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1 Introduction and Physical Background

The reduction of a free-interface problem to an explicit equation for the interface dynamics

is a very challenging question (see [3–5]). A paradigm two-dimensional problem in combustion

theory is the model for the Near Equidiffusive Flames (see [16] and for a brief exposure [5,

Appendix A]), a system for the (rescaled) temperature θ, the enthalpy S and the moving flame

front ξ = ξ(t, y) which reads:

∂θ

∂t
= ∆θ, x < ξ(t, y), (1.1)

θ = 1, x ≥ ξ(t, y), (1.2)

∂S

∂t
= ∆S − α∆θ, x ̸= ξ(t, y). (1.3)
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At the front, θ and S are continuous and the following jump conditions occur for the normal

derivatives: [ ∂θ
∂n

]
= − exp(S),

[∂S
∂n

]
= α

[ ∂θ
∂n

]
, (1.4)

where α is the reduced Lewis number. We recall that in combustion theory the Lewis number

(Le) is the ratio of thermal and molecular diffusivities. Equidiffusivity corresponds to Le = 1

and, in System (1.1)–(1.4), to α = 0. We consider only the case where α is positive, i.e., the

case of high mobility of the deficient reactant.

System (1.1)–(1.4) can be formulated (i) either in the whole space R (see [6, 11]) or (ii) in

a strip R× [− ℓ
2 ,

ℓ
2 ] with periodic or Neumann boundary conditions (see [12–14]). It is easy to

see that in both cases System (1.1)–(1.4) admits a planar Traveling Wave (TW) solution (θ, S),

with velocity −1. The threshold of (orbital) stability of this TW occurs at a critical value αc.

In the former case (i), one has αc = 1, in the latter case (ii), one has αc < 1 and αc → 1 as

ℓ→ +∞.

The main issue is the dynamics of the perturbation of the planar front φ(t, y) = ξ(t, y) + t

when α > αc. It was already observed by Turing (see [21] and [17, Chapter 14]), sixty years

ago, that spatially inhomogeneous patterns can evolve by diffusion driven instability when

equidiffusion does not hold. One of the authors in [19] introduced the small positive parameter

ε = α− 1 and considered the rescaled independent and dependent variables

τ = ε2t, η =
√
εy, φ = εψ. (1.5)

As ε → 0, he derived asymptotically the Kuramoto-Sivashinsky equation (K-S) for the formal

limit Φ of ψ:

Φτ + 4Φηηηη +Φηη +
1

2
(Φη)

2
= 0. (1.6)

In accordance with Turing’s prediction, K-S generates a cellular structure and chaotic behavior

in an appropriate range of parameters (see [10]). We refer to [20] and its extensive bibliography.

However, when α − 1 is positive but not necessarily small, namely away from the stability

threshold, the structure of the front equation may be far more involved. In a previous paper,

assuming quasi-steadiness of the temperature and enthalpy, and neglecting some higher order

terms for the sake of simplicity, we came to the following fully nonlinear equation for the front

perturbation φ, assuming periodic boundary conditions:

∂

∂t
B(φ) = S (φ) + F ((φy)

2), (1.7)

where S is the fourth-order differential operator

S (φ) = −4φyyyy − (α− 1)φyy

and B and F are pseudo-differential operators.

Our goal is to get rid of the quasi-steadiness hypothesis. The main feature is that, as already

observed in [1] for the κ-θ model, Equation (1.7) turns out to be a wave equation. We will give a

full derivation of the equation in Fourier-Laplace variables in Appendix. However, for simplicity
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we will focus in this paper on a paradigm model that we derive heuristically for the convenience

of the reader.

Let us consider in fixed coordinates (see Appendix) the perturbation of temperature u and

enthalpy v in (1.1)–(1.4):

θ = θ + u, S = S + v.

The conventional linear stability analysis of the travelling wave solution (θ, S) yields the fol-

lowing set of relations between the perturbation of the interface φ(t, y) and its temperature

χ(t, y) = u(t, 0, y), valid in the long-wavelength limit (see [8]):

φt = φyy + χ, (1.8)

χt = χyy −
1

4
αφyy −

1

4
χ. (1.9)

Upon elimination of χ, Equations (1.8) and (1.9) yield

φt + (α− 1)φyy + 4φyyyy + 4φtt − 8φtyy = 0. (1.10)

One can easily check that Equation (1.10) implies exponential amplification of long wave-

length disturbances at α > 1. In reality, this amplification is checked by effects represented by

certain nonlinear terms not present in (1.10). The structure of these terms may be estimated

via the following semiheuristic arguments. Consider a curved front in the model (1.1)–(1.4). If

the characteristic radius of curvature of the flame is significantly greater than its scaled ther-

mal thickness (= 1), then the scaled propagation speed of the flame relative to the gas may be

considered a constant (= 1). In a coordinate system at rest with respect to the undisturbed

planar flame, the front x = φ(t, y) of such a curved flame is described by the equation (see [18])

φt = 1−
√

1 + (φy)2.

Near the stability threshold αc, one expects that (φy)
2 ≪ 1. Hence,

φt +
1

2
(φy)

2 = 0.

Comparing this weakly nonlinear equation, which disregards effects due to distortion of

the flame structure, with Equation (1.10), in which these effects are included, one reaches the

reasonable conclusion that 1
2 (φy)

2 is precisely the nonlinear term missing from (1.10). One thus

ends up with the following equation for the nonlinear evolution of the disturbed flame front:

φt +
1

2
(φy)

2 + (α− 1)φyy + 4φyyyy + 4φtt − 8φtyy = 0.

There are of course alternative possibilities for reduction of the free-interface problem (1.1)–(1.4)

to an explicit equation of the flame front. In [8], for example, the reduced model is obtained

through a geometrically-invariant extrapolation of System (1.8)–(1.9), resulting in a coupled

strongly nonlinear system of second-order equations for the flame front and its temperature.

This paper is devoted to the paradigm model

4(φtt + φyyyy) + (I − 8Dyy)φt + (α− 1)φyy +
1

2
(φy)

2 = 0, (1.11)
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a nonlinear wave equation with a strongly damping operator I − 8Dyy acting on φt, which

will play a crucial role hereafter. Equation (1.11) is set on a strip R × [− ℓ
2 ,

ℓ
2 ] with periodic

boundary conditions and initial conditions for φ and φt respectively:

φ(0, · ) = φ0, φt(0, · ) = φ1.

The paper is organized as follows. In Section 2, we introduce the notation and the functional

spaces. Section 3 is devoted to the stability issue. We write (1.11) as a first-order system

and study the semigroup (T (t))t≥0 associated with the linear operator. In wave problems, the

semigroup is a priori only strongly continuous. However, in the case of a damped wave equation

and if the damping is strong enough, the semigroup may be analytic (see [7] and the references

therein). This is what we prove for (1.11). Using arguments from the semigroup theory, we can

establish the following first main result of the paper as follows:

Theorem 1.1 Let

αc = 1 +
16π2

ℓ2
. (1.12)

The following properties are satisfied:

(a) If α < αc, then the null solution to Equation (1.11) is (orbitally) stable, with asymptotic

phase, with respect to sufficiently smooth and small perturbations.

