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1 Introduction

Modeling the effect of viscosity on the propagation of long waves in shallow water has re-

ceived much renewed interest in the last decade. Without viscosity effects, it is now a standard

procedure to derive asymptotic models for one-way wave propagation. The most encountered

models in the literature are Boussinesq systems and Korteweg-de Vries equation, whose deriva-

tion was first performed in the 19th century. More general models for two-way waves were

introduced in [2]. The derivation starts from Euler equation and proceeds through fine asymp-

totic analysis to obtain an equation for the horizontal velocity at the top of the fluid, or a

system of equations for this velocity and the height of the wave. Taking into account viscosity

effects is a challenging issue, since we have to deal with Navier-Stokes equations that provides

the flow with a viscous layer at the bottom of the fluid. Some finer asymptotic analysis has to

be performed.

The pioneering work for this issue is due to T. Kakutani and K. Matsuuchi [9] who have

pointed out that the asymptotic model for viscous water waves is a dispersive PDE supplement-

ed with a diffusion and a nonlocal pseudo-differential operator that features both a dispersive

and a diffusive effect. For the physics, this means that the viscous layer in the fluid provides

diffusion (this was expected), but also dispersion. Independently, P. Liu and T. Orfila [11], and

D. Dutykh and F. Dias [7], have recently derived viscous asymptotical models that feature also

nonlocal operators, and that possess the same dispersive properties of those in [9], but with dif-

ferent mathematical properties. These models are Boussinesq type systems with viscous terms.

A one-way reduction of these models was addressed in [6].
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In a previous work [4], we were concerned with computing both theoretically and numerically

the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term. This

model reads as follows

ut + ux + βuxxx +

√
ν√
π

∫ t

0

ut(s)√
t− s

ds+ uux = γuxx, (1.1)

where u is the horizontal velocity of the fluid. This equation requires some comments: the

usual diffusion is −γuxx, while βuxxx is the geometric dispersion and
√
ν√
π

∫ t
0
ut(s)√
t−sds stands for

the nonlocal diffusive-dispersive term. Here β and ν, γ ≥ 0 are parameters dedicated to balance

or unbalance the effects of viscosity and dispersion against nonlinear effects. The dispersion

analysis for the linear part of this equation was also addressed in [4]. In the same work,

assuming that the effect of the geometric dispersion is less important that viscosity effects (i.e.,

considering β = 0 in the equation), we were able to prove that for small initial data, the decay

rates of solutions compare to those of solutions to KdV-Burgers equations.

Computing the decay rate for solutions to dispersive-diffusive equations has a long history

too. The pioneering work is due to C. Amick, J. Bona and M. Schonbek [1] where the authors

handle the decay rate of solutions of KdV-Burgers solutions for any initial data, i.e., without

assuming any smallness assumption on the initial data. For a large review of methods for

computing the decay rates for solutions to dissipative evolution PDEs, we refer to [8]. Among

recent works concerned with dissipative Boussinesq systems, we mention [3], [5] and [12]. This

list is by no mean exhaustive.

In the present article, we are interested in computing theoretically the decay rate for so-

lutions to an asymptotic linear viscous model for water waves similar to (1.1), but without

the main diffusive term, i.e., considering γ = 0. In the linear case, our equation reads then

(normalizing the other constants)

ut +
1√
π

∫ t

0

ut(s)

(t− s)
1
2

ds+ uxxx + ux = 0, (1.2)

supplemented with initial data u0 in L1(R). For this purpose, we follow the method advocated

in [4]. Our result compares for large times with the corresponding result for the heat equation

and state as follows.

Theorem 1.1 There exists a constant C such that the following estimate holds true:

min(t
1
4 , t

1
2 )∥u(t)∥L2(R) + t

1
2 ∥u(t)∥L∞(R) ≤ C∥u0∥L1(R). (1.3)

Actually, the method is to compute a representation of the kernelK(t, x) defined as u(t, · ) =
K(t, · ) ∗ u0 if and only if u solves (1.2) with initial data u0. This representation is indeed an

oscillatory integral. As we will see in the sequel, the estimates on this kernel are much more

involved than those for the kernel corresponding to the heat equation or the nonlocal viscous

equation as in [4]; it turns out that since we do not have the diffusion term −uxx in the equation,

the diffusion is weaker since high frequencies are not exponentially damped. We are concerned

here with a viscosity that vanishes for high frequencies. We will come back to this point and

discuss the drawbacks of this fact in the sequel. It is worth also to point out that, due to the

presence of the non-local term, we do not have any energy that decays along the trajectories

and that the famous Schonbek’s splitting method does not apply.
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We do believe that these inconveniences are only due to mathematical technicalities. For the

physics, the validity of the model holds true for long waves, i.e., for initial data whose energy is

concentrated for small frequencies. Hence only small frequencies monitor the flow of solutions

and the drawback of the vanishing viscosity for high eddies do not account. These topics will

be discussed, both from the theoretical and from the numerical point of view in a forthcoming

work.

