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1 Introduction

Spectral method has been widely used for scientific computations (see [1–9, 11] and the ref-

erences therein). The standard spectral method is available for periodic problems and problems

defined on rectangular domains. But many practical problems are set on complex domains, for

which finite element method are usually used. However, it is also interesting to consider spectral

method for non-rectangular domains and unbounded domains (see, e.g., [1, 2, 5, 13–16]).

In this paper, we develop the Petrov-Galerkin spectral element method for polygons, using

a family of irrational base functions induced by the Legendre polynomials. The next section is

for preliminaries. In Section 3, we establish the basic results on the Legendre irrational quasi-

orthogonal approximation on quadrilaterals, which possess the spectral accuracy in certain

Jacobi weighted Sobolev spaces. These results form the mathematical foundation of Petrov-

Galerkin spectral element method for polygons, and serve as an important tool for numerical
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treatment of mixed inhomogeneous boundary conditions. In Section 4, we propose the Petrov-

Galerkin spectral method for a mixed inhomogeneous Dirichlet-Neumann-Robin boundary value

problem on quadrilaterals, with the error estimate of numerical solution. In Section 5, we

consider the Petrov-Galerkin spectral element method for polygons. The final section is for

some concluding remarks.

It is noted that Guo and Jia [10] developed Legendre irrational orthogonal approximation

by using other kinds of base functions, which are suitable for numerical solutions of parabolic

equations on quadrilaterals. However, it is simpler to use the Legendre irrational orthogonal

approximation of this paper for partial differential equations defined on polygons with mixed

inhomogeneous boundary conditions. Indeed, the second result of Theorem 3.2 of his paper

was used in [10, Section 7] without proof. But, we now consider more general mixed inhomoge-

neous Dirichlet-Neumann-Robin boundary conditions and weak the restriction on partitions of

polygons. On the other hand, pseudospectral method for polygons was also developed recently,

which is also called as spectral element method in many literatures (see, e.g., [2, 5, 17]).

2 Preliminaries

Let Ω be a convex quadrilateral with the edges Lj , the vertices Qj = (xj , yj) and the angles

θj (1 ≤ j ≤ 4) (see Figure 1). We make the variable transformation (see [2, 5, 10, 17]) as

follows:

x = a0 + a1ξ + a2η + a3ξη, y = b0 + b1ξ + b2η + b3ξη, (2.1)

where

a0 =
1

4
(x1 + x2 + x3 + x4), b0 =

1

4
(y1 + y2 + y3 + y4),

a1 =
1

4
(−x1 + x2 + x3 − x4), b1 =

1

4
(−y1 + y2 + y3 − y4),

a2 =
1

4
(−x1 − x2 + x3 + x4), b2 =

1

4
(−y1 − y2 + y3 + y4),

a3 =
1

4
(x1 − x2 + x3 − x4), b3 =

1

4
(y1 − y2 + y3 − y4).

(2.2)

The quadrilateral Ω is changed to the square S. If Ω is a parallelogram, then a3 = b3 = 0. In

this case, transformation (2.1) is an affine mapping. Especially, a2 = a3 = b1 = b3 = 0 for any

rectangle Ω.

For simplicity, we denote ∂x
∂ξ by ∂ξx, etc. The Jacobi matrix of transformation (2.1) is

MΩ =

(
∂ξx ∂ξy
∂ηx ∂ηy

)
=

(
a1 + a3η b1 + b3η
a2 + a3ξ b2 + b3ξ

)
.

Its Jacobian determinant is

JΩ(ξ, η) =

∣∣∣∣a1 + a3η b1 + b3η
a2 + a3ξ b2 + b3ξ

∣∣∣∣ . (2.3)

According to [10, (2.7)], there exist positive constants δΩ and δ∗Ω, such that

0 < δΩ ≤ JΩ(ξ, η) ≤ δ∗Ω. (2.4)
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Figure 1 Quadrilateral Ω

The inverse of transformation (2.1) is given by ξ = ξ(x, y) and η = η(x, y). Their explicit

presentations were given in the appendix of [10]. They are irrational functions generally. The

Jacobi matrix of the above inverse transformation is

MS =M−1
Ω =

(
∂xξ ∂xη
∂yξ ∂yη

)
=

1

JΩ(ξ, η)

(
b2 + b3ξ −b1 − b3η
−a2 − a3ξ a1 + a3η

)
. (2.5)

Thanks to (2.4), we have

0 <
1

δ∗Ω
≤ JS(x, y) = J−1

Ω (ξ, η) ≤ 1

δΩ
. (2.6)

3 Legendre Irrational Quasi-orthogonal Approximations

In this section, we consider the Legendre irrational quasi-orthogonal approximations on

quadrilaterals, which are the mathematical foundation of related spectral element method.

3.1 Legendre orthogonal approximation in one dimension

We recall the recent results on the one-dimensional Legendre orthogonal approximation.

Let Λξ = {ξ | |ξ| < 1} and χ(α,β)(ξ) = (1− ξ)α(1 + ξ)β , α, β > −1. We define the Jacobian

weighted space L2
χ(α,β)(Λξ) in the usual way, with the following inner product and norm:

(u, v)χ(α,β),Λξ
=

∫
Λ

u(ξ)v(ξ)χ(α,β)(ξ)dξ, ∥v∥χ(α,β),Λξ
= (v, v)

1
2

χ(α,β),Λξ
.

We omit the subscript χ(α,β) in notations whenever α = β = 0.

The Legendre polynomial of degree l is defined by

Ll(ξ) =
(−1)l

2ll!
∂lξ(1− ξ2)l, l ≥ 0.

The set of all Legendre polynomials is a complete L2(Λξ)-orthogonal system. Moreover,

∥Ll∥2Λξ
=

(
l +

1

2

)−1

. (3.1)
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Let 0H1(Λξ) = H1(Λξ) ∩ {v | v(1) = 0}. For any positive integer N , we denote by PN (Λξ)

the set of all polynomials of degree at most N . Furthermore, P0
N (Λξ) = PN (Λξ) ∩H1

0 (Λξ) and
0PN (Λξ) = PN (Λξ) ∩ 0H1(Λξ).

The L2(Λξ)-orthogonal projection PN,Λξ
: L2(Λξ) → PN (Λξ) is defined by

(PN,Λξ
v − v, ϕ)Λξ

= 0, ∀ϕ ∈ PN (Λξ). (3.2)

According to [12, Theorem 2.1], we know that if v ∈ L2(Λξ), ∂
r
ξv ∈ L2

χ(r,r)(Λξ) and integers

0 ≤ r ≤ N + 1, then

∥PN,Λξ
v − v∥Λξ

≤ cN−r∥∂rξv∥χ(r,r),Λξ
. (3.3)

Hereafter, c denotes a generic positive constant independent of N and any function.

Next, the orthogonal projection P 1,0
N,Λξ

: H1
0 (Λξ) → P 0

N (Λξ) is defined by

(∂ξ(P
1,0
N,Λξ

v − v), ∂ξϕ)Λξ
= 0, ∀ϕ ∈ P0

N (Λξ). (3.4)

As a special case of [12, Theorem 3.4], we have that if v ∈ H1
0 (Λξ), ∂

r
ξv ∈ L2

χ(r−1,r−1)
(Λξ) and

integers 1 ≤ r ≤ N + 1, then

∥∂µξ (P
1,0
N,Λξ

v − v)∥Λξ
≤ cNµ−r∥∂rξv∥χ(r−1,r−1),Λξ

, µ = 0, 1. (3.5)

The orthogonal projection 0P 1
N,Λξ

: 0H1(Λξ) → 0PN (Λξ) is defined by

(∂ξ(
0P 1

N,Λξ
v − v), ∂ξϕ)Λξ

= 0, ∀ϕ ∈ 0PN (Λξ). (3.6)

We have from a slight modification of [12, Theorem 3.2] that if v∈0H1(Λξ), ∂
r
ξv∈L2

χ(r−1,r−1)
(Λξ)

and integers 1 ≤ r ≤ N + 1, then

∥∂µξ (
0P 1

N,Λξ
v − v)∥Λξ

≤ cNµ−r∥∂rξv∥χ(r−1,r−1),Λξ
, µ = 0, 1. (3.7)

3.2 L2(Ω)-Legendre irrational orthogonal approximation on quadrilaterals

We now study the L2(Ω)-Legendre irrational orthogonal approximation. We denote the

inner product and norm of L2(Ω) by (u, v)Ω and ∥v∥Ω, respectively.
The irrational functions on the quadrilateral Ω are given by

ψl,m(x, y) = Ll(ξ(x, y))Lm(η(x, y)), l,m ≥ 0. (3.8)

Let

VN (Ω) = span{ψl,m(x, y) | 0 ≤ l,m ≤ N}.