(b) If α > αc, then the null solution to Equation (1.11) is unstable.

In Section 4, we set α = 1 + ε and perform the change of independent and dependent

variables (1.5) and after division by ε3 we get to

4ε2ψττ + (I − 8εDηη)ψτ + 4ψηηηη + ψηη +
1

2
(ψη)

2
= 0. (1.13)

Then, we anticipate, in the limit ε → 0, that ψ ∼ Φ, where Φ solves (1.6). The idea is to

link the small positive parameter ε and the width of the strip, which will blow up as ε → 0.

For ℓ0 > 0, we take ℓ of the form ℓε = ℓ0√
ε
, hence αc = 1 + 16π2

ℓ20
ε. Thus, ℓ0 becomes the new

bifurcation parameter, which may be renormalized (see [20, Chapter III] and [10]) as

ℓ̃0 =
ℓ0
4π
.

Therefore we assume ℓ̃0 > 1 in order to have αc ∈ (1, 1 + ε), i.e., α > αc, otherwise the trivial

solution is stable and the dynamics is trivial.

The second main result of the paper is the following theorem.

Theorem 1.2 Let Φ0 ∈ Hm be a periodic function of period ℓ0. Further, let Φ be the

periodic solution of (1.6) (with period ℓ0) on a fixed time interval [0, T ], satisfying the initial

condition Φ(0, · ) = Φ0. Then, if m is large enough, there exists ε0 = ε0(T ) ∈ (0, 1) such that,

for 0 < ε ≤ ε0, Problem (1.11) admits a unique solution φ on [0, T
ε2 ], which is periodic with

period ℓ0√
ε
with respect to y, and satisfies, for |y| ≤ ℓ0

2
√
ε
,

φ(0, y) = εΦ0(y
√
ε),

φt(0, y) = −ε3
{
4Φ

(4)
0 (y

√
ε) + Φ′′

0(y
√
ε) +

1

2
(Φ′

0(y
√
ε))2

}
.
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Moreover, there exists a positive constant C, independent of ε ∈ (0, ε0], such that

|φ(t, y)− εΦ(tε2, y
√
ε)| ≤ Cε2, 0 ≤ t ≤ T

ε2
, |y| ≤ ℓ0

2
√
ε

(1.14)

for any ε ∈ (0, ε0].

In other words, starting from the same configuration, the solution of (1.11) remains on a

fixed time interval close to the solution of K-S up to some renormalization, uniformly in ε

sufficiently small. Note that the initial conditions for φ are of special type, compatible with Φ0

and (1.6) at τ = 0. Initial conditions of this type have been already considered in [1, 2, 4, 5].

Numerical computations on Equation (1.13) are presented in Section 5.

Eventually, in Appendix, we follow the framework of [5, Section 3] and derive a self-consistent

equation for φ in the Fourier-Laplace variables. The latter has the same linear part as Equation

(1.11) and will be studied in a forthcoming paper.

2 Some Mathematical Setting

In this section, we briefly introduce some notation and the functional spaces we will use

below. We use the discrete Fourier transform with respect to the variable y. For this purpose,

given a function f : (− ℓ
2 ,

ℓ
2 ) → C, we denote by f̂(k) its kth Fourier coefficient, that is, we

write

f(y) =
+∞∑
k=0

f̂(k)wk(y), y ∈
(
−ℓ
2
,
ℓ

2

)
,

where {wk} is a complete set of (complex valued) eigenfunctions of the operator

Dyy : H2
(
−ℓ
2
,
ℓ

2

)
→ L2

(
−ℓ
2
,
ℓ

2

)
,

with ℓ-periodic boundary conditions, corresponding to the non-positive eigenvalues

0,−4π2

ℓ2
,−4π2

ℓ2
,−16π2

ℓ2
,−16π2

ℓ2
,−36π2

ℓ2
, · · · .

We shall find it convenient to label this sequence as

0 = −λ0(ℓ) > −λ1(ℓ) = −λ2(ℓ) > −λ3(ℓ) = −λ4(ℓ) > · · · .

In Section 3, we simply write λk instead of λk(ℓ).

For any integer s, we denote by Hs
♯ the usual Sobolev space of order s consisting of ℓ-periodic

(generalized) functions, which we will conveniently represent as

Hs
♯ =

{
u =

+∞∑
k=0

û(k)wk :
+∞∑
k=0

λskû(k)
2 < +∞

}
.

For s = 0, we simply write L2 instead of H0
♯ and we denote by | · |2 the usual L2-norm.

By Πu, we denote the mean value of the function u ∈ L2, i.e.,

Πu =
1

ℓ

∫ ℓ
2

− ℓ
2

u(y)dy.
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When s > 0, we endow the space (I −Π)Hs
♯ with the norm

∥u∥2s =
+∞∑
k=0

λskû(k)
2, u ∈ (I −Π)Hs

♯ .

3 Proof of Theorem 1.1

We begin this section by rewriting the initial value problem φ(0, · ) = φ0, φt(0, · ) = φ1 for

Equation (1.11) in the following abstract form:
φtt = Bφt +Aφ− 1

8
(φy)

2,

φ(0, · ) = φ0,

φt(0, · ) = φ1,

(3.1)

where A = −Dyyyy − α−1
4 Dyy, and B = 2Dyy − 1

4I is the damping operator.

We write φ(t, y) = Π(φ(t, · )) + ((I −Π)φ(t, · ))(y) := r(t) + u(t, y) and split Problem (3.1)

into the two problems
rtt(t) = −1

4
rt(t)−

1

8ℓ
Π((uy(t, · ))2) = −1

4
rt(t)−

1

8ℓ

∫ ℓ
2

− ℓ
2

(uy(t, y))
2dy, t > 0,

r(0) = Πφ0,

rt(0) = Πφ1

(3.2)

and 
utt(t, · ) = But(t, · ) +Au(t, · )− 1

8
(I −Π)((uy(t, · ))2), t > 0,

u(0, · ) = (I −Π)φ0,
ut(0, · ) = (I −Π)φ1.

(3.3)

Problem (3.2) can be immediately solved once the solution to Problem (3.3) is known.