This article is organized as follows. In Section 2, we compute a representation for the kernel

K(t, x) as an oscillatory integral. The idea is to solve the equation in Laplace-Fourier variables

and then to come back to the (t, x) variables. For this purpose, we need some estimates on

solutions to a polynomial equation whose proof will appear in an annex in the last section.

In Section 3, we provide some decay estimates on the kernel using van der Corput lemma;

statement and short proofs of this well-known result are postponed to the annex in Section 5.

Hence we complete the proof of Theorem 1.1 and we provide the reader with a short conclusion.

We complete this introduction by outlining some notations. Consider two numerical func-

tions h(t, x), g(t, x) which take values in R. Hence we write h(t, x) . g(t, x) if there exists a

numerical constant c that does not depend on t and x such that h(t, x) ≤ cg(t, x). We also

write g(t, x) h h(t, x) if and only if h(t, x) . g(t, x) and g(t, x) . h(t, x). For complex valued

functions, we write g(t, x) h h(t, x) if their moduli compare, i.e., |g(t, x)| h |h(t, x)|. The Fouri-
er transform of a function u in L1(R) is defined as û(ξ) =

∫
R u(x) exp(−ixξ)dx and the Laplace

transform of a bounded function v is defined, for any complex number τ such that Re τ > 0

as ṽ(τ) =
∫ +∞
0

v(t) exp(−tτ)dt. We set ⟨x⟩ =
√
1 + x2. For any complex number τ which does

not belong to R−, we define
√
τ as

√
τ = |τ | 12 exp( i

2arg τ), where arg τ belongs to (−π, π); this
function τ 7→

√
τ is analytic.

2 Computing K(t, x) as an Oscillatory Integral

2.1 Fourier-Laplace transform

We follow here [4]. Introduce the Fourier-Laplace transform of a function u as

û(τ, ξ) =

∫ +∞

0

(∫
R
u(t, x) exp(−ixξ − tτ)dx

)
dt. (2.1)

We apply the Fourier-Laplace transform to (1.2) and obtain

(τ +
√
τ + iξ − iξ3)û(τ, ξ) =

(
1 +

1√
τ

)
û0(ξ), (2.2)

where û0(ξ) is the Fourier transform of the initial data u(0) = u0. Solving for û, we have

û(τ, ξ) = K̂(τ, ξ)û0(ξ)

with

K̂(τ, ξ) =
(
1 +

1√
τ

) 1

(τ +
√
τ + iξ − iξ3)

. (2.3)

At this stage, to invert the Fourier transform in the space variable we do need the following

lemma.
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Lemma 2.1 Let Ω = {z ∈ C such that Re z > 0}. For z ∈ Ω, the equation X3 + X = z

admits three branches of solutions a(z), α1(z), α2(z), which vary analytically with respect to z,

such that Re a(z) > 0, Reαi(z) < 0 for i = 1, 2, Imα2(z) < 0 < Imα1(z).

Proof For z = 2, the equation admits a unique positive solution X = 1. The derivative

3X2 + 1 does not vanish on the set X3 + X = z. Hence the equation owns three different

solutions that we can follow continuously with the Implicit Function Theorem. On the other

hand, the equation X3 + X = z cannot have a solution that belongs either to the imaginary

axis or the axis {x < 0}. Then the result is proved.

Remark 2.1 Actually this result is true for z ̸= 0 belonging to {z ∈ C; Re z > 0} ∪ {z ∈
C; |z| ≤ 1

3} which contains 0 in its interior.

More results about the behavior of these solutions will appear in Annex (see Section 5). We

now proceed to the inverse Fourier transform. We set

Fx(F̃ )(τ, ξ) = F̂ (τ, ξ) =
i

i(τ +
√
τ)− ξ + ξ3

.

Lemma 2.2 Let a(τ) be the unique solution with a positive real part and α1(τ), α2(τ) the

solutions with a negative real part of X3 +X = τ +
√
τ . Then

F̃ (τ, x) =
e−a(τ)x

1 + 3a2(τ)
, ∀x ∈ R+, (2.4)

F̃ (τ, x) = −
2∑
j=1

e−αj(τ)x

1 + 3α2
j (τ)

, ∀x ∈ R−. (2.5)

Proof For any positive x, we have

F̃ (τ, x) =
1

2π

∫
R
F̂ (τ, ξ)eixξdξ =

1

2π

∫
R

ieixξ

i(τ +
√
τ)− ξ + ξ3

dξ. (2.6)

Note that if τ ∈ Ω, then τ +
√
τ ∈ Ω. We apply Lemma 2.1 with ξ = iX, then ia(τ) is the

unique solution of i(τ +
√
τ)− ξ + ξ3 = 0 whose imaginary part is positive.