The L2(Ω)-orthogonal projection PN,Ω : L2(Ω) → VN (Ω) is defined by

(PN,Ωv − v, ϕ)Ω = 0, ∀ϕ ∈ VN (Ω). (3.9)

For simplicity of statements, we introduce the quantity

Ar,Ω(v) =

r∑
j=0

(∥(1− ξ2)
r
2 (a1 + a3η)

j(b1 + b3η)
r−j∂jx∂

r−j
y v∥Ω

+ ∥(1− η2)
r
2 (a2 + a3ξ)

j(b2 + b3ξ)
r−j∂jx∂

r−j
y v∥Ω).
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Theorem 3.1 If v ∈ L2(Ω), and Ar,Ω(v) is finite for integers 0 ≤ r ≤ N + 1, then

∥PN,Ωv − v∥Ω ≤ cδ∗Ω
1
2 δΩ

− 1
2N−rAr,Ω(v). (3.10)

Proof By projection theorem, we get

∥PN,Ωv − v∥2Ω ≤ ∥ϕ− v∥2Ω, ∀ϕ ∈ VN (Ω).

Let v̂(ξ, η) = v(x(ξ, η), y(ξ, η)) and

ψ(ξ, η) = PN,Λξ
• PN,Λη v̂, ϕ(x, y) = ψ(ξ(x, y), η(x, y)) ∈ VN (Ω). (3.11)

Clearly, S = Λξ × Λη. By using (2.4) and (3.3), we verify that

∥v − ϕ∥2Ω =

∫∫
S

(v̂ − PN,Λξ
• PN,Λη v̂)

2JΩ(ξ, η)dξdη

≤ 2δ∗Ω

∫∫
S

(v̂ − PN,Λξ
v̂)2dξdη + 2δ∗Ω

∫∫
S

(PN,Λξ
(v̂ − PN,Λη v̂))

2dξdη

≤ cδ∗ΩN
−2r∥∂rξ v̂∥2L2

χ(r,r)
(Λξ,L2(Λη))

+ cδ∗Ω∥PN,Λη v̂ − v̂∥2L2(Λξ,L2(Λη))

≤ cδ∗ΩN
−2r(∥∂rξ v̂∥2L2

χ(r,r)
(Λξ,L2(Λη))

+ ∥∂rη v̂∥2L2(Λξ,L2

χ(r,r)
(Λη))

). (3.12)

By virtue of (2.1), a direct calculation yields that

∂rξ v̂ =

r∑
j=0

Cj
r (a1 + a3η)

j(b1 + b3η)
r−j∂jx∂

r−j
y v, (3.13)

∂rη v̂ =
r∑

j=0

Cj
r (a2 + a3ξ)

j(b2 + b3ξ)
r−j∂jx∂

r−j
y v. (3.14)

Therefore,

∥∂rξ v̂∥L2

χ(r,r)(Λξ,L2(Λη))

≤ cδΩ
− 1

2

r∑
j=0

∥(1− ξ2)
r
2 (a1 + a3η)

j(b1 + b3η)
r−j∂jx∂

r−j
y v∥Ω, (3.15)

∥∂rη v̂∥L2(Λξ,L2

χ(r,r)
(Λη)) ≤ cδΩ

− 1
2

r∑
j=0

∥(1− η2)
r
2 (a2 + a3ξ)

j(b2 + b3ξ)
r−j∂jx∂

r−j
y v∥Ω. (3.16)

Finally, the desired result (3.10) follows from a combination of (3.12), (3.15) and (3.16).

Remark 3.1 In the norms of derivatives ∂jx∂
r−j
y v involved in the quantity Ar,Ω(v), there

exist the weight functions (1−ξ2) r
2 or (1−η2) r

2 respectively, which tend to zero simultaneously

as the point Q(x, y) goes to the vertices of Ω. As a result, ∥PNv − v∥Ω still keeps the order

N−r, even if the approximated function has certain weak singularity at the vertices.

Remark 3.2 If Ω is the rectangle Sa,b = {(x, y) | |x| < a, |y| < b, a, b > 0}, then

a1 = a, b2 = b, a2 = a3 = b1 = b3 = 0 and JΩ = ab. Therefore,

∥PN,Ωv − v∥Ω ≤ cN−r(∥(a2 − x2)
r
2 ∂rxv∥Ω + ∥(b2 − y2)

r
2 ∂ryv∥Ω).

Obviously, the L2(Ω)-orthogonal approximation keeps the same spectral accuracy, even if the

considered function possesses certain singularity at the edges of quadrilateral.
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3.3 Legendre irrational orthogonal approximation in H1
0(Ω)

We now turn to the H1
0 (Ω)-Legendre irrational orthogonal approximation.

According to the Poincaré inequality, there exists a positive constant cΩ such that

∥w∥Ω ≤ cΩ∥∇w∥Ω, ∀w ∈ H1
0 (Ω). (3.17)

Let x5 = x1 and y5 = y1. We set γΩ = max(|a3|, |b3|) and

σΩ = max
(ξ,η)∈S

(|b2 + b3ξ|, |b1 + b3η|, |a2 + a3ξ|, |a1 + a3η|)

=
1

2
max
1≤j≤4

(|xj − xj+1|, |yj − yj+1|).

Due to (2.2), we have γΩ ≤ σΩ.

Let V 0
N (Ω) = H1

0 (Ω) ∩ VN (Ω). The H1
0 (Ω)-orthogonal projection P

1,0
N,Ω : H1

0 (Ω) → V 0
N (Ω) is

defined by

(∇(P 1,0
N,Ωv − v),∇ϕ)Ω = 0, ∀ϕ ∈ V 0

N (Ω). (3.18)

In order to describe the approximation error, we introduce the quantity

Br,Ω(v) =
3∑

j=1

B
(j)
r,Ω(v)

with

B
(1)
r,Ω(v) =

r∑
j=0

(∥(1− ξ2)
r−1
2 (a1 + a3η)

j(b1 + b3η)
r−j∂jx∂

r−j
y v∥Ω

+ ∥(1− η2)
r−1
2 (a2 + a3ξ)

j(b2 + b3ξ)
r−j∂jx∂

r−j
y v∥Ω),

B
(2)
r,Ω(v) =

r−1∑
j=0

(∥(1− ξ2)
r−2
2 (a1 + a3η)

j(b1 + b3η)
r−1−j(a2 + a3ξ)∂

j+1
x ∂r−1−j

y v∥Ω

+ ∥(1− ξ2)
r−2
2 (a1 + a3η)

j(b1 + b3η)
r−1−j(b2 + b3ξ)∂

j
x∂

r−j
y v∥Ω

+ ∥(1− η2)
r−2
2 (a2 + a3ξ)

j(b2 + b3ξ)
r−1−j(a1 + a3η)∂

j+1
x ∂r−1−j

y v∥Ω
+ ∥(1− η2)

r−2
2 (a2 + a3ξ)

j(b2 + b3ξ)
r−1−j(b1 + b3η)∂

j
x∂

r−j
y v∥Ω),

B
(3)
r,Ω(v) =

r−2∑
j=0

(∥(1− ξ2)
r−2
2 a3(a1 + a3η)

j(b1 + b3η)
r−2−j∂j+1

x ∂r−2−j
y v∥Ω

+ ∥(1− ξ2)
r−2
2 b3(a1 + a3η)

j(b1 + b3η)
r−2−j∂jx∂

r−1−j
y v∥Ω

+ ∥(1− η2)
r−2
2 a3(a2 + a3ξ)

j(b2 + b3ξ)
r−2−j∂j+1

x ∂r−2−j
y v∥Ω

+ ∥(1− η2)
r−2
2 b3(a2 + a3ξ)

j(b2 + b3ξ)
r−2−j∂jx∂

r−1−j
y v∥Ω).

Theorem 3.2 If v ∈ H1
0 (Ω) and Br,Ω(v) is finite for integers 2 ≤ r ≤ N + 1, then

∥∇(P 1,0
N,Ωv − v)∥Ω ≤ cσΩδ

−1
Ω N1−rBr,Ω(v),

∥P 1,0
N,Ωv − v∥Ω ≤ ccΩ(c

2
Ω + 1)σr+1

Ω (σΩ + 1)δ−2
Ω N−rBr,Ω(v),

(3.19)
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where cΩ is a positive constant determined in (3.29) of this paper.