Indeed,

r(t) =
(
− 4Πφ1 +

1

2

∫ t

0

e
s
4Π((uy(s, · ))2)ds

)
e−

1
4 t

+Πφ0 + 4Πφ1 −
1

2

∫ t

0

Π((uy(s, · ))2)ds, t > 0. (3.4)

Hence, the core of our analysis is Problem (3.3) which can be written as a first order system

for the unknown U := (u, ut) as follows:
Ut(t, · ) = A U(t, · ) + F (U(t, · )), t > 0,

U(0, · ) = (I −Π)

(
φ0

φ1

)
,

(3.5)

where

A u :=

(
0 I
A B

)
u, F (u) =

(
0

−1
8 (I −Π)((uy)

2)

)
,

on smooth vector-valued functions u = (u, v).
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3.1 Study of the operator A : generation of an analytic semigroup

In the next proposition, we will study the main properties of the operator A showing that it

generates an analytic strongly continuous semigroup (T (t))t≥0 in the space X = (I −Π)H2
♯ ×

(I −Π)L2. We also characterize the spectrum of A .

Proposition 3.1 The operator A with domain D(A ) = (I − Π)H4
♯ × (I − Π)H2

♯ is the

generator of an analytic strongly continuous semigroup in X . Its spectrum σ(A ) consists of

real eigenvalues only; it contains positive eigenvalues if and only if α > αc (see (1.12)).

Proof To begin with we prove that the operator A is sectorial. For this purpose, we split

A into the sum A = A0 + A1, where

A0 =

(
0 I

Dyyyy B

)
, A1 =

1− α

4

(
0 0
Dyy 0

)
.

Since A1 is a bounded operator in X , to prove that A generates a strongly continuous

analytic semigroup it suffices to show that A0 generates an analytic semigroup in X with

domain D(A0) = D(A ) (see e.g., [15, Proposition 2.4.1(i)]). For this purpose, we fix f =

(f, g) ∈ X and consider the resolvent equation{
µu = v + f,

µv = −uyyyy + 2vyy −
1

4
v + g

with periodic boundary conditions at ± ℓ
2 . Plugging the first equation into the second one, we

get the following self-consistent equation for u:

uyyyy − 2µuyy +
(
µ2 +

µ

4

)
u = µf − 2fyy +

1

4
f + g. (3.6)

We rewrite Equation (3.6) in Fourier variables. It gives the infinitely many equations(
λ2n + 2µλn + µ2 +

µ

4

)
û(n) =

(
µ+ 2λn +

1

4

)
f̂(n) + ĝ(n), n = 1, 2, · · · ,

where we observe that 2µλn and µ
4 are the contribution of the damping operator B. These

terms play a crucial role in the estimates below.

If λ2n + 2µλn + µ2 + µ
4 ̸= 0, we get

û(n) =
4µ+ 8λn + 1

4λ2n + 8µλn + 4µ2 + µ
f̂(n) +

4

4λ2n + 8µλn + 4µ2 + µ
ĝ(n) := anf̂(n) + bnĝ(n)

for any n = 1, 2, · · · . Note that∣∣∣λ2n + 2µλn + µ2 +
µ

4

∣∣∣2
=

1

16
{16x4 + 8x3(8λn + 1) + x2(32y2 + 96λ2n + 16λn + 1)

+ 8x(y2 + λ2n)(8λn + 1) + 16y4 + y2(32λ2n + 16λn + 1) + 16λ4n}, (3.7)

where we set µ = x + iy. Since λn > 0 for any n = 1, 2, · · · , it follows immediately that

λ2n + 2µλn + µ2 + µ
4 never vanishes in the right halfplane. Therefore, û(n) is well-defined for
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any n = 1, 2, · · · and any µ ∈ C with nonnegative real part. For any such fixed µ, it holds that

an ∼ 2λ−1
n and bn ∼ λ−2

n as n→ +∞. Thus, (anf̂(n)) and (bnĝ(n)) are the Fourier coefficients

of a function in (I −Π)H4
♯ . Since v = µu− f , it follows that v ∈ (I −Π)H2

♯ .

Let us now prove that, for any M > 0, there exists a positive constant C, such that

∥R(µ,A0)f∥X ≤ C

|µ|
∥f∥X , Reµ ≥M. (3.8)

Proposition 2.1.11 of [15] then will imply that A0 is sectorial. For this purpose, we observe that

Formula (3.7) implies that∣∣∣λ2n + 2µλn + µ2 +
µ

4

∣∣∣ ≥ √
|µ|4 + 2λ2n|µ|2 ≥ 1√

2
|µ|2 + λn|µ|

for any µ ∈ C with positive real part and any n = 1, 2, · · · . Hence,

|an| ≤
(√

2 + 1 +

√
2

4M

) 1

|µ|
and |bn| ≤

1

λn|µ|
(3.9)

for any µ ∈ C with Reµ ≥M and any n = 1, 2, · · · . Since

∥u∥22 =

+∞∑
n=1

λ2n|û(n)|2 ≤ 2

+∞∑
n=1

λ2n|an|2|f̂(n)|2 + 2

+∞∑
n=1

λ2n|bn|2|ĝ(n)|2,

from (3.9) we deduce that

∥u∥2 ≤
(
2 +

√
2 +

1

2M

) 1

|µ|
(∥f∥2 + |g|2), Reµ ≥M. (3.10)

Let us now consider the function v = µu− f . As it is immediately seen

v̂(n) = − 4λ2n
4µ2 + 8λnµ+ µ+ 4λ2n

f̂(n) +
4µ

4µ2 + 8λnµ+ µ+ 4λ2n
ĝ(n) := cnf̂(n) + dnĝ(n)

for any n = 1, 2, · · · . Since |cn| ≤ λn|µ|−1 and |dn| ≤
√
2|µ|−1 for any µ ∈ C with Reµ ≥ M

and any n = 1, 2, · · · , we get

|v|22 =
+∞∑
n=1

|v̂(n)|2 ≤ 2
+∞∑
n=1

|cn|2|f̂(n)|2 + 2
+∞∑
n=1

|dn|2|ĝ(n)|2 ≤ 2

|µ|2
(∥f∥22 + 2|g|22),

i.e.,

|v|2 ≤ 2

|µ|
(∥f∥2 + |g|2). (3.11)

From (3.10) and (3.11), estimate (3.8) follows with C = 4 +
√
2 + 1

2M .

Let us now characterize the spectrum of the operator A . Since D(A ) = (I −Π)H4
♯ × (I −

Π)H2
♯ compactly embeds in X , σ(A ) consists of eigenvalues only. Let µ ∈ C be any such

eigenvalues. Setting u = (u, v) we are led to the systemµu = v,

µv = −uyyyy −
α− 1

4
uyy + 2vyy −

1

4
v
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with periodic boundary conditions at ± ℓ
2 . Arguing as in the first part of the proof, we consider

the infinitely many equations{
λ2n −

(α− 1

4
− 2µ

)
λn +

(
µ2 +

µ

4

)}
un = 0, n = 1, 2, · · · .

Clearly, µ is an eigenvalue of A if and only if there exists n ∈ N such that

µ2 +
(1
4
+ 2λn

)
µ+ λ2n − α− 1

4
λn = 0,

i.e., if and only if µ = µ±
n , where

µ±
n =

−(1 + 8λn)±
√
16αλn + 1

8
, n = 1, 2, · · · .