Let γ be a lace who is constituted by the segment [−R,R] and the semicircle z = Reiθ where

θ ∈ [0, π]. We apply the Residue Theorem to f(ξ) = F̂ (τ, ξ) and we obtain∫
γ

f(ξ)eixξdξ =

∫ R

−R

ieixξ

i(τ +
√
τ)− ξ + ξ3

dξ −
∫ π

0

ReiθeixReiθ

i(τ +
√
τ)−Reiθ +R3e3iθ

dθ

= 2iπRes
(
ia(τ),

ieixξ

i(τ +
√
τ)− ξ + ξ3

)
.

Since x > 0, we have |eixReiθ | ≤ 1, hence when R→ ∞,∫ π

0

ReiθeixReiθ

i(τ +
√
τ)−Reiθ +R3e3iθ

dθ → 0.

It follows (2.4) by computing the residue. We use the same method to prove (2.5) choosing a

suitable lace.
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We now proceed to the final estimate for x > 0. By the inverse Laplace transform, we have,

for any positive ε,

K(t, x) =
1

2iπ

∫ ε+i∞

ε−i∞

(
1 +

1√
τ

) etτ−a(τ)x

1 + 3a2(τ)
dτ. (2.7)

Since the singularity is integrable in 0, we pass to the limit ε→ 0 and obtain

K(t, x) =
1

2π

∫ +∞

−∞

(
1 +

1√
is

) eits−a(is)x

1 + 3a2(is)
ds. (2.8)

We cut (2.8) in four parts:

K+
1 (t, x) =

1

2π

∫ +∞

0

1√
is

eits−a(is)x

1 + 3a2(is)
ds, K−

1 (t, x) =
1

2π

∫ 0

−∞

1√
is

eits−a(is)x

1 + 3a2(is)
ds,

K+
2 (t, x) =

1

2π

∫ +∞

0

eits−a(is)x

1 + 3a2(is)
ds, K−

2 (t, x) =
1

2π

∫ 0

−∞

eits−a(is)x

1 + 3a2(is)
ds.

Remark 2.2 Analogous formulae hold true for x < 0, substituting (2.5) to (2.4) in the

computations; in this case we have eight integrals to handle.

3 Proof of Theorem 1.1

3.1 Strategy for the proof

Let us describe our strategy on the simple example of the heat equation whose kernel

is Kheat(t, x) h 1√
t
exp(−x2

4t ). It is an exercise to prove that |Kheat(t, x)| . min(t−
1
2 , x−1).

Therefore, ∥Kheat(t, · )∥L∞(R) . t−
1
2 and

∥Kheat(t, · )∥2L2(R) .
∫ +∞

0

min(t−1, x−2)dx h
∫ √

t

0

dx

t
+

∫ +∞

√
t

dx

x2
h t−

1
2 .

Here some extra difficulty occurs. To begin with, due to the drift ux + uxxx the kernel is

not symmetric with respect to x = 0; we expect, as for the Airy equation, the kernel to have

better decay properties for positive x.

On the other hand, we are interested in the long time behavior of solutions. By a rule of

thumbs, we know that the large time behavior of the kernel K relies on the behavior of the

oscillatory integral for small s. Hence we surmise that the kernel K1 will monitor the decay rate

for solutions. It transpires from the computations below that the other part of the kernel K2

is more difficult to handle; we do believe that this drawback is only due to the mathematical

setting and is not relevant for the physics.

Let us go a little further. Let α be any solution to X3 +X = is+
√
is. Then the modulus

of the integrand in the very definition of K+
2 (t, x) is exp(−|Reα||x|)

|1+3α2| . As stated in Annex, it turns

out that for large s, |Reα1| h |Re a| h s
1
3 while |Reα2| h s−

1
6 . In the former case, we have

an exponential decay which smashes down the high frequencies s, in the latter case, we have

a vanishing viscosity at the infinity. This explains why mathematical difficulties will occur for

x < 0.
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Remark 3.1 For the sake of comparison, it is worth to point out that the heat kernel reads

as the sum of oscillatory integral (for positive x) as

K+
heat(t, x) h

∫ +∞

0

exp
(
i
(
st−

√
s√
2
x
))exp(−√

s√
2
x)

√
s

ds.

3.2 Estimates on K1(t, x)

We begin with the term which monitors the decay rate for large times. We now state and

prove a result that asserts a heat kernel decay rate for this term.