Proof By projection theorem, we have

∥∇(P 1,0
N,Ωv − v)∥Ω ≤ ∥∇(ϕ− v)∥Ω, ∀ϕ ∈ V 0

N (Ω). (3.20)

Let v̂(ξ, η) = v(x(ξ, η), y(ξ, η)) as before, and

ψ(ξ, η) = P 1,0
N,Λξ

• P 1,0
N,Λη

v̂, ϕ(x, y) = ψ(ξ(x, y), η(x, y)) ∈ V 0
N (Ω).

We denote by ∥w∥S the norm of the space L2(S), and ∇Sw = (∂ξw, ∂ηw)
T. It can be shown

that ∇Sw =MΩ∇w. Thus by (2.5), we have ∇w =MS∇Sw. Hence,

∂x(ϕ− v) = (b2 + b3ξ)J
−1
Ω ∂ξ(ψ − v̂)− (b1 + b3η)J

−1
Ω ∂η(ψ − v̂).

With the aid of (2.6), a direct calculation gives

∥∂x(ϕ− v)∥Ω ≤ cσΩδ
− 1

2

Ω ∥∇S(ψ − v̂)∥S .

We can estimate ∥∂y(ψ − v̂)∥Ω in the same manner. Consequently,

∥∇(ϕ− v)∥Ω ≤ cσΩδ
− 1

2

Ω ∥∇S(ψ − v̂)∥S . (3.21)

We now estimate ∥∇S(ψ − v̂)∥S . Clearly,

∥∂ξ(ψ − v̂)∥2S ≤ ∥∂ξ(P 1,0
N,Λξ

v̂ − v̂)∥2S + ∥∂ξP 1,0
N,Λξ

(P 1,0
N,Λη

v̂ − v̂)∥2S .

Using (3.5) with µ = 1 gives

∥∂ξ(P 1,0
N,Λξ

v̂ − v̂)∥2S ≤ cN2−2r∥∂rξ v̂∥2L2

χ(r−1,r−1)
(Λξ,L2(Λη))

.

By virtue of (3.5) with r = µ = 1, we have

∥∂ξP 1,0
N,Λξ

(P 1,0
N,Λη

v̂ − v̂)∥2S ≤ ∥∂ξ(P 1,0
N,Λη

v̂ − v̂)∥2L2(Λξ,L2(Λη))
.

Thereby, we use (3.5) with µ = 0 again to assert that

∥∂ξP 1,0
N,Λξ

(P 1,0
N,Λη

v̂ − v̂)∥2S ≤ cN2−2r∥∂ξ∂r−1
η v̂∥2L2(Λξ,L2

χ(r−2,r−2)
(Λη))

.

We can estimate ∥∂η(ψ − v̂)∥2S similarly. As a result, we obtain

∥∇S(ψ − v̂)∥S ≤ cN1−rDr,S(v̂), (3.22)

where Dr,S(w) = D
(1)
r,S(w) +D

(2)
r,S(w) and

D
(1)
r,S(w) = (∥∂rξw∥2L2

χ(r−1,r−1)
(Λξ,L2(Λη))

+ ∥∂ξ∂r−1
η w∥2L2(Λξ,L2

χ(r−2,r−2)
(Λη))

)
1
2 ,

D
(2)
r,S(w) = (∥∂rηw∥2L2(Λξ,L2

χ(r−1,r−1)
(Λη))

+ ∥∂r−1
ξ ∂ηw∥2L2

χ(r−2,r−2)
(Λξ,L2(Λη))

)
1
2 .



862 H. L. Jia and B. Y. Guo

We next estimate the right-hand side of (3.22). By the same argument as in the derivations

of (3.15) and (3.16), we verify

∥∂rξ v̂∥L2

χ(r−1,r−1)(Λξ,L2(Λη))

≤ cδΩ
− 1

2

r∑
j=0

∥(1− ξ2)
r−1
2 (a1 + a3η)

j(b1 + b3η)
r−j∂jx∂

r−j
y v∥Ω, (3.23)

∥∂rη v̂∥L2(Λξ,L2

χ(r−1,r−1)
(Λη))

≤ cδΩ
− 1

2

r∑
j=0

∥(1− η2)
r−1
2 (a2 + a3ξ)

j(b2 + b3ξ)
r−j∂jx∂

r−j
y v∥Ω. (3.24)

Moreover, by differentiating (3.13) with respect to η, we use (2.1) to obtain

∂r−1
ξ ∂η v̂ =

r−1∑
j=0

Cj
r−1(a1 + a3η)

j(b1 + b3η)
r−1−j((a2 + a3ξ)∂

j+1
x ∂r−1−j

y v + (b2 + b3ξ)∂
j
x∂

r−j
y v)

+ (r − 1)
r−2∑
j=0

Cj
r−2(a1 + a3η)

j(b1 + b3η)
r−2−j(a3∂

j+1
x ∂r−2−j

y v + b3∂
j
x∂

r−1−j
y v).

Then, following the same line as in the derivations of (3.15) and (3.16), we obtain

∥∂r−1
ξ ∂η v̂∥L2

χ(r−2,r−2)
(Λξ,L2(Λη))

≤ cδΩ
− 1

2

r−1∑
j=0

(∥(1− ξ2)
r−2
2 (a1 + a3η)

j(b1 + b3η)
r−1−j(a2 + a3ξ)∂

j+1
x ∂r−1−j

y v∥Ω

+ ∥(1− ξ2)
r−2
2 (a1 + a3η)

j(b1 + b3η)
r−1−j(b2 + b3ξ)∂

j
x∂

r−j
y v∥Ω)

+ c

r−2∑
j=0

(∥(1− ξ2)
r−2
2 a3(a1 + a3η)

j(b1 + b3η)
r−2−j∂j+1

x ∂r−2−j
y v∥Ω

+ ∥(1− ξ2)
r−2
2 b3(a1 + a3η)

j(b1 + b3η)
r−2−j∂jx∂

r−1−j
y v∥Ω). (3.25)

Similarly, we use (3.14) and (2.1) to obtain

∥∂ξ∂r−1
η v̂∥L2(Λξ,L2

χ(r−2,r−2)
(Λη))

≤ cδ
− 1

2

Ω

r−1∑
j=0

(∥(1− η2)
r−2
2 (a2 + a3ξ)

j(b2 + b3ξ)
r−1−j(a1 + a3η)∂

j+1
x ∂r−1−j

y v∥Ω

+ ∥(1− η2)
r−2
2 (a2 + a3ξ)

j(b2 + b3ξ)
r−1−j(b1 + b3η)∂

j
x∂

r−j
y v∥Ω)

+ c
r−2∑
j=0

(∥(1− η2)
r−2
2 a3(a2 + a3ξ)

j(b2 + b3ξ)
r−2−j∂j+1

x ∂r−2−j
y v∥Ω

+ ∥(1− η2)
r−2
2 b3(a2 + a3ξ)

j(b2 + b3ξ)
r−2−j∂jx∂

r−1−j
y v∥Ω). (3.26)

Finally, we use (3.20)–(3.26) successively to verify

∥∇(P 1,0
N,Ωv − v)∥Ω ≤ cσΩδ

− 1
2

Ω N1−rDr,S(v̂) ≤ cσΩδ
−1
Ω N1−rBr,Ω(v). (3.27)
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We now prove the second result of (3.19). Let g ∈ L2(Ω) and consider an auxiliary problem.

It is to find w ∈ H1
0 (Ω) such that

(∇w,∇z)Ω = (g, z)Ω, ∀z ∈ H1
0 (Ω). (3.28)

Taking z = w in (3.28) and using (3.17), we obtain ∥∇w∥Ω ≤ cΩ∥g∥Ω.Moreover, by the property

of elliptic equation with the homogeneous boundary condition, there exists a positive constant

cΩ such that

∥w∥H2(Ω) ≤ cΩ(∥w∥Ω + ∥g∥Ω) ≤ cΩ(cΩ∥∇w∥Ω + ∥g∥Ω) ≤ cΩ(c
2
Ω + 1)∥g∥Ω. (3.29)

We now take z = P 1,0
N v − v in (3.28). Then we use (3.18) and (3.27) to verify that

|(P 1,0
N v − v, g)Ω| = |(∇w,∇(P 1,0

N v − v))Ω|

= |(∇(P 1,0
N w − w),∇(P 1,0

N v − v))Ω|

≤ ∥∇(P 1,0
N w − w)∥Ω∥∇(P 1,0

N v − v)∥Ω
≤ cσ2

Ωδ
−2
Ω N−rBr,Ω(v)B2,Ω(w). (3.30)

Since r ≥ 2, we have B2,Ω(w) ≤ σr−1
Ω (σΩ + 1)∥w∥H2(Ω). Finally, we use (3.29) and (3.30) to

deduce that

∥P 1,0
N v − v∥Ω = sup

g∈L2(Ω)
g ̸=0

|(P 1,0
N v − v, g)Ω|

∥g∥Ω

≤ cσ2
Ωδ

−2
Ω N−rBr,Ω(v)B2,Ω(w)

∥g∥Ω

≤ cσr+1
Ω (σΩ + 1)δ−2

Ω N−rBr,Ω(v)∥w∥H2(Ω)

∥g∥Ω
≤ ccΩ(c

2
Ω + 1)σr+1

Ω (σΩ + 1)δ−2
Ω N−rBr,Ω(v).