Let us determine the values of α such that A admits eigenvalues with positive real parts.

Clearly, we have only to consider the eigenvalues µ+
n . Observe that µ+

n > 0 if and only if√
16αλn + 1 ≥ 1 + 8λn, i.e., if and only if α ≥ 4λn + 1. It follows that the spectrum of A

admits positive eigenvalues if and only if α > αc.

3.2 Proof of Theorem 1.1

(a) Fix u0 = (φ0, φ1) ∈ X . From the remarks at the very beginning of this section, it is

clear that the main point of the proof consists in proving that Problem (3.3) admits a unique

solution, defined for all positive times, which decreases to zero as t → +∞. This property

follows immediately from applying [9, Theorem 5.1.1] due to the results in Proposition 3.1.

More precisely, for any ω ∈ (0,−ω0), where ω0 denotes the maximum of the eigenvalues of the

operator A , there exists a positive constant C, such that

∥u(t, · )∥X ≤ Ce−ωt∥u0∥X , t > 0,

provided that the X -norm of u0 is sufficiently small.

Let us now go back to Problem (3.2) whose solution is given by (3.4). A straightforward

computation reveals that r(t) converges to r∞ as t→ +∞, where

r∞ = Πφ0 + 4Πφ1 −
1

2ℓ

∫ +∞

0

Π((uy(s, · ))2)ds.

Indeed,∣∣∣e− 1
4 t

∫ t

0

e
s
4Π((uy(s, · ))2)ds

∣∣∣ = ∣∣∣ ∫ t

0

e−
s
4Π((uy(t− s, · ))2)ds

∣∣∣ ≤ Ke−2ωt

∫ t

0

e−
s
4 e2ωsds

for some K > 0. If we fix ω < 1
8 , then the last side of the previous chain of inequalities vanishes

as t→ +∞. Since

r′(t) =
(
Πφ1 −

1

8ℓ

∫ t

0

e
s
4Π((uy(s, · ))2)ds

)
e−

1
4 t

for any t > 0, the above arguments show that r′(t) tends to 0 as t→ +∞.

We have so proved that, if the data φ0 and φ1 have sufficiently small H2
♯ - and L

2-norms,

respectively, then Problem (3.1) admits a solution φ defined in [0,+∞), such that

lim
t→+∞

φ(t) = Πφ0 + 4Πφ1 −
1

2ℓ

∫ +∞

0

Π((uy(s, · ))2)ds,
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whereas φt(t, · ) tends to zero as t→ +∞ with exponential rate.

Actually, the previous one is the only solution to Problem (3.1). This can be proved, i.e.,

adapting the arguments in [11].

(b) To prove the second part of Theorem 1.1, it suffices to apply [9, Theorem 5.1.3], which

gives the instability of the null solution to the differential equation Ut = A U + F (U). Note

that, since the eigenvalues of A define two sequences (µ+
n ) and (µ−

n ) which tend to −∞ as

n→ +∞, there is a gap between the imaginary axis and the part of σ(A ) in the open rightplane

which is a finite set. Hence, in particular, it is a spectral set.

This shows that either the solution u to Problem (3.3) does not exist for any positive t or

at least one between u and ut does not become small when the datum (φ0, φ1) vanishes in X .

Hence, the null solution to Problem (3.1) is unstable.

4 Convergence to K-S

Let φ be a solution to (1.11). We set α = 1 + ε and define the rescaled dependent and

independent variables:

t =
τ

ε2
, y =

η√
ε
, φ = εψ. (4.1)

The spatial period is now ℓε = ℓ0√
ε
, for some ℓ0 > 4π fixed (see Section 1). Obviously the

function ψ satisfies Equation (1.13) that we recall

4ε2ψττ + (I − 8εDηη)ψτ + 4ψηηηη + ψηη +
1

2
(ψη)

2
= 0.

We split ψ as follows:

ψ = Φ+ ερ, ρ = ρ(ε), (4.2)

where Φ solves the K-S equation

Φτ + 4Φηηηη +Φηη +
1

2
(Φη)

2 = 0

on the interval [− ℓ0
2 ,

ℓ0
2 ] with periodic boundary conditions. For the convenience of the reader,

we recall the regularity theorem (see [5, Appendix B]) as follows.

Theorem 4.1 Let Φ0 ∈ Hm
♯ for some m ≥ 4 and fix T > 0. Then, the Cauchy problem

Φτ (τ, η) = −4Φηηηη(τ, η)− Φηη(τ, η)−
1

2
(Φη(τ, η))

2, τ ≥ 0, |η| ≤ ℓ0
2
,

Dk
ηΦ

(
τ,−ℓ0

2

)
= Dk

ηΦ
(
τ,
ℓ0
2

)
, τ ≥ 0, k = 0, 1, 2, 3,

Φ(0, η) = Φ0(η), |η| ≤ ℓ0
2

admits a unique solution Φ ∈ C([0, T ];Hm
♯ ) such that Φτ ∈ C([0, T ];Hm−4

♯ ).

We assume m sufficiently large to justify all our estimates below. By assumptions (see

Theorem 1.2), the initial conditions for ρ are

ρ(0, · ) = ρτ (0, · ) = 0.
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Replacing ψ = Φ+ ερ in (1.13) we get, after simplifying by ε,

4ε2ρττ + (I − 8εDηη)ρτ + 4ρηηηη + ρηη +
1

2
ε(ρη)

2
+Φηρη = −4εΦττ + 8DηηΦτ . (4.3)

Since all the operators appearing in (4.3) commute with Dη, the differentiated problem for

ζ := ρη ∈ (I −Π)L2 reads as follows:

4ε2ζττ + (I − 8εDηη)ζτ + 4ζηηηη + ζηη + εζζη +Ψηζ +Ψζη = −4εΨττ + 8DηηΨτ , (4.4)

where we have set Ψ = Φη. Obviously, Equation (4.4) is to be solved with zero initial conditions

for ζ and ζτ at time τ = 0.

4.1 Formal a priori estimates

In this section, we determine a priori L2-estimates for the solution to Equation (4.4) and

some of its derivatives.

(i) We formally multiply both sides of Equation (4.4) by ζτ and integrate by parts over

(− ℓ0
2 ,

ℓ0
2 ). We thus get

2ε2
d

dτ

(∫ ℓ0
2

− ℓ0
2

(ζτ )
2dη

)
+

∫ ℓ0
2

− ℓ0
2

(ζτ )
2dη + 8ε

∫ ℓ0
2

− ℓ0
2

(ζτη)
2dη + 2

d

dτ

(∫ ℓ0
2

− ℓ0
2

(ζηη)
2dη

)
= F,

where

F = −
∫ ℓ0

2

− ℓ0
2

(ζηη + εζζη +Ψηζ +Ψζη)ζτdη +

∫ ℓ0
2

− ℓ0
2

(−4εΨττ + 8DηηΨτ )ζτdη.