Theorem 3.1 Consider K1 defined as above. For any t > 0, for any x in R the following

inequality holds true:

|K1(t, x)| . min
( 1

t
1
2

,
1

|x|

)
.

Proof We just focus on K+
1 (t, x), the other integral being similar. We perform the change

of variable s 7→ s2 in the integral and we bound
∫ +∞
0

eis
2t−βx ds

1+3β2 where β is any root of

X3 +X = is2 + s
√
i. For this purpose, we apply van der Corput Lemma 5.5 (see Annex for the

precise statement) with the phase ψ(s) = s2t and A(s) = e−βx ds
1+3β2 , with b = 0 and d = +∞.

We then have, observing ψ′′(0) = 2t,∣∣∣ ∫ +∞

0

eis
2t−βx ds

1 + 3β2

∣∣∣ . t−
1
2 (∥A∥L∞ + ∥A′∥L1). (3.1)

On one hand |A(s)| . exp(−|Re β||x|)
|1+3β2| . 1. On the other hand,

|A′(s)| .
( |β′||x|
|1 + 3β2|

+
6|β′||β|

|1 + 3β2|2
)
exp(−|Reβ||x|) . |β′|⟨x⟩

|1 + 3β2|
exp(−|Reβ||x|). (3.2)

We now divide the computation according to the case s < 1 or s > 1. For small frequencies,

we then have, due to Remark 5.1 below∫ 1

0

|β′|⟨x⟩
|1 + 3β2|

exp(−|Reβ||x|)ds .
∫ 1

0

⟨x⟩ exp(−cs|x|)ds . 1; (3.3)

indeed for |x| ≤ 1, we just use exp(−cs|x|) ≤ 1, while for |x| ≥ 1, we perform the change of

variable y = cxs. For high frequencies, and for the worst case that is x < 0 and for β = α2(is
2)

the root that has a vanishing real part for large s, we have∫ +∞

1

e−Reβx |β′|⟨x⟩
|1 + 3β2|

ds .
∫ +∞

1

exp(−c|x|s− 1
3 )

⟨x⟩
s

5
3

ds .
∫ +∞

1

ds

s
4
3

. 1. (3.4)

Hence the inequality (3.1) provides the good decay estimate with respect to t.

We now proceed to the decay rate with respect to x. We focus once again on the worst case,

i.e., for x < 0 and for β = α2(is
2). We divide the integral into two parts according to the case

s < 1 or s > 1. For the former case,∣∣∣ ∫ 1

0

eis
2t−βx ds

1 + 3β2

∣∣∣ . ∫ 1

0

exp(−cs|x|)ds h 1

|x|
. (3.5)

For the latter ∣∣∣ ∫ +∞

1

eis
2t−βx ds

1 + 3β2

∣∣∣ . ∫ +∞

1

exp(−c|x|s− 1
3 )

ds

s
4
3

h
1

|x|
. (3.6)

The proof of the theorem is then completed.
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3.3 Estimates on K2(t, x), x < 0

Here we encounter the main mathematical difficulties, for small t. We state and prove the

following result.

Theorem 3.2 Consider K2 defined as above. For any t > 0, for any x < 0 the following

inequality holds true:

|K2(t, x)| . min(t−
1
2 , |x|−1) + min(|tx|−1, t−1, t−

1
3 , |tx|− 1

4 ).

Proof It is worth to point out that K2 is actually the sum of many integrals, some with

α1, the other ones with α2. Since the first case is similar to the case x > 0, and then since

these integrals can be bounded as in Theorem 3.3 below, we skip the details for the sake of

conciseness. We focus here on the integrals with α2, which have a vanishing viscosity at the

infinity. Set α = α2(is) for the sake of convenience. By symmetry we only consider s > 0 that

is K+
2 (t, x).

To begin with, we divide the integral into two parts, according to the case s < 1 or s > 1. The

former stands for small frequencies, the latter for high ones. Set K+
2 (t, x) = L(t, x) +H(t, x),

where

L(t, x) =
1

2π

∫ 1

0

eits−αx

1 + 3α2
ds. (3.7)

We first have, for small frequencies,

Lemma 3.1

|L(t, x)| . min(1, |x|−2, t−1) . min(t−
1
2 , |x|−1). (3.8)

Proof On one hand, due to Lemma 5.1 there exists a constant c that is independent of x

and t such that

|L(t, x)| .
∫ 1

0

exp(−cs 1
2 |x|)ds . min

(
1,

1

x2

)
. (3.9)

On the other hand, using Lemma 5.4 with ψ(s) = st and A(s) = eits−αx

1+3α2 , we have

|L(t, x)| . 1

t
(∥A∥L∞ + ∥A′∥L1). (3.10)

Then using once again Lemma 5.1, we obtain |A(s)| . 1 and∫ 1

0

|A′(s)|ds .
∫ 1

0

exp(−|Reα||x|)
|1 + 3α2|

(
|α′x|+ 6|αα′|

|1 + 3α2|

)
ds

.
∫ 1

0

exp(−cs 1
2 |x|)

( ⟨x⟩
s

1
2

)
ds . 1; (3.11)

actually for |x| ≤ 1 we have used exp(−cs 1
2 |x|)( ⟨x⟩

s
1
2
) . s−

1
2 while for |x| ≥ 1 we have performed

the change of variable y = c|x|s 1
2 .