This ends the proof.

Remark 3.3 If Ω = Sa,b as in Remark 3.2, then we could improve the results in Theorem

3.2. To do this, let

D∗
r,S,a,b(v̂) =

( b
a
(D

(1)
r,S(v̂))

2 +
a

b
(D

(2)
r,S(v̂))

2
) 1

2

.

A direct calculation with (3.20) leads to

∥∇(P 1,0
N,Ωv − v)∥Ω ≤ ∥∇(ϕ− v)∥Ω = cN1−rD∗

r,S,a,b(v̂) ≤ cN1−rB∗
r,Ω(v), (3.31)

where B∗
r,Ω(v) = B∗,1

r,Ω(v) +B∗,2
r,Ω(v), and

B∗,1
r,Ω(v) = (∥(a2 − x2)

r−1
2 ∂rxv∥2Ω + ∥(b2 − y2)

r−1
2 ∂ryv∥2Ω)

1
2 ,

B∗,2
r,Ω(v) = (b2∥(b2 − y2)

r−2
2 ∂x∂

r−1
y v∥2Ω + a2∥(a2 − x2)

r−2
2 ∂r−1

x ∂yv∥2Ω)
1
2 .

Next, like (3.30), we have

|(P 1,0
N v − v, g)Ω| ≤ cN−rB∗

r,Ω(v)B
∗
2,Ω(w).
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It is easy to show

B∗
2,Ω(w) ≤ (∥∂2xv∥2Ω + ∥∂2yv∥2Ω + (a2 + b2)∥∂x∂yv∥2Ω)

1
2 .

Moreover, we obtain from (3.28) that |v|H2(Ω) ≤ 2∥g∥Ω. Finally, from an argument as in the

last part of the proof of Theorem 3.2, we derive

∥P 1,0
N v − v∥Ω ≤ cN−r

√
max(a2 + b2, 1)B∗

r,Ω(v). (3.32)

Remark 3.4 Recently, Guo and Jia [10] considered L2(Ω)-orthogonal approximation and

H1
0 (Ω)-orthogonal approximation by taking the base functions

ψ̃(x, y) = Ll(ξ(x, y))Lm(η(x, y))J
− 1

2

Ω (ξ(x, y), η(x, y)), l,m ≥ 0.

But it is simpler to use the results of (3.19) of this paper for numerical solutions of partial

differential equations defined on polygons with mixed inhomogeneous boundary conditions.

3.4 Legendre irrational quasi-orthogonal approximation on quadrilaterals

We are now in position to study the Legendre irrational quasi-orthogonal approximation on

quadrilaterals. Let v̂(ξ, η) = v(x(ξ, η), y(ξ, η)), and (see [10])

v̂b,L1(η) =
1

2
((1− η)v̂(−1,−1) + (1 + η)v̂(−1, 1)),

v̂b,L2(ξ) =
1

2
((1− ξ)v̂(−1,−1) + (1 + ξ)v̂(1,−1)),

v̂b,L3(η) =
1

2
((1− η)v̂(1,−1) + (1 + η)v̂(1, 1)),

v̂b,L4(ξ) =
1

2
((1− ξ)v̂(−1, 1) + (1 + ξ)v̂(1, 1)).

(3.33)

Next, we set

v̂0b,L1
(η) = v̂(−1, η)− v̂b,L1(η), v̂0b,L2

(ξ) = v̂(ξ,−1)− v̂b,L2(ξ),

v̂0b,L3
(η) = v̂(1, η)− v̂b,L3(η), v̂0b,L4

(ξ) = v̂(ξ, 1)− v̂b,L4(ξ).
(3.34)

The above four functions vanish at the endpoints of Λξ or Λη, respectively. Further, we set

v̂b,∂Ω(ξ, η) = v̂
(1)
b,∂Ω(ξ, η) + v̂

(2)
b,∂Ω(ξ, η),

v̂
(1)
b,∂Ω(ξ, η) =

1

2
((1− ξ)v̂(−1, η) + (1− η)v̂(ξ,−1) + (1 + ξ)v̂(1, η) + (1 + η)v̂(ξ, 1)),

v̂
(2)
b,∂Ω(ξ, η) = −1

4
((1− ξ)(1− η)v̂(−1,−1) + (1 + ξ)(1− η)v̂(1,−1)

+(1 + ξ)(1 + η)v̂(1, 1) + (1− ξ)(1 + η)v̂(−1, 1)),

(3.35)

or equivalently,

v̂b,∂Ω(ξ, η) =
1

2
((1− ξ)v̂0b,L1

(η) + (1− η)v̂0b,L2
(ξ) + (1 + ξ)v̂0b,L3

(η) + (1 + η)v̂0b,L4
(ξ))

+
1

4
((1− ξ)(1− η)v̂(−1,−1) + (1 + ξ)(1− η)v̂(1,−1)

+ (1 + ξ)(1 + η)v̂(1, 1) + (1− ξ)(1 + η)v̂(−1, 1)).
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Let

v̂0Ω(ξ, η) = v̂(ξ, η)− v̂b,∂Ω(ξ, η). (3.36)

Obviously, v̂0Ω(ξ, η) vanishes on ∂Ω. Accordingly, for any positive integer Nb, we introduce the

projection corresponding to ∂Ω, by

∗P̂
1
Nb,∂Ω

v̂b,∂Ω(ξ, η) =
1

2
((1− ξ)P 1,0

Nb,Λη
v̂0b,L1

(η) + (1− η)P 1,0
Nb,Λξ

v̂0b,L2
(ξ)

+ (1 + ξ)P 1,0
Nb,Λη

v̂0b,L3
(η) + (1 + η)P 1,0

Nb,Λξ
v̂0b,L4

(ξ))

+
1

4
((1− ξ)(1− η)v̂(−1,−1) + (1 + ξ)(1− η)v̂(1,−1)

+ (1 + ξ)(1 + η)v̂(1, 1) + (1− ξ)(1 + η)v̂(−1, 1)).

We now set

v0Ω(x, y) = v̂0Ω(ξ, η)|ξ=ξ(x,y),η=η(x,y), vb,∂Ω(x, y) = v̂b,∂Ω(ξ, η)|ξ=ξ(x,y),η=η(x,y),

∗P
1
Nb,∂Ω

vb,∂Ω(x, y) = ∗P̂
1
Nb,∂Ω

v̂b,∂Ω(ξ, η)|ξ=ξ(x,y),η=η(x,y).
(3.37)

Then, we define the Legendre quasi-orthogonal projection ∗P
1
N,Nb,Ω

v as

∗P
1
N,Nb,Ω

v(x, y) = P 1,0
N,Ωv

0
Ω(x, y) + ∗P

1
Nb,∂Ω

vb,∂Ω(x, y). (3.38)

It can be checked that ∗P
1
N,Nb,Ω

v(x, y) = v(x, y) at the four vertices of Ω. Since

∗P
1
N,Nb,Ω

v − v = P 1,0
N,Ωv

0
Ω(x, y)− v0Ω(x, y) + ∗P

1
Nb,∂Ω

vb,∂Ω(x, y)− vb,∂Ω(x, y),

we have

∥∇(∗P
1
N,Nb,Ω

v − v)∥Ω ≤ ∥∇(P 1,0
N,Ωv

0
Ω − v0Ω)∥Ω + ∥∇(∗P

1
Nb,∂Ω

vb,∂Ω − vb,∂Ω)∥Ω. (3.39)

We are going to estimate the first term of the right-hand side of (3.39). We use (3.27),

(3.36) and (3.35) successively to obtain

∥∇(P 1,0
N,Ωv

0
Ω − v0Ω)∥Ω ≤ cσΩδ

− 1
2

Ω N1−rDr,S(v̂
0
Ω)

≤ cσΩδ
− 1

2

Ω N1−r(Dr,S(v̂) +Dr,S(v̂
(1)
b,∂Ω) +Dr,S(v̂

(2)
b,∂Ω)). (3.40)

Thus, it suffices to estimate the right-hand side of (3.40). Firstly, by using (3.27) again, we

have

Dr,S(v̂) ≤ cδ
− 1

2

Ω

3∑
j=1

B
(j)
r,Ω(v). (3.41)

We next estimate Dr,S(v̂
(1)
b,∂Ω). We have from (3.35) that for r ≥ 2,

∂rξ v̂
(1)
b,∂Ω(ξ, η) =

1

2
∂rξ ((1− η)v̂(ξ,−1) + (1 + η)v̂(ξ, 1)),

∂rη v̂
(1)
b,∂Ω(ξ, η) =

1

2
∂rη((1− ξ)v̂(−1, η) + (1 + ξ)v̂(1, η)).
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On the other hand, for r ≥ 3,

∂r−1
ξ ∂η v̂

(1)
b,∂Ω(ξ, η) =

1

2
∂r−1
ξ (−v̂(ξ,−1) + v̂(ξ, 1)) =

1

2

∫
Λη

∂r−1
ξ ∂η v̂(ξ, η)dη,

∂ξ∂
r−1
η v̂

(1)
b,∂Ω(ξ, η) =

1

2
∂r−1
η (−v̂(−1, η) + v̂(1, η)) =

1

2

∫
Λξ

∂ξ∂
r−1
η v̂(ξ, η)dξ.

