundary layer is suction at the boundary. The case of channel flow with uniform injection and
suction is presented in Example 4.3, where the spectral constraint is verified and the validity
of the Prandtl theory is established for short time.

We believe that a useful and important discovery here is the spectral constraint on the ap-
proximate solution for the validity of the Prandtl type theory even under the assumption of the
well-posedness of the Prandtl type system. Although, the verification of such a spectral con-
straint was implicit in previous works on validation of Prandtl type theory, it seems appropriate
and beneficial for us to identify this constraint explicitly here.

The study of boundary layers associated with the incompressible Navier-Stokes flow remains
a great challenge. Heuristically, we expect the following type of results:

(1) short time well-posedness of the Prandtl type system,
(2) short time validity of the Prandtl type theory.
However, we are far away from reaching our goal except for a few special cases that we

mentioned above and in the introduction.
Beyond the short time validity of the Prandtl type theory, it is of great importance to

develop theory after the boundary layer separates (and hence the Prandtl theory cease to be
viable). We still expect the validity of the vanishing viscosity limit. But different methods must
be used after the separation of boundary layer. Kato type approach is one of these methods that
do not rely on the Prandtl theory but its success is very much limited so far (see [14, 35, 30]).

Acknowledgement Professor Temam introduced the author to the fascinating vanishing
viscosity problem while the author was a graduate student at Indiana University. This short note
is dedicated to Professor Temam on the occasion of his 70th birthday as a token of appreciation
and admiration.
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