We gather the previous computations in the following estimate |L(t, x)| . min(1, 1t ,
1
x2 ).

The proof of the lemma is then completed by interpolation.

For high frequencies, we state and prove the following lemma.
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Lemma 3.2

|H(t, x)| . min(|tx|−1, t−1, t−
1
3 , |tx|− 1

4 ). (3.12)

Proof The proof consists in establishing precise estimates on different regions of the quar-

ter plane t > 0, x < 0.

First step t ≥ 1 or t|x| ≥ 1.

Consider S ≥ 1 to be precise in the sequel. On one hand, due to Lemma 5.3,∣∣∣ ∫ S

1

eits−αx

1 + 3α2
ds

∣∣∣ . ∫ S

1

exp(−c|x|s− 1
6 )

ds

s
2
3

. min
(
(S

1
3 − 1),

S

x4

)
; (3.13)

actually exp(−c|x|s− 1
6 ) ≤ 1 provides us with the upper bound S

1
3 − 1, while the estimate

y4 exp(−y) . 1 for y = c|x|s− 1
6 provides us with S

x4 .

On the other hand, using Lemma 5.4 with ψ(s) = st and A(s) = e−αx

1+3α2 , we have∣∣∣ ∫ +∞

S

eits−αx

1 + 3α2
ds

∣∣∣ . 1

t
(∥A∥L∞(S,+∞) + ∥A′∥L1(S,+∞)). (3.14)

Using Lemma 5.3, we first have

|A(s)| . exp(−c|x|s− 1
6 )s−

2
3 . min(S− 2

3 , x−4).

We also infer from Lemma 5.3

|A′(s)| .
( |α′x|
|1 + 3α2|

+
|αα′|

|1 + 3α2|2
)
exp(−c|Reαx|) .

( |x|
s

4
3

+
1

s
5
3

)
exp(−c|x|s− 1

6 ). (3.15)

On one hand, performing the change of variable y = c|x|s− 1
6 ,∫ +∞

S

|x|
s

4
3

exp(−c|x|s− 1
6 )ds h

1

|x|

∫ +∞

S

x2

s
4
3

exp(−c|x|s− 1
6 )ds

h
1

|x|

∫ c|x|S− 1
6

0

ye−ydy . min
(
|x|−1,

|x|
S

1
3

)
. (3.16)

On the other hand,∫ +∞

S

exp(−c|x|s− 1
6 )

ds

s
5
3

. 1

|x|S 1
2

∫ +∞

S

exp(−c|x|s− 1
6 )

|x|ds
s

7
6

h
1

|x|S 1
2

∫ +∞

S

∂s(exp(−c|x|s−
1
6 ))ds

h
1− exp(−c|x|S− 1

6 )

|x|S 1
2

. S− 2
3 . (3.17)

Using the inequality y3 exp(−2y) . exp(−y), we also have∫ +∞

S

exp(−c|x|s− 1
6 )

ds

s
5
3

h x−4

∫ +∞

S

( |x|
s

1
6

)3

exp(−c|x|s− 1
6 )

|x|ds
s

7
6

. x−4

∫ +∞

S

exp
(
− c

2
|x|s− 1

6

) |x|ds
s

7
6

h x−4

∫ +∞

S

∂s

(
exp

(
− c

2
|x|s− 1

6

))
ds . x−4. (3.18)
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We gather the computations above in the formula: for any S ≥ 1,

|H(t, x)| . min
(
S

1
3 − 1,

S

x4

)
+

1

t

(
min

( 1

S
2
3

,
1

x4

)
+min

( 1

|x|
,
|x|
S

1
3

))
. (3.19)

Choosing S = 1 provides us with the upper bound 1
t min(1, 1

|x| ). This completes the proof

of Lemma 3.2 while t ≥ 1 or t|x| ≥ 1. It remains to establish the result for small t.

Second step t ≤ |x| ≤ t
1
3 ≤ 1.

Setting S = 1
t ≥ 1 in inequality (3.19), we obtain

|H(t, x)| . 1

t
1
3

+
|x|
t
2
3

. (3.20)

This completes the result if moreover |x| . t
1
3 . At this stage, we have proved the lemma if

either t ≥ 1 or |x| . t
1
3 .