Besides,

∂ξ∂η v̂
(1)
b,∂Ω(ξ, η) =

1

2
(−∂η v̂(−1, η)− ∂ξ v̂(ξ,−1) + ∂η v̂(1, η) + ∂ξ v̂(ξ, 1))

=
1

2

∫
Λη

∂ξ∂η v̂(ξ, η)dη +
1

2

∫
Λξ

∂ξ∂η v̂(ξ, η)dξ.

With the aid of the previous equalities, a direct calculation yields

Dr,S(v̂
(1)
b,∂Ω) ≤ cδ

− 1
2

Ω (B
(2)
r,Ω(v) +B

(3)
r,Ω(v) +B

(4)
r,Ω(v)), (3.42)

where

B
(4)
r,Ω(v) =

r∑
k=0

( ∑
ν=2,4

∥(1− ξ2)
r−1
2 (a1 + a3η)

k(b1 + b3η)
r−k∂kx∂

r−k
y v∥L2(Lν)

+
∑
ν=1,3

∥(1− η2)
r−1
2 (a2 + a3ξ)

k(b2 + b3ξ)
r−k∂kx∂

r−k
y v∥L2(Lν)

)
.

Finally, we estimate Dr,S(v̂
(2)
b,∂Ω). In fact,

∂rξ v̂
(2)
b,∂Ω(ξ, η) = ∂rη v̂

(2)
b,∂Ω(ξ, η) = 0 for r ≥ 2,

∂r−1
ξ ∂η v̂

(2)
b,∂Ω(ξ, η) = ∂ξ∂

r−1
η v̂

(2)
b,∂Ω(ξ, η) = 0 for r ≥ 3.

Moreover,

∂ξ∂η v̂
(2)
b,∂Ω(ξ, η) = −1

4

∫
S

∂ξ∂η v̂(ξ, η)dξdη.

As a result, Dr,S(v̂
(2)
b,∂Ω) = 0 for r ≥ 3, and

D2,S(v̂
(2)
b,∂Ω) ≤ ∥(a1 + a3η)(a2 + a3ξ)∂

2
xv∥Ω + ∥(b1 + b3η)(b2 + b3ξ)∂

2
yv∥Ω

+ ∥(a1 + a3η)(b2 + b3ξ)∂x∂yv∥Ω + ∥(b1 + b3η)(a2 + a3ξ)∂x∂yv∥Ω
+ ∥a3∂xv∥Ω + ∥b3∂yv∥Ω

≤ cδ
− 1

2

Ω (B
(2)
r,Ω(v) +B

(3)
r,Ω(v)). (3.43)

We now estimate the second term of the right-hand side of (3.39). By virtue of (3.35), we

have

∗P̂
1
Nb,∂Ω

v̂b,∂Ω − v̂b,∂Ω

=
1

2
((1− ξ)(P 1,0

Nb,Λη
v̂0b,L1

(η)− v̂0b,L1
(η)) + (1− η)(P 1,0

Nb,Λξ
v̂0b,L2

(ξ)− v̂0b,L2
(ξ))

+ (1 + ξ)(P 1,0
Nb,Λη

v̂0b,L3
(η)− v̂0b,L3

(η)) + (1 + η)(P 1,0
Nb,Λξ

v̂0b,L4
(ξ)− v̂0b,L4

(ξ))).
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With the aid of (3.5), we verify that for rb ≥ 2,

∥∇S(∗P̂
1
Nb,∂Ω

v̂b,∂Ω − v̂b,∂Ω)∥S

≤ cN1−rb
b (∥(1− η2)

rb−1

2 ∂rbη v̂
0
b,L1

∥S + ∥(1− ξ2)
rb−1

2 ∂rbξ v̂
0
b,L2

∥S

+ ∥(1− η2)
rb−1

2 ∂rbη v̂
0
b,L3

∥S + ∥(1− ξ2)
rb−1

2 ∂rbξ v̂
0
b,L4

∥S)

= cN1−rb
b (∥(1− η2)

rb−1

2 ∂rbη v̂(−1, η)∥S + ∥(1− ξ2)
rb−1

2 ∂rbξ v̂(ξ,−1)∥S

+ ∥(1− η2)
rb−1

2 ∂rbη v̂(1, η)∥S + ∥(1− ξ2)
rb−1

2 ∂rbξ v̂(ξ, 1)∥S).

The above inequality with (2.6) implies

∥∇(∗P
1
Nb,∂Ω

vb,∂Ω − vb,∂Ω)∥Ω ≤ cσΩδ
−1
Ω N1−rb

b B
(4)
rb,Ω

(v). (3.44)

A combination of (3.39)–(3.44) gives

∥∇(∗P
1
N,Nb,Ω

v − v)∥Ω ≤ cσΩδ
−1
Ω

(
N1−r

4∑
j=1

B
(j)
r,Ω(v) +N1−rb

b B
(4)
rb,Ω

(v)
)
. (3.45)

Remark 3.5 If Ω = Sa,b as in Remarks 3.2 and 3.3, then by virtue of (3.31), we obtain

∥∇(P 1,0
N,Ωv

0
Ω − v0Ω)∥Ω ≤ cN1−r(B∗

r,Ω(v) +D∗
r,Ω,a,b(v̂

(1)
b,∂Ω) +D∗

r,Ω,a,b(v̂
(2)
b,∂Ω)). (3.46)

Like (3.42), we have

D∗
r,Ω,a,b(v̂

(1)
b,∂Ω) ≤ c(B∗,2

r,Ω(v) +B∗,3
r,Ω(v)), (3.47)

where

B∗,3
r,Ω(v) =

( ∑
ν=2,4

∥(a2 − x2)
r−1
2 ∂rxv∥2L2(Lν)

+
∑
ν=1,3

∥(b2 − y2)
r−1
2 ∂ryv∥2L2(Lν)

) 1
2

.

Similarly,

D∗
r,Ω,a,b(v̂

(2)
b,∂Ω) ≤ cB∗,2

r,Ω(v). (3.48)

On the other hand, it can be checked that

∥∇(∗P
1
Nb,∂Ω

vb,∂Ω − vb,∂Ω)∥Ω ≤ cB∗,3
rb,Ω

(v). (3.49)

Finally, a combination of (3.46)–(3.49) leads to

∥∇(∗P
1
N,Nb,Ω

v − v)∥Ω ≤ cN1−r
( 3∑

j=1

B∗,j
r,Ω(v) +B∗,3

rb,Ω
(v)

)
. (3.50)

We find that in the estimate (3.50), there is no the term corresponding to B
(3)
r,Ω(v), which

appears in (3.45). This fact leads to the super-convergence of spectral element method with

rectangular elements.
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3.5 Other Legendre irrational quasi-orthogonal approximations

We now turn to several Legendre irrational quasi-orthogonal approximations corresponding

to Neumann or Robin boundary conditions imposed on certain parts of the boundary. For

fixedness, we assume that certain Neumann or Robin boundary conditions are given on L1∪L2

(see Figure 1). Let ∂∗Ω = L3 ∪ L4, and

0H1(Ω) = {v ∈ H1(Ω) | v = 0 on ∂∗Ω}, 0VN (Ω) = 0H1(Ω) ∩ VN (Ω).

The orthogonal projection 0P 1
N,Ω : 0H1(Ω) → 0VN (Ω) is defined by

(∇(0P 1
N,Ωv − v),∇ϕ)Ω = 0, ∀ϕ ∈ 0VN (Ω). (3.51)

Next, let

v̂0b,L3
(η) = v̂(1, η)− 1

2
(1 + η)v̂(1, 1), v̂0b,L4

(ξ) = v̂(ξ, 1)− 1

2
(1 + ξ)v̂(1, 1).