We estimate the integrals in the right-hand side F , by the Cauchy-Schwarz inequality. Below

the ci’s are positive constants independent of ε. We have

|F | ≤ 1

2
|ζτ |22 + c0(|ζηη|22 + ε2|ζζη|22 + ∥Ψη∥2∞|ζ|22 + ∥Ψ∥2∞|ζη|22) + c0| − 4εΨττ + 8DηηΨτ |22.

Using several times the Poincaré-Wirtinger inequality, it is not difficult to see that

|F | ≤ 1

2
|ζτ |22 + c1ε|ζηη|42 + c2|ζηη|22 + c3.

Therefore

d

dτ
(2ε2|ζτ |22 + 2|ζηη|22) +

1

2
|ζτ |22 ≤ c1ε|ζηη|42 + c2|ζηη|22 + c3. (4.5)

(ii) Next, we multiply both sides of Equation (4.4) by −Dηηζτ . Integrating by parts over

(− ℓ0
2 ,

ℓ0
2 ), it comes

2ε2
d

dτ

(∫ ℓ0
2

− ℓ0
2

(ζτη)
2dη

)
+

∫ ℓ0
2

− ℓ0
2

(ζτη)
2dη + 8ε

∫ ℓ0
2

− ℓ0
2

(ζτηη)
2dη + 2

d

dτ

(∫ ℓ0
2

− ℓ0
2

(ζηηη)
2dη

)
= G,

where

G = −
∫ ℓ0

2

− ℓ0
2

Dη(ζηη + εζζη +Ψηζ +Ψζη)ζτηdη +

∫ ℓ0
2

− ℓ0
2

(−4εΨττη + 8DηηηΨτ )ζτηdη.
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As above,

|G| ≤ 1

2
|ζτη|22 + c4ε|ζηηη|42 + c5|ζηηη|22 + c6

and

d

dτ
(2ε2|ζτη|22 + 2|ζηηη|22) +

1

2
|ζτη|22 ≤ c4ε|ζηηη|42 + c5|ζηηη|22 + c6. (4.6)

(iii) Finally, we multiply both sides of Equation (4.4) by Dηηηηζτ and get

2ε2
d

dτ

(∫ ℓ0
2

− ℓ0
2

(ζτηη)
2dη

)
+

∫ ℓ0
2

− ℓ0
2

(ζτηη)
2dη + 8ε

∫ ℓ0
2

− ℓ0
2

(ζτηηη)
2dη + 2

d

dτ

(∫ ℓ0
2

− ℓ0
2

(ζηηηη)
2dη

)
= H,

where

H = −
∫ ℓ0

2

− ℓ0
2

Dηη(ζηη + εζζη +Ψηζ +Ψζη)ζτηηdη +

∫ ℓ0
2

− ℓ0
2

Dηη(−4εΨττ + 8DηηΨτ )ζτηηdη.

Again,

|H| ≤ 1

2
|ζτηη|22 + c7ε|ζηηηη|42 + c8|ζηηηη|22 + c9,

so that

d

dτ
(2ε2|ζτηη|22 + 2|ζηηηη|22) +

1

2
|ζτηη|22 ≤ c7ε|ζηηηη|42 + c8|ζηηηη|22 + c9. (4.7)

We recall the following technical lemma (see [1]).

Lemma 4.1 Assume that a family of nonnegative functions Aε ∈ C1([0, T0]), ε ∈ (0, 1],

satisfies

A′
ε ≤ C0 + C1Aε + C2εA

2
ε + C3ε

2A3
ε, Aε(0) ≤ A0

with positive constants A0, Ci, independent of ε. Then there exist ε0 > 0, K0 > 0 such that

Aε(τ) ≤ K0 for all τ ∈ [0, T0] whenever 0 < ε ≤ ε0.

Adding Formulae (4.5)–(4.7), we can take A0 = 0 and

Aε = ε2(|ζτ |22 + |ζτη|22 + |ζτηη|22) + (|ζηη|22 + |ζηηη|22 + |ζηηηη|22).

Therefore there exists a constant K1 > 0 such that

sup
τ∈[0,T0]

ε2(|ζτ (τ, · )|22 + |ζτη(τ, · )|22 + |ζτηη(τ, · )|22)

+ sup
[0,T0]

(|ζηη(τ, · )|22 + |ζηηη(τ, · )|22 + |ζηηηη(τ, · )|22)

+

∫ T0

0

(|ζτ (τ, · )|22 + |ζτη(τ, · )|22 + |ζτηη(τ, · )|22)dτ ≤ K1. (4.8)

As a byproduct, it follows from Equation (4.4) that the map τ 7→ ε3|ζττ (τ, · )|2 is also bounded

in the sup-norm.
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4.2 Existence and uniqueness

We have the following result about ζ.

Proposition 4.1 Assume that m is large enough in Theorem 4.1. Then, for any T >

0, there exists ε0(T ) > 0 such that, for any 0 < ε ≤ ε0(T ), Equation (4.4) subject to the

initial conditions ζ(0, ·) = ζτ (0, ·) = 0 has a unique solution ζ ∈ C([0, T ];H4
♯ ) such that ζτ ∈

C([0, T ];H2
♯ ) and ζττ ∈ C([0, T ];L2).

The proof of Proposition 4.1, by mean of a Faedo-Galerkin method, will not be elaborated

here (see [20], especially Section IV(4), for details). The Fourier variational framework uses the

eigenfunctions {wk} defined in Section 2, with ℓ = ℓ0.

We now return to ρ and Equation (4.3). The mean value of ρ verifies4ε
2(Πρ)ττ + (Πρ)τ = − 1

2ℓ0
ε

∫ ℓ0
2

− ℓ0
2

ζ2dη − 1

ℓ0

∫ ℓ0
2

− ℓ0
2

Φηζdη −
4

ℓ0
ε

∫ ℓ0
2

− ℓ0
2

Φττdη,

(Πρ)(0) = (Πρ)τ (0) = 0.

(4.9)

Denote by χ the right-hand side of (4.9). From Theorem 4.1, it follows that χ is a continuous

function in [0, T ]. A straightforward computation now reveals that

(Πρ)(τ) = 4ε

∫ τ

0

χ(s)ds− 4ε

∫ τ

0

e−
s
4εχ(τ − s)ds, τ ∈ [0, T ]. (4.10)

Let ρ̃ be the primitive of ζ with 0 mean value on [− ℓ0
2 ,

ℓ0
2 ]. We uniquely define ρ as

ρ(τ) = ρ̃(τ) + (Πρ)(τ) for any τ ∈ [0, T ].