Third step t ≤ t
1
3 . |x|.

In this region, we shall use the Stationary Phase method to enforce some decay, since in

this region the diffusion has not enough strength. Assume in the sequel t ≤ t
1
3 . |x| and then

|x|
t large enough. To begin with, we use the following trick

H(t, x) h − 1

x

∫ +∞

1

∂s(e
−αx)

eist

α′(1 + 3α2)
ds. (3.21)

This equality is valid in the sense of oscillatory integrals. At this stage, let us observe that

α′(1 + 3α2) = i +
√
i

2
√
s
= i(1 + ε(s)) is almost constant. We then have

H(t, x) h − 1

ix

∫ +∞

1

∂s(e
−αx+ist)

ds

1 + ε
+
t

x

∫ +∞

1

e−αx+ist ds

1 + ε
= H1(t, x) +H2(t, x). (3.22)

On one hand, integrating by parts,

|H1(t, x)| .
1

|x|

∫ +∞

1

exp(−|Reα||x|) |ε′|ds
|1 + ε|2

. ∥ε′∥L1

|x|
. 1

|x|
. (3.23)

On the other hand, we estimate the second integral by van der Corput Lemma 5.5. We set

the phase to be ψ(s) = st − Imα(s)x and A(s) = exp(−Reαx)
1+ε . We have ψ′(s) = t − Imα′(s)x

which converges towards t when s goes to the infinity and ψ′(1) = t − |Imα(1)||x|; we may

work on a region such that ψ′(1) < 0 (i.e., |x|
t > 1

|Imα(1)| ), the complementary region being

handled by the computations above. Moreover, we may assume without loss of generality that

ψ′′(s) = −Imα′′x does not vanish for s ≥ 1 (if this is not true, we know that there exists θ

large enough such that Imα′′ does not vanish on (θ,+∞) and we cut K+
2 in L+H accordingly

to the case s < θ and s > θ). Therefore, with this assumption, there exists a unique s∗ such

that ψ′(s∗) = 0 and moreover since −Imα′(s) h s−
2
3 , we have s∗ h ( |x|t )

3
2 .

We now writeH2(t, x) =
t
x (
∫ s∗
1

+
∫ +∞
s∗

)(eiψA)ds and compute each integral by using Lemma

5.5. We then have ∣∣∣ ∫ +∞

1

eiψAds
∣∣∣ . ∥A∥L∞ + ∥A′∥L1

|ψ′′(s∗)|
1
2

. (3.24)
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On one hand, |ψ′′(s∗)| h (s
− 5

3
∗ )|x| h t

5
2

|x|
3
2
. On the other hand, |A(s)| . 1 and

|A′(s)| . (|Reα′x|+ |ε′|) exp(−|Reαx|) .
( |x|
s

7
6

+
1

s
3
2

)
exp(−c|x|s− 1

6 ). (3.25)

Then ∥A′∥L1 . 1. We gather the previous computations to write

|H(t, x)| . 1

|x|
+

t

|x|
|x| 34
t
5
4

. 1

(t|x|) 1
4

, (3.26)

since t ≤ t
1
3 . |x|. Then the proof of the lemma is completed.

The proof of Theorem 3.2 follows by gathering the results of Lemmas 3.1 and 3.2.

3.4 Estimates on K2(t, x), x > 0

We state and prove the following result.

Theorem 3.3 Consider K2 defined as above. For any t > 0, for any x > 0 the following

inequalities hold true:

|K2(t, x)| . min
( 1√

t
,
1

x

)
+min

(1
t
,
1

t
1
3

,
1

x

)
. min

( 1√
t
,
1

x

)
.

Proof We focus on K+
2 , the other integral being similar. As in the case x < 0 we divide

K+
2 = L+H in two parts, accordingly to s < 1 or s > 1. It is worth to point out that L(t, x)

satisfies the same estimate than in Lemma 3.1. For the high frequency part, we set a = a(is)

the root with positive real part of X3 +X = is+
√
is. Set S ≥ 1. On one hand, due to Lemma

5.2, ∣∣∣ ∫ S

1

eits−ax

1 + 3a2
ds

∣∣∣ . ∫ S

1

exp(−cxs 1
3 )

ds

s
2
3

. min
(
S

1
3 − 1,

1

x

)
; (3.27)

indeed, the estimate exp(−cxs 1
3 ) ≤ 1 provides us with the upper bound S

1
3 − 1, while the

change of variable y = cxs
1
3 provides us with x−1. On the other hand, using Lemma 5.4 with

ψ(s) = st and A(s) = exp(−ax)
1+3a2 , we have∣∣∣ ∫ +∞

S

eits−ax

1 + 3a2
ds

∣∣∣ . 1

t
(∥A∥L∞(S,+∞) + ∥A′∥L1(S,+∞)). (3.28)