Evidently, v̂0b,L3
(1) = v̂0b,L4

(1) = 0. Further, we set v̂0Ω(ξ, η) = v̂(ξ, η)− v̂b,∂Ω(ξ, η), with

v̂b,∂Ω(ξ, η) =
1

2
(1 + ξ)v̂0b,L3

(η) +
1

2
(1 + η)v̂0b,L4

(ξ) +
1

4
(1 + ξ)(1 + η)v̂(1, 1). (3.52)

The function v̂0Ω(ξ, η) vanishes on ∂
∗Ω.

We also introduce the projection

∗P̂
1
Nb,∂Ω

v̂b,∂Ω(ξ, η) =
1

2
(1+ ξ)0P 1

Nb,Λη
v̂0b,L3

(η)+
1

2
(1+η)0P 1

Nb,Λξ
v̂0b,L4

(ξ)+
1

4
(1+ ξ)(1+η)v̂(1, 1).

Finally, we introduce the quantities v0Ω(x, y), vb,∂Ω(x, y) and ∗P
1
Nb,∂Ω

vb,∂Ω(x, y) in the same way

as in (3.37), and define the quasi-Legendre orthogonal projection ∗P
1
N,Nb,Ω

v by

∗P
1
N,Nb,Ω

v(x, y) = 0P 1
N,Ωv

0
Ω(x, y) + ∗P

1
Nb,∂Ω

vb,∂Ω(x, y). (3.53)

It can be shown that ∗P
1
N,Nb,Ω

v(x, y) = v(x, y) at the vertex Q4 = (1, 1).

Following the same line as in the derivation of (3.45), we could prove that

∥∇(∗P
1
N,Nb,Ω

v − v)∥Ω ≤ cσΩδ
−1
Ω

(
N1−r

4∑
j=1

B
(j)
r,Ω(v) +N1−rb

b B
(5)
rb,Ω

(v)
)
, (3.54)

where

B
(5)
r,Ω(v) =

r∑
k=0

(∥(1− η2)
r−1
2 (a2 + a3ξ)

k(b2 + b3ξ)
r−k∂kx∂

r−k
y v∥L2(L3)

+ ∥(1− ξ2)
r−1
2 (a1 + a3η)

k(b1 + b3η)
r−k∂kx∂

r−k
y v∥L2(L4)).

For designing and analyzing Petrov-Galerkin spectral element method for polygons, we need

other Legendre quasi-orthogonal projections. For simplicity, we suppose that certain Neumann

or Robin boundary conditions are given on L1. Let ∂
∗Ω = L2 ∪ L3 ∪ L4, and

0H
1
(Ω) = {v ∈ H1(Ω) | v = 0 on ∂∗Ω}, 0VN (Ω) = 0H

1
(Ω) ∩ VN (Ω).
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The orthogonal projection 0P
1

N,Ω : 0H
1
(Ω) → 0V N (Ω) is defined by

(∇(0P
1

N,Ωv − v),∇ϕ)Ω = 0, ∀ϕ ∈ 0V N (Ω). (3.55)

Next, let

v̂0b,L2
(ξ) = v̂(ξ,−1)− 1

2
(1 + ξ)v̂(1,−1), v̂0b,L4

(ξ) = v̂(ξ, 1)− 1

2
(1 + ξ)v̂(1, 1),

v̂0b,L3
(η) = v̂(1, η)− 1

2
(1− η)v̂(1,−1)− 1

2
(1 + η)v̂(1, 1).

Clearly, v̂0b,L2
(1) = v̂0b,L3

(±1) = v̂0b,L4
(1) = 0. Further, we set v̂0Ω(ξ, η) = v̂(ξ, η) − v̂b,∂Ω(ξ, η)

with

v̂b,∂Ω(ξ, η) =
1

2
((1− η)v̂0b,L2

(ξ) + (1 + ξ)v̂0b,L3
(η) + (1 + η)v̂0b,L4

(ξ))

+
1

4
((1 + ξ)(1− η)v̂(1,−1) + (1 + ξ)(1 + η)v̂(1, 1)). (3.56)

The function v̂0Ω(ξ, η) vanishes on ∂
∗Ω.

We also introduce the projection

∗P̂
1
Nb,∂Ω

v̂b,∂Ω(ξ, η)

=
1

2
((1− η)0P 1

Nb,Λξ
v̂0b,L2

(ξ) + (1 + ξ)P 1,0
Nb,Λη

v̂0b,L3
(η) + (1 + η)0P 1

Nb,Λξ
v̂0b,L4

(ξ))

+
1

4
((1 + ξ)(1− η)v̂(1,−1) + (1 + ξ)(1 + η)v̂(1, 1)).

Finally, we introduce the quantities v0Ω(x, y), vb,∂Ω(x, y) and ∗P
1
Nb,∂Ω

vb,∂Ω(x, y) in the same way

as in (3.37), and define the quasi-Legendre orthogonal projection ∗P
1
N,Nb,Ω

v by

∗P
1
N,Nb,Ω

v(x, y) = 0P
1

N,Ωv
0
Ω(x, y) + ∗P

1
Nb,∂Ω

vb,∂Ω(x, y). (3.57)

It is easy to show that ∗P
1
N,Nb,Ω

v(x, y) = v(x, y) at the vertices (x, y) = (1,−1) and (1, 1).

Following the same line as in the derivation of (3.45), we could prove that

∥∇(∗P
1
N,Nb,Ω

v − v)∥Ω ≤ cσΩδ
−1
Ω

(
N1−r

4∑
j=1

B
(j)
r,Ω(v) +N1−rb

b B
(6)
rb,Ω

(v)
)
, (3.58)

where

B
(6)
r,Ω(v) =

r∑
k=0

(∥(1− η2)
r−1
2 (a2 + a3ξ)

k(b2 + b3ξ)
r−k∂kx∂

r−k
y v∥L2(L3)

+ ∥(1− ξ2)
r−1
2 (a1 + a3η)

k(b1 + b3η)
r−k∂kx∂

r−k
y v∥L2(L2∪L4)).

In the same manner, we can define various Legendre quasi-orthogonal projections ∗P
1
N,Nb,Ω

v

corresponding to Neumann or Robin boundary conditions imposed on some edges of Ω, and

derive the error estimates similar to (3.45), (3.54) and (3.58), respectively.

Remark 3.6 If Ω = Sa,b as in Remarks 3.2 and 3.5, then we could derive the error estimates

of the above Legendre quasi-orthogonal projections, which are similar to (3.50).
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4 Petrov-Galerkin Spectral Method for Mixed Inhomogeneous
Boundary Value Problems

In this section, we propose the Petrov-Galerkin spectral method for quadrilaterals.

Let β(x, y) be a non-negative and uniformly bounded function, ∂∗∗Ω = L1 ∪ L2 and ∂∗Ω

= L3 ∪ L4 (see Figure 1). We consider the following mixed inhomogeneous boundary value

problem: −∆U(x, y) = f(x, y), (x, y) ∈ Ω,
∂nU(x, y) + β(x, y)U(x, y) = g2(x, y), (x, y) ∈ ∂∗∗Ω,
U(x, y) = g1(x, y), (x, y) ∈ ∂∗Ω.

(4.1)

We set

Vg1(Ω) = {v ∈ H1(Ω) ∩ C(Ω) | v = g1 on ∂∗Ω},

V (Ω) = {v ∈ H1(Ω) ∩ C(Ω) | v = 0 on ∂∗Ω}

and

aβ(u, v) = (∇U,∇v)Ω +

∫
∂∗∗Ω

β(x, y)U(x, y)v(x, y)ds, ∀u ∈ Vg1(Ω), v ∈ V (Ω).

The weak formulation of (4.1) is to find U ∈ Vg1(Ω) such that

aβ(U, v)−
∫
∂∗∗Ω

g2(x, y)v(x, y)ds = (f, v)Ω, ∀v ∈ V (Ω). (4.2)

For solving the above problem properly, we first consider an auxiliary problem. For this

purpose, we set ĝ1(ξ, η) = g1(x(ξ, η), y(ξ, η)) and define the projection ∗P
1
Nb,∂∗Ωg1(x, y) by

∗P
1
Nb,∂∗Ωg1(x, y) =

0P 1
Nb,Λη

(
ĝ1(1, η)−

1

2
ĝ1(1, 1)(1 + η)

)
+

1

2
ĝ1(1, 1)(1 + η)

∣∣∣
η=η(x,y)

, on L3,

∗P
1
Nb,∂∗Ωg1(x, y) =

0P 1
Nb,Λξ

(
ĝ1(ξ, 1)−

1

2
ĝ1(1, 1)(1 + ξ)

)
+

1

2
ĝ1(1, 1)(1 + ξ)

∣∣∣
ξ=ξ(x,y)

, on L4.