4.3 Proof of Theorem 1.2

To complete the proof of Theorem 1.2, let us check that there exists M > 0 such that

sup
τ∈[0,T ]

η∈[− ℓ0
2 ,

ℓ0
2 ]

|ρ(τ, η)| ≤M, (4.11)

uniformly in 0 < ε ≤ ε0(T ).

Estimate (4.8) provides us with a uniform estimate of ρη = ζ on [0, T ]× [− ℓ0
2 ,

ℓ0
2 ] thanks to

the Poincaré-Wirtinger inequality, since ζ has zero mean value. Again, the Poincaré-Wirtinger

inequality gives us a uniform estimate on [0, T ] × [− ℓ0
2 ,

ℓ0
2 ] of ρ − Πρ. Finally, from (4.10) we

immediately deduce that Πρ is bounded in [0, T ]. Estimate (4.11) follows at once.

Using (4.1) and (4.2), it is now immediate to check that the function φ satisfies (1.14).

5 Numerical Experiments

We follow the framework of [10]. Equation (1.13) is now formulated on the fixed interval

[0, 2π] with periodic boundary conditions, setting x = 2π y
ℓ0

= y

2ℓ̃0
. As in [10], we introduce the

bifurcation parameter β = 4(ℓ̃0)
2. After multiplication by β2, it comes

4ε2β2ψττ + (β2I − 8εβDxx)ψτ + 4ψxxxx + β
(
ψxx +

1

2
(ψx)

2
)
= 0.
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Changing the time t = τ
β2 ,

4
ε2

β2
ψtt +

(
I − 8

ε

β
Dxx

)
ψt + 4ψxxxx + β

(
ψxx +

1

2
(ψx)

2
)
= 0,

and setting ε′ = ε
β , the prime being omitted, we eventually get

4ε2ψtt + (I − 8εDxx)ψt + 4ψxxxx + β
(
ψxx +

1

2
(ψx)

2
)
= 0.

The mean value Πψ = 1
2π

∫ 2π

0
ψ(·, x)dx satisfies the drift equation

4ε2(Πψ)′′ + (Πψ)′ +
β

4π

∫ 2π

0

(ψx(·, x))2dx = 0.

To normalize this drift to zero, we numerically solve the equation for v(t, x) = ψ(t, x)−(Πψ)(t):

4ε2vtt + (I − 8εDxx)vt + 4vxxxx + β
(
vxx +

1

2
(vx)

2 − 1

4π

∫ 2π

0

(vx(t, x))
2dx

)
= 0. (5.1)

A complete numerical algorithm requires a discretization strategy in both time and space.

Since the Fourier method is one of the most suitable approximation for periodic problems, it will

be employed to handle the spatial discretization (see [22]). The time discretization combines

a Newmark schema for the second-order derivative in time, backward-Euler schema for the

first-order derivative in time, implicit treatment for all linear terms and explicit treatment for

all nonlinear terms. Precisely, the time schema reads

4ε2

∆t2
(un+1 − 2un + un−1)− 8ε

∆t
(un+1

xx − unxx) +
1

∆t
(un+1 − un) + 4un+1

xxxx + βun+1
xx

= −β
2
(unx)

2 +
β

4π

∫ 2π

0

(unx)
2dx

for n ≥ 1, and

4ε2

∆t2
(u1 − u0 −∆tσ0)− 8ε

∆t
(u1xx − u0xx) +

1

∆t
(u1 − u0) + 4u1xxxx + βu1xx

= −β
2
(u0x)

2 +
β

4π

∫ 2π

0

(u0x)
2dx

for the first step calculation. The initial conditions are given by

u0(x) = u(0, x) = εϕ0(x), σ0(x) = ut(0, x) = −ε
(
4ϕ

(4)
0 (x) + ϕ′′0(x) +

1

2
(ϕ′0)

2(x)
)
.

This method is of first order accuracy with respect to the time step. The use of such

a schema is motivated by the following considerations: the implicit treatment of the fourth-

and second-order terms allows to reduce the associated stability constraint, while the explicit

treatment of the nonlinear terms avoids the expensive process of solving nonlinear equations at

each time step.

The Fourier method in space consists in finding an approximate solution unK(x) in form of

a truncated Fourier expansion (for convenience here the notation slightly differs from the one

in Section 2):

unK(x) =
K∑

k=−K

ûnk exp(−ikx),
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where K is a positive integer. By applying Fourier transformation to the semi-discretized

equations, we obtain a set of equations for each mode k in the Fourier space

4ε2

∆t2
(ûn+1

k − 2ûnk + ûn−1
k ) +

8εk2

∆t
(ûn+1

k − ûnk ) +
1

∆t
(ûn+1

k − ûnk ) + 4k4ûn+1
k − βk2ûn+1

k

=
{
− β

2
(unx)

2 +
β

4π

∫ 2π

0

(unx)
2dx

}
k
, (5.2)

where, as f̂k, {f}k also represents the kth Fourier coefficient of the function f . The Fourier

coefficients of the nonlinear terms are calculated by performing the discrete fast Fourier trans-

form (FFT). In practical calculations, we work in the spectral space. An additional FFT is

needed to recover the physical nodal values uk (−K ≤ k ≤ K) from û. By using (5.2), the kth

Fourier coefficient ûn+1
k can be obtained by a simple inversion

ûn+1
k =

[( 4ε2

∆t2
+

1

∆t

)
+
( 8ε

∆t
− β

)
k2 + 4k4

]−1[( 8ε2

∆t2
+

1

∆t

)
ûnk +

8εk2

∆t
ûnk − 4ε2

∆t2
ûn−1
k

+
{
− β

2
(unx)

2 +
β

4π

∫ 2π

0

(unx(t, x))
2dx

}
k

]
.

The purpose of the numerical tests is to check the behavior of the solutions of Equation

(5.1) as compared to the Kuramoto-Sivashinsky equation when ε tends to zero. To this end,

we first fix β = 10, and let ε vary. In Figures 1–3, we plot consecutive front positions computed

by (5.2) with β = 10 for ε = 0.04, ε = 0.001 and ε = 0 respectively. Note that the case ε = 0

corresponds to the K-S equation. It is observed that the solutions of (5.1) converge to the

solution of the K-S equation as ε tends to zero.

Figure 1 Front evolution with β = 10, ε = 0.04

Figure 2 Front evolution with β = 10, ε = 0.001

Figure 3 Front evolution with β = 10, ε = 0
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In order to investigate the dynamics of Equation (5.1) with respect to the parameter β, we

now fix ε = 0.01.

We have confirmed that, similar to the K-S equation, for 1 ≤ β ≤ 4, 0 is a global attractor

for the solution to Equation (5.1). A non-trivial attractor is expected for larger β. In Figures

4–5, we can see the front evolutions generated by (5.2) with β = 18 for two different initial

conditions. The same calculation is repeated with β = 30, and the result is given in Figures

6–7. In all these figures, the periodic orbit is clearly observed.