Using once again Lemma 5.2, we have∫ +∞

S

|A′(s)|ds .
∫ +∞

S

( |a′||x|
|1 + 3a2|

+
|aa′|

|1 + 3a2|2
)
e−xRe ads

.
∫ +∞

S

( |x|
s

4
3

+
1

s
5
3

)
e−cxs

1
3 ds

.
∫ +∞

S

exp(−cxs 1
3 )

ds

s
5
3

. min
( 1

S
2
3

,
1

x2

)
; (3.29)

actually, the estimate exp(−cxs 1
3 ) ≤ 1 leads to the upper bound S− 2

3 , while the change of

variable y = cxs
1
3 leads to x−2. We also have

|A(s)| . exp(−cxs 1
3 )s−

2
3 . min(S− 2

3 , x−2). (3.30)
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We gather the computations above as follows

|H(t, x)| . min
(
S

1
3 − 1,

1

x

)
+

1

t
min(S− 2

3 , x−2). (3.31)

Choosing S = 1 provides us with the upper bound 1
t , while choosing for t ≤ 1, S = t−1

provides the bound t−
1
3 . For S = +∞, we have the bound 1

x that completes the proof of the

theorem.

3.5 Completing the proof of Theorem 1.1

We begin with the L∞ estimates on K(t, · ) : x 7→ K(t, x). The upper bound ∥K(t)∥L∞
x

.
t−

1
2 is a straightforward consequence of Theorems 3.1–3.3. For the L2

x estimate, it is worth to

point out that the upper bound min( 1√
t
, 1x ) provides us with a upper bound in L2

x that behaves

as t−
1
4 , as for the heat equation. It remains to consider the high frequencies part of K2, for

x < 0 and t ≤ 1; we focus on H(t, x) which satisfies the estimates in Lemma 3.2. We then have

∥H(t, · )∥2L2
x
.

∫ +∞

0

min
( 1

t
2
3

,
1

|tx| 12
,

1

t2x2

)
dx

=

∫ t
1
3

0

dx

t
2
3

+

∫ 1
t

t
1
3

dx√
tx

+

∫ +∞

1
t

dx

(tx)2
. 1

t
. (3.32)

Therefore ∥K(t, · )∥L2
x
. 1

t
1
4
+ 1

t
1
2
. We conclude using classical results about convolution: for

any p ≥ 1, it is well-known that

∥K(t, · ) ∗ u0∥Lp
x
≤ ∥K(t)∥Lp

x
∥u0∥L1

x
. (3.33)

This completes the proof of Theorem 1.1.

4 Conclusion

In this article, we have addressed the issue of the decay rate of solutions to a linear viscous

asymptotic model for water waves. In a previous work, where the equation features diffusion

term as −uxx, we have proved that the decay of solutions compare to the decay of solutions

to the heat equation. In this article, we have addressed the mathematical challenge of dealing

without this diffusion term. Actually, the non-local term in the equation provides us with a

much weaker dissipation. Despite this fact, we were able to prove that solutions to the linear

equation converges towards the equilibrium when time goes to the infinity, and with a good

rate of convergence for large time. Indeed, it turns out that the decay of solutions for t ≤ 1 and

x < 0 is much more weaker than for the solutions to the heat equation. At this stage, we do

not know how to handle the full nonlinear equation. This will be the purpose of a forthcoming

work.

5 Annex: Preliminary Material

5.1 Behavior of the solutions to X3 + X = is +
√
is

Here s is a real number and
√
is =

√
|s| exp(i s|s|

π
4 ). By symmetry, we will only discuss

the case s > 0. As stated before, the equation possesses three branches of solutions that vary
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analytically with respect to s. Singularity will occur either for s = 0 or s = +∞. Let a(is),

α1(is), α2(is) as defined in Lemma 2.1.

For small s, we can easily prove that a(is) ∼
√
is, α1(is) ∼ i, α2(is) ∼ −i. Actually, the

real part of each root vanishes and the decay rate of this real part monitors the decay rate of

the kernel for large x. For s going to the infinity, we have that a(is) ∼ ei
π
6 s

1
3 , α1(is) ∼ ei

5π
6 s

1
3 ,

α2(is) ∼ −is
1
3 . We observe that the two first root provide an exponential damping of the

high frequencies (with a speed that is s
1
3 ; the same computation for the heat kernel provides

damping with speed s
1
2 ), while the real part of α2 vanishes at the infinity; this explains why

the proof of the main result is more involved than the similar proof for the heat equation.

We now quantify these remarks first for small s, then for large s.