The auxiliary problem is to seek the solution W ∈ V∗P 1
Nb,∂

∗Ω
g1(Ω) such that

aβ(W, v)−
∫
∂∗∗Ω

g2(x, y)v(x, y)ds = (f, v)Ω, ∀v ∈ V (Ω). (4.3)

Obviously, we have from (4.2) and (4.3) that
−∆(U(x, y)−W (x, y)) = 0, (x, y) ∈ Ω,

∂n(U(x, y)−W (x, y)) + β(x, y)(U(x, y)−W (x, y)) = 0, (x, y) ∈ ∂∗∗Ω,

U(x, y)−W (x, y) = g1(x, y)− ∗P
1
Nb,∂∗Ωg1(x, y), (x, y) ∈ ∂∗Ω.

According to the properties of elliptic equation and the error estimates for the Legendre quasi-

orthogonal approximation, we verify that

∥U −W∥H1(Ω) ≤ c∥g1 − ∗P
1
Nb,∂∗Ωg1∥H 1

2 (∂∗Ω)

≤ c∥g1 − ∗P
1
Nb,∂∗Ωg1∥

1
2

H1(∂∗Ω)∥g1 − ∗P
1
Nb,∂∗Ωg1∥

1
2

L2(∂∗Ω)

≤ cσΩδ
−1
Ω N

1
2−rb
b Krb,∂∗Ω(g1), (4.4)
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where

Krb,∂∗Ω(g1) =

rb∑
k=0

(∥(1− η2)
rb−1

2 (a2 + a3ξ)
k(b2 + b3ξ)

rb−k∂kx∂
rb−k
y g1∥L2(L3)

+ ∥(1− ξ2)
rb−1

2 (a1 + a3η)
k(b1 + b3η)

rb−k∂kx∂
rb−k
y g1∥L2(L4)).

We are going to design the Petrov-Galerkin spectral scheme for solving (4.3). We need three

kinds of base functions. Let Ll(ξ) be the Legendre polynomial of degree l, as before. The base

functions, corresponding to the interior domain Ω, are given by

ψ0
Ω,l,m(x, y) =

1√
(4l + 6)(4m+ 6)

(Ll(ξ)− Ll+2(ξ))(Lm(η)− Lm+2(η))
∣∣∣
ξ=ξ(x,y),η=η(x,y)

.

The base functions, corresponding to the edges L3 and L4, are defined as

ψ0
L3,l3(x, y) =

1

2
√
4l3 + 6

(1 + ξ)(Ll3(η)− Ll3+2(η))
∣∣∣
ξ=ξ(x,y),η=η(x,y)

,

ψ0
L4,l4(x, y) =

1

2
√
4l4 + 6

(1 + η)(Ll4(ξ)− Ll4+2(ξ))
∣∣∣
ξ=ξ(x,y),η=η(x,y)

.

The base function, corresponding to the vertex Q4, is

ψQ4(x, y) =
1

4
(1 + ξ)(1 + η)

∣∣∣
ξ=ξ(x,y),η=η(x,y)

.

Now, let WN,Nb
(Ω) be the finite-dimensional set spanned by all ψ0

Ω,l,m(x, y), ψ0
L3,l3

(x, y),

ψ0
L4,l4

(x, y) and ψQ4(x, y), 0 ≤ l,m ≤ N − 2, 0 ≤ l3, l4 ≤ Nb. Clearly, WN,Nb
(Ω) ⊂ H1(Ω) ∩

C(Ω). Further, we let

VN,Nb
(Ω) = {ϕ ∈WN,Nb

(Ω) | ϕ = ∗P
1
Nb,∂∗Ωg1 on ∂∗Ω},

V ∗
N,Nb

(Ω) = {ϕ ∈WN,Nb
(Ω) | ϕ = 0 on ∂∗Ω}.

The spectral method for (4.3) is to find wN,Nb
∈ VN,Nb

(Ω) such that

aβ(wN,Nb
, ϕ)−

∫
∂∗∗Ω

g2(x, y)ϕ(x, y)ds = (f, ϕ)Ω, ∀ϕ ∈ V ∗
N,Nb

(Ω). (4.5)

For derivation of error estimate of numerical solution, we introduce the auxiliary orthogonal

projection P 1
N,Nb,Ω

v : H1(Ω) ∩ C(Ω) → VN,Nb
(Ω), such that

aβ(P
1
N,Nb,Ω

v − v, ϕ) = 0, ∀ϕ ∈ V ∗
N,Nb

(Ω). (4.6)

This, together with (4.3), leads to

aβ(P
1
N,Nb,Ω

W,ϕ)−
∫
∂∗∗Ω

g2(x, y)ϕ(x, y)ds = (f, ϕ)Ω, ∀ϕ ∈ V ∗
N,Nb

(Ω). (4.7)

Subtracting (4.7) from (4.5) yields

aβ(wN,Nb
− P 1

N,Nb,Ω
W,ϕ) = 0, ∀ϕ ∈ V ∗

N,Nb
(Ω).
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This implies wN,Nb
= P 1

N,Nb,Ω
W , and thus

aβ(wN,Nb
−W,wN,Nb

−W ) = aβ(P
1
N,Nb,Ω

W −W,P 1
N,Nb,Ω

W −W ). (4.8)

We shall use the following lemma.

Lemma 4.1 For any v ∈ Vg1(Ω) and z ∈WN,Nb
(Ω),

aβ(v − P 1
N,Nb,Ω

v, v − P 1
N,Nb,Ω

v) ≤ aβ(v − z, v − z). (4.9)

Proof Clearly, P 1
N,Nb,Ω

v − z ∈ V ∗
N,Nb

(Ω). Thereby, a direct calculation with (4.6) gives

aβ(v − z, v − z) = aβ(v − P 1
N,Nb,Ω

v, v − P 1
N,Nb,Ω

v) + aβ(z − P 1
N,Nb,Ω

v, z − P 1
N,Nb,Ω

v)

+ 2aβ(v − P 1
N,Nb,Ω

v, P 1
N,Nb,Ω

v − z)

≥ aβ(v − P 1
N,Nb,Ω

v, v − P 1
N,Nb,Ω

v).

This ends the proof.

Let ∗P
1
N,Nb,Ω

v be the projection defined by (3.53). By using (4.9) with v = W and z =

∗P
1
N,Nb,Ω

U , we obtain from (4.8) that

aβ(wN,Nb
−W, wN,Nb

−W ) ≤ aβ(∗P
1
N,Nb,Ω

U −W, ∗P
1
N,Nb,Ω

U −W )

≤ 2aβ(∗P
1
N,Nb,Ω

U − U, ∗P
1
N,Nb,Ω

U − U) + 2aβ(U −W, U −W ).

Finally, we use (4.4), (3.54) and triangle inequality to reach

aβ(wN,Nb
− U,wN,Nb

− U)

≤ cσΩδ
−1
Ω

(
N1−r

4∑
j=1

B
(j)
r,Ω(U) +N1−rb

b B
(5)
rb,Ω

(U) +N
1
2−rb
b Krb,∂∗Ω(g1)

)
. (4.10)

Remark 4.1 In actual computation, we evaluate the terms∫
∂∗∗Ω

β(x, y)g2(x, y)ϕ(x, y)ds

and (f, ϕ)Ω approximately. Thus, in general, there exist two additional errors depending on the

accuracy of numerical quadratures and the smoothness of f and g2.

5 Petrov-Galerkin Spectral Element Method for Polygons

We are now in position to study Petrov-Galerkin spectral element method for mixed inho-

mogeneous boundary value problems defined on polygons.