Figure 4 Front evolution with β = 18, ε = 0.01, and u0 = 0.1(sin(x) + cos(x))

Figure 5 Front evolution with β = 18, ε = 0.01, and u0 = 0.1 cos(4x)

Figure 6 Front evolution with β = 30, ε = 0.01, and u0 = 0.1(sin(x) + cos(x))

Figure 7 Front evolution with β = 30, ε = 0.01, and u0 = 0.1 cos(4x)
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These numerical results indicate that the solution of Equation (5.1) preserves the same

structure as K-S equation. Richer dynamics can be generated by using even larger β. Finally,

we plot in Figure 8 the front propagation captured from calculation with β = 105. As expected

from the paper [10], the front evolves toward an essentially quadrimodal global attractor.

Figure 8 Front propagation with β = 105, ε = 0.001

Appendix The Derivation of a Self-consistent Equation for the Front

System (1.1)–(1.4), set in R× [− ℓ
2 ,

ℓ
2 ], admits a planar TW solution, with velocity −1:

θ(x) =

{
exp(x), x ≤ 0,
1, x > 0,

S(x) =

{
αx exp(x), x ≤ 0,
0, x > 0.

As usual one fixes the free boundary. We set ξ(t, y) = −t+φ(t, y), x′ = x− ξ(t, y). In this new

framework, the system reads

θt + (1− φt)θx′ = ∆φθ, x′ < 0,

θ(x′) = 1, x′ > 0,

St + (1− φt)Sx′ = ∆φS − α∆φθ, x′ ̸= 0,

where

∆φ = (1 + (φy)
2)Dx′x′ +Dyy − φyyDx′ − 2φyDx′y.

The front is now fixed at x′ = 0. The first condition in (1.4) reads√
1 + (φy)2

[ ∂θ
∂x′

]
= − exp(S);

the second one becomes [ ∂S
∂x′

]
= α

[ ∂θ
∂x′

]
.

Let us consider the perturbations of temperature u and enthalpy v:

θ = θ + u, S = S + v.

Writing for simplicity x instead of x′, the problem for the triplet (u, v, φ) reads

ut + (1− φt)ux −∆φu− φtθx = (∆φ −∆)θ, x < 0,

u = 0, x > 0,

vt + (1− φt)vx −∆φ(v − αu)− φtSx = (∆φ −∆)(S − αθ), x ̸= 0,
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where

(∆φ −∆)(θ) = ((φy)
2 − φyy)θx, (∆φ −∆)(S − αθ) = α((φy)

2Sx − φyyS).

As in [3–5], we introduce some simplifications: we keep only linear and second-order terms for

the perturbation of the front φ, and first-order terms for the perturbations of temperature u

and enthalpy v. This leads to the equations

ut + ux −∆u− φtθx = (∆φ −∆)θ, x < 0,

u = 0, x ≥ 0,

vt + vx −∆(v − αu)− φtSx = (∆φ −∆)(S − αθ), x ̸= 0.

At x = 0 there are several conditions. First

[u] = [v] = 0,

however, since u(x) = 0 for x > 0, this is equivalent to

u(0−) = [v] = 0.

Second, √
1 + (φy)2 [θx + ux] = − exp(S + v),

hence up to the second-order,

−1 + [ux] = −(1 + (φy)
2)−

1
2 ev ∼

(
1− 1

2
(φy)

2
)(

1 + v(0) +
1

2
(v(0))2

)
,

and keeping only the first-order for v yields

−ux(0) + v(0) =
1

2
(φy)

2,

[vx] = −αux(0).

Therefore, the final system reads

ut + ux −∆u− φtθx = ((φy)
2 − φyy)θx, x < 0,

vt + vx −∆(v − αu)− φtSx = (φy)
2Sx − φyyS, x ̸= 0,

u(0) = [v] = 0,

v(0)− ux(0) =
1

2
(φy)

2,

[vx] = −αux(0).

(A.1)

We remark that the equation for u associated with the boundary condition u(0) = 0 entirely

determines u when φ is given. Therefore, it can be viewed as a kind of pseudo-differential Stefan

condition.

The aim of this appendix is the derivation of a self-consistent equation for the front φ, both

in Fourier (as in [5]) and in Laplace variables. For this purpose, we rewrite Problem (A.1),
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making θ and S explicit and assuming that u and v vanish at t = 0, whereas φ(0, · ) = φ0 for

some prescribed (and smooth enough) function φ0. We get

ut + ux −∆u = (φt + (φy)
2 − φyy)e

x, x < 0,
vt + vx −∆(v − αu) = α(φt + (φy)

2)(x+ 1)ex − αφyyxe
x, x < 0,

vt + vx −∆v = 0, x > 0,
u(·, 0, · ) = [v] = 0,

v(·, 0, · )− ux(·, 0, · ) =
1

2
(φy)

2,

[vx] = −αux(·, 0, · ),
u(0, · ) = v(0, · ) = 0,
φ(0, · ) = φ0.

(A.2)

In what follows, we assume that (u, v, φ) is a sufficiently smooth solution to Problem (A.2). As

in [5], we use the first equation in (A.2) and the boundary condition u(·, 0, · ) = 0 as a pseudo-

differential Stefan condition. We solve the problem for u via both discrete Fourier transform

and Laplace transform. For notational convenience, we denote by f̂(t, k) (resp, f̂(t, x, k)) the

kth Fourier coefficient of the function f(t, · ) (resp. f(t, x, · )). Applying the discrete Fourier

transform to both the sides of the equation for u, we are led to the infinitely many equations

ût(t, x, k)+ ûx(t, x, k)− ûxx(t, x, k)+λkû(t, x, k) = (φ̂t(t, k)+ (̂φy)2(t, k)+λkφ̂(t, k))e
x (A.3)

for k = 0, 1, 2, · · · , where we recall that −λk = −λk(ℓ) is the kth eigenvalue of the realization

of the operator Dyy in L2. If we now apply the Laplace transform L to both the sides of (A.3)

and take into account that u(0, · ) = 0, we get the infinitely many equations

λ(L û)(λ, x, k) + (L ûx)(λ, x, k)− (L ûxx)(λ, x, k) + λk(L û)(λ, x, k)

= ((L φ̂t(λ, k)) + (L (̂φy)2 )(λ, k) + λk(L φ̂)(λ, k))ex. (A.4)

To avoid cumbersome notation, in what follows we simply write ψ̂(λ, x, k) (resp. ψ̂(λ, k)) for

(L ψ̂)(λ, x, k) (resp. (L ψ̂)(λ, k)).

A straightforward computation reveals that the solution to (A.4), which vanishes at x = 0

and tends to 0 as x→ −∞ not slower than e
x
2 , is given by

û(λ, x, k) =
1

λ+ λk
(φ̂t(λ, k) + (̂φy)2 (λ, k) + λkφ̂(λ, k))(e

x − eνk,λx), x ≤ 0

for any k = 0, 1, 2, · · · and any λ > 0. For notational convenience, here, and throughout the

paper, we set νk,λ = 1
2 + 1

2

√
1 + 4λk + 4λ for any k = 0, 1, · · · and any λ > 0.