Lemma 5.1 Let α be one of the roots of X3 +X = is+
√
is. Then for s . 1,

1 . |1 + 3α2|, (5.1)

s
1
2 . |Reα|, (5.2)

|α(s)| . 1, (5.3)

|α′(s)| h s−
1
2 . (5.4)

Proof The proof of the first and the third assertion are easy. For the second assertion, we

use the identity

√
2s = (α+ α)(α2 + α2 − |α|2 + 1) = 2Reα(4(Reα)2 − 3|α|2 + 1).

For the last assertion we use the identity α′(1 + 3α2) = i +
√
i

2
√
s
.

Remark 5.1 We also need some properties of the solutions to X3 +X = is2 + s
√
i. Set β

for any root of this equation. Then, with exactly the same proof (and no singularity at s = 0),

1 . |1 + 3β2|, (5.5)

s . |Reβ|, (5.6)

|β(s)| . 1, (5.7)

|β′(s)| h 1. (5.8)

Let us now state the result for high frequencies, that is large s.

Lemma 5.2 Let a be the root of X3+X = is+
√
is with positive real part. Then for 1 . s,

1 . |1 + 3a2|, (5.9)

s
1
3 . |Re a|, (5.10)

|a(s)| h s
1
3 , (5.11)

|a′(s)| h s−
2
3 . (5.12)

Analogous results hold true for α1. For the other root the situation is more complicated.

Lemma 5.3 Let α2 be the root of X3+X = is+
√
is with negative real part and imaginary
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part. Then for 1 . s,

1 . |1 + 3α2
2|, (5.13)

s−
1
6 h |Reα2|, (5.14)

|α2(s)| h s
1
3 , (5.15)

|α′
2(s)| h s−

2
3 . (5.16)

Proof The proofs are easy. We omit the proofs for the sake of conciseness; we just point

out that the proof of the second statement of this lemma comes from the identity
√
2s =

2Reα2(4(Reα2)
2 − 3|α|2 + 1).

5.2 Around van der Corput lemma

We recall some preliminary material. See [10] for instance. We recall first some Nonstation-

ary Phase Lemma.

Lemma 5.4 Consider a positive convex function ψ : [b, d] → R. Assume that ψ′ is positive

on [b, d]. Consider a complex valued function A which is bounded and whose derivative is in

L1. Then ∣∣∣ ∫ d

b

exp(iψ(s))A(s)ds
∣∣∣ ≤ 4(∥A∥L∞ + ∥A′∥L1)

|ψ′(b)|
.

Proof Write

i

∫ d

b

exp(iψ(s))A(s)ds = −
∫ d

b

∂s(exp(iψ(s)))
A(s)

ψ′(s)
ds

= −
[
exp(iψ(s))

A(s)

ψ′(s)

]d
b

+

∫ d

b

exp(iψ(s))
( A(s)
ψ′(s)

+A(s)∂s

( 1

ψ′(s)

))
ds. (5.17)

Therefore, using that ∂s(
1

ψ′(s) ) is positive, we have

∣∣∣ ∫ d

b

exp(iψ(s))A(s)ds
∣∣∣ ≤ 2

∥A∥L∞

ψ′(b)
+

∥A′∥L1

ψ′(b)
+ ∥A∥L∞

∣∣∣ ∫ d

b

∂s

( 1

ψ′(s)

)
ds

∣∣∣, (5.18)

and the proof is over.

It is worth to point out that the bounds do not depend on b, d except through A. Let us

now state the van der Corput lemma.

Lemma 5.5 Consider a positive strictly convex function ψ : (b, d] → R. Assume ψ′(b) = 0

and ψ′′(b) > 0. Consider a complex valued function A which is bounded and whose derivative

is in L1. Then ∣∣∣ ∫ d

b

exp(iψ(s))A(s)ds
∣∣∣ ≤ 8(∥A∥L∞ + ∥A′∥L1)

|ψ′′(b)| 12
.

Proof Introduce δ > 0 to be specified in the sequel. On one hand∣∣∣ ∫ b+ε

b

exp(iψ(s))A(s)ds
∣∣∣ ≤ ∥A∥L∞δ. (5.19)
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On the other hand, using the previous Lemma 5.4, we have∣∣∣ ∫ d

b+ε

exp(iψ(s))A(s)ds
∣∣∣ ≤ 4(∥A∥L∞ + ∥A′∥L1)

|ψ′(b+ δ)|
. (5.20)

Using the estimate ψ′(b+ δ) ≥ ψ′′(b)δ, we then have∣∣∣ ∫ d

b

exp(iψ(s))A(s)ds
∣∣∣ ≤ 4(∥A∥L∞ + ∥A′∥L1)

(
δ +

1

ψ′′(b)δ

)
. (5.21)

Choosing δ = 1

ψ′′(b)
1
2
completes the proof.
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