5.1 Composite Legendre irrational quasi-orthogonal approximation on polygons

Let Ω be a polygon with the boundary ∂Ω = ∂∗Ω ∪ ∂∗∗Ω and ∂∗Ω ∩ ∂∗∗Ω = ∅. We may

impose Neumann or Robin boundary conditions on ∂∗∗Ω.We divide Ω into convex quadrilaterals

Ωi (1 ≤ i ≤ n) with the boundary ∂Ωi, the edges Li,ν , the vertices Qi,ν and the angles

θi,ν (1 ≤ ν ≤ 4). Besides, ∂∗Ωi = ∂Ωi ∩ ∂∗Ω and ∂∗∗Ωi = ∂Ωi ∩ ∂∗∗Ω. The local variable
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transformation are denoted by ξi = ξi(x, y) and ηi = ηi(x, y) (1 ≤ i ≤ n). The corresponding

quantities σΩi , γΩi , δΩi , di,1, di,2, ai,1, ai,2, ai,3, bi,1, bi,2 and bi,3 are defined in the same way as

for single quadrilateral (see Section 3). Let hi = diamΩi. Assume that the partition of Ω

satisfies the following hypotheses:

(H1) Ω =
n∪

i=1

Ωi and Ωi ∩ Ωk = ∅ if i ̸= k,

(H2) each vertex of Ωi is also one of vertices of adjacent quadrilaterals,

(H3) if Ωi ∩ ∂Ω ̸= ∅, then Ωi has at most two edges belonging to ∂∗∗Ω,

(H4) if Li,ν ⊆ ∂∗Ω, then Li,ν * ∂∗∗Ω,

(H5) there are positive constants λ0 and λ1 such that 0 < λ0 ≤ θi,ν ≤ λ1 < π, 1 ≤ ν ≤
4, 1 ≤ i ≤ n, and so 0 < δ0h

2
i ≤ δΩi ≤ δ1h

2
i , 1 ≤ i ≤ n.

Let N = (N1, N2, · · ·, Nn) and r = (r1, r2, · · ·, rn). We define the composite Legendre

irrational quasi-orthogonal projection ∗P
1
N,Nb,Ω

v by

∗P
1
N,Nb,Ω

v|Ωi = ∗P
1
Ni,Nb,Ωi

v, 1 ≤ i ≤ n,

where the local projections ∗P
1
Ni,Nb,Ωi

v are constructed in such a way that

(A) if ∂∗∗Ωi = ∅, then ∗P
1
Ni,Nb,Ωi

v is given by (3.38),

(B) if ∂∗∗Ωi ̸= ∅, say ∂∗∗Ωi = Li,1 ∪ Li,2, then ∗P
1
Ni,Nb,Ωi

v is similar to (3.53),

(C) if ∂∗∗Ωi ̸= ∅, say ∂∗∗Ωi = Li,1, then ∗P
1
Ni,Nb,Ωi

v is similar to (3.57).

Clearly, if Li,ν and Lk,ν are the same segment, say Li,3 = Lk,1, then the coefficients in the

expansions of P 1,0
Nb,Ληi

v̂0b,Li,3
(ηi) and P 1,0

Nb,Ληk
v̂0b,Lk,1

(ηk) are the same. It can be checked that

∗P
1
N,Nb,Ω

v ∈ H1(Ω) ∩ C(Ω).
For description of approximation error, we introduce the notations B

(j)
ri,Ωi

(v) (1 ≤ j ≤ 4)

and B
(k)
rb,Ωi

(v) (4 ≤ k ≤ 6), with the quantities ξi, ηi, σΩi , γΩi , δΩi , di,1, di,2, ai,1, ai,2, ai,3, bi,1, bi,2

and bi,3, respectively. Also, we introduce the quantity Drb,Ωi(v) in such a way that

(A) if ∂∗∗Ωi = ∅, then Drb,Ωi(v) = B
(4)
rb,Ωi

(v),

(B) if ∂∗∗Ωi ̸= ∅, say ∂∗∗Ωi = Li,1 ∪ Li,2, then Drb,Ωi(v) = B
(5)
rb,Ωi

(v),

(C) if ∂∗∗Ωi ̸= ∅, say ∂∗∗Ωi = Li,1, then Drb,Ωi(v) = B
(6)
rb,Ωi

(v).

According to the previous statements and a standard argument as in [2, 5, 15], we observe

that if B
(j)
ri,Ωi

(v) and Drb,Ωi(v) are finite for integers 2 ≤ ri ≤ Ni + 1 (1 ≤ i ≤ n) and

2 ≤ rb ≤ Nb + 1, then

∥∇(∗P
1
N,Nb,Ω

v − v)∥Ω ≤ c
n∑

i=1

σΩiδ
−1
Ωi

(
N1−ri

i

4∑
j=1

B
(j)
ri,Ωi

(v) +N1−rb
b Drb,Ωi(v)

)
. (5.1)

5.2 Spectral element method for polygons

Let β(x, y) be a non-negative and uniformly bounded function. We consider the following

problem: 
−∆U(x, y) = f(x, y), (x, y) ∈ Ω,

∂nU(x, y) + β(x, y)U(x, y) = g2(x, y), (x, y) ∈ ∂∗∗Ω,

U(x, y) = g1(x, y), (x, y) ∈ ∂∗Ω.

(5.2)
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If ∂∗Ω = ∅ and β(x, y) ≡ 0, then we require additionally that (f, 1)Ω = 0 for consistency, and

that (U, 1)Ω = 0 for uniqueness of solution. For simplicity, we suppose that ∂∗Ω ̸= ∅, or β(x, y)
is not always null.

Now, we set

Vg1(Ω) = {v ∈ H1(Ω) ∩ C(Ω) | v = g1 on ∂∗Ω},

V (Ω) = {v ∈ H1(Ω) ∩ C(Ω) | v = 0 on ∂∗Ω}

and

aβ(u, v) = (∇U,∇v)Ω +

∫
∂∗∗Ω

β(x, y)U(x, y)v(x, y)ds, ∀u ∈ Vg1(Ω), v ∈ V (Ω).

The weak formulation of (5.2) is to find U ∈ Vg1(Ω) such that

aβ(U, v)−
∫
∂∗∗Ω

g2(x, y)v(x, y)ds = (f, v)Ω, ∀v ∈ V (Ω). (5.3)

For solving (5.3), we first consider an auxiliary problem. To do this, we let

ĝ1(ξ, η) = g1(x(ξ, η), y(ξ, η)),

and introduce the projection

∗P
1
Nb,∂∗Ωg1(x, y)|∂∗Ωi = ∗P

1
Nb,∂∗Ωi

g1(x, y),

in which the local projection ∗P
1
Nb,∂∗Ωi

g1(x, y) depends on the location of ∂∗Ωi. For instance,

if the edge Li,1 = ∂∗Ωi, then

∗P
1
Nb,∂∗Ωg1(x, y) = P 1,0

Nb,Ληi

(
ĝ1(−1, ηi)−

1

2
ĝ1(−1,−1)(1− ηi)−

1

2
ĝ1(−1, 1)(1 + ηi)

)
+

1

2
ĝ1(−1,−1)(1− ηi) +

1

2
ĝ1(−1, 1)(1 + ηi)

∣∣∣
ξi=ξi(x,y),ηi=ηi(x,y)

.

The auxiliary problem is to seek solution W ∈ V∗P 1
Nb,∂

∗Ω
g1(Ω) such that

aβ(W, v)−
∫
∂∗∗Ω

g2(x, y)v(x, y)ds = (f, v)Ω, ∀v ∈ V (Ω). (5.4)

We have from (5.3) and (5.4) that
−∆(U(x, y)−W (x, y)) = 0, (x, y) ∈ Ω,

∂n(U(x, y)−W (x, y)) + β(x, y)(U(x, y)−W (x, y)) = 0, (x, y) ∈ ∂∗∗Ω,

U(x, y)−W (x, y) = g1(x, y)− ∗P
1
Nb,∂∗Ωg1(x, y), (x, y) ∈ ∂∗Ω.

Like (4.4), we have

∥U −W∥H1(Ω) ≤ cN
1
2−rb
b

n∑
i=1

σΩiδ
−1
Ωi
Krb,∂∗Ωi(g1), (5.5)
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where Krb,∂∗Ωi(g1) = 0 if ∂∗Ωi = ∅, otherwise,

Krb,∂∗Ωi(g1)=



rb∑
k=0

∥(1− η2)
rb−1

2 (a2 + a3ξ)
k(b2 + b3ξ)

rb−k∂kx∂
rb−k
y g1∥L2(Li,1), if Li,1⊆∂∗Ω,

rb∑
k=0

∥(1− ξ2)
rb−1

2 (a1 + a3η)
k(b1 + b3η)

rb−k∂kx∂
rb−k
y g1∥L2(Li,2), if Li,2⊆∂∗Ω,

rb∑
k=0

∥(1− η2)
rb−1

2 (a2 + a3ξ)
k(b2 + b3ξ)

rb−k∂kx∂
rb−k
y g1∥L2(Li,3), if Li,3⊆∂∗Ω,

rb∑
k=0

∥(1− ξ2)
rb−1

2 (a1 + a3η)
k(b1 + b3η)

rb−k∂kx∂
rb−k
y g1∥L2(Li,4), if Li,4⊆∂∗Ω.

For solving problem (5.4) numerically, we need three kinds of base functions. We first take

the base functions corresponding to Ωi, as

ψ0
Ωi,li,mi

(x, y)=


1√

(4li + 6)(4mi + 6)

·(Lli(ξi)− Lli+2