Let us now consider the problem for v, where we disregard (for the moment) the condition

v(·, 0, · ) − ux(·, 0, · ) = 1
2 (φy)

2. Taking the Fourier transform (with respect to the variable y)

and then the Laplace transform (with respect to t), we get the Cauchy problems

v̂x(λ, x, k)− v̂xx(λ, x, k) + (λ+ λk)v̂(λ, x, k)

= α
(
x+ 1 +

λk − 1

λk + λ

)
(φ̂t(λ, k) + (̂φy)2(λ, k))e

x + αλk

(
x− 1− λk

λk + λ

)
φ̂(λ, k)ex

+
α(νk,λ + λ)

λk + λ
(φ̂t(λ, k) + (̂φy)2(λ, k) + λkφ̂(λ, k))e

νk,λx, x < 0,

v̂t(λ, x, k) + v̂x(λ, x, k)− v̂xx(λ, x, k) + λkv̂(λ, x, k) = 0, x > 0,

[v̂(λ, ·, k)] = 0,

[v̂x(λ, ·, k)] = −αûx(λ, 0, k) = αν−1
k,λ(φ̂t(λ, k) + (̂φy)2(λ, k) + λkφ̂(λ, k))
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for k = 0, 1, 2, · · · and λ > 0.

It is easy to show that

v̂(λ, x, k) = c1,ke
νk,λx +

α

λk + λ
(φ̂t(λ, k) + (̂φy)2(λ, k))

(
x+ 1 +

λk
λk + λ

)
ex

+
α

λk + λ

νk,λ + λ

1− 2νk,λ
(φ̂t(λ, k) + (̂φy)2(λ, k) + λkφ̂(λ, k))xe

νk,λx

+
αλk
λk + λ

φ̂(λ, k)
(
x+

λk
λk + λ

)
ex, x < 0,

v̂(λ, x, k) = c2,ke
(1−νk,λ)x, x ≥ 0,

where

c1,k =
αλk

(1− 2νk,λ)(λk + λ)

(
νk,λ +

λkνk,λ
λk + λ

+
νk,λ + λ

1− 2νk,λ

)
φ̂(λ, k)

+
α

(1− 2νk,λ)(λk + λ)

( νk,λ + λ

1− 2νk,λ
+ 2νk,λ +

λkνk,λ
λk + λ

)
(φ̂t(λ, k) + (̂φy)2(λ, k)),

c2,k =
αλk

(1− 2νk,λ)(λk + λ)

(
νk,λ − λkνk,λ

λk + λ
+

νk,λ + λ

1− 2νk,λ
+

λk
λk + λ

)
φ̂(λ, k)

+
α

(1− 2νk,λ)(λk + λ)

( νk,λ + λ

1− 2νk,λ
− λkνk,λ
λk + λ

+
λk

λk + λ
+ 1

)
(φ̂t(λ, k) + (̂φy)2(λ, k)).

Now, we are in a position to determine the equation for the front. Indeed, rewriting the

boundary condition

v(·, 0, · )− ux(·, 0, · ) =
1

2
(φy)

2,

in Fourier and Laplace variables, and using the above results, we get to the following equations

for the front (in the Fourier coordinates):{ α

1− 2νk,λ

(
− λk(2λk + λ)

(1− 2νk,λ)(λk + λ)
+
λ2k(1− νk,λ)

(λk + λ)2

)
+

λk
νk,λ

}
φ̂(λ, k)

+
{ α

1− 2νk,λ

( 1− νk,λ + λ

(1− 2νk,λ)(λk + λ)
+
λk(1− νk,λ)

(λk + λ)2

)
+

1

νk,λ

}
φ̂t(λ, k)

+
{ α

1− 2νk,λ

( 1− νk,λ + λ

(1− 2νk,λ)(λk + λ)
+
λk(1− νk,λ)

(λk + λ)2

)
+

1

νk,λ
− 1

2

}
(̂φy)2(λ, k) = 0.

We observe that

φ̂t(λ, k) = λφ̂(λ, k)− φ̂0(k), k = 0, 1, 2, · · · , λ > 0,

where φ0 = φ(0, · ). Therefore, we can rewrite the previous equations in the following equivalent

way: { α

1− 2νk,λ

(
− 2λ2k + λkλ− λ+ λνk,λ − λ2

(1− 2νk,λ)(λk + λ)
+
λk(1− νk,λ)

λk + λ

)
+
λk + λ

νk,λ

}
φ̂(λ, k)

−
{ α

1− 2νk,λ

( 1− νk,λ + λ

(1− 2νk,λ)(λk + λ)
+
λk(1− νk,λ)

(λk + λ)2

)
+

1

νk,λ

}
φ̂0(k)

+
{ α

1− 2νk,λ

( 1− νk,λ + λ

(1− 2νk,λ)(λk + λ)
+
λk(1− νk,λ)

(λk + λ)2

)
+

1

νk,λ
− 1

2

}
(̂φy)2(λ, k) = 0.
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We now multiply both sides of the previous equation by νk,λ(1− 2νk,λ)
2. Thus, the coefficient

A(λ, k) of φ̂(λ, k) reads

A(λ, k) = ανk,λ

(−2λ2k − λkλ+ λ− λνk,λ + λ2 + λk − 3λkνk,λ + 2λkν
2
k,λ

λk + λ

)
+ (λk + λ)(1− 2νk,λ)

2.

We write A(λ, k) = αA1(λ, k) + A0(λ, k). Using the formula (1 − 2νk,λ)
2 = 1 + 4λ + 4λk, we

have, on the one hand,

A0(λ, k) = (λk + λ)(1 + 4λ+ 4λk) = 4λ2 + 4λ2k + 8λλk + λ+ λk,

and on the other hand,

A1(λ, k) = νk,λ

(
− λk + 1− νk,λ +

−λ2k + λ2 − 2λkνk,λ + 2λkν
2
k,λ

λk + λ

)
.

Using the formula 2λkν
2
k,λ − 2λkνk,λ − 2λk(λ+ λk) = 0, we get

A1(λ, k) = −λk +
λ

2
(
√
1 + 4λ+ 4λk − 1).

Thus, the coefficient of φ̂(λ, k) reads

A(λ, k) = 4(λ2 + λ2k) + λ(1 + 8λk)− (α− 1)λk + α
λ

2
(
√
1 + 4λ+ 4λk − 1). (A.5)

Finally, if we drop the fractional term in (A.5) and return to the coordinates t and y, we

see the linear operator

4(φtt + φyyyy) + (I − 8Dyy)φt + (α− 1)φyy,

which is indeed the linear part of (1.11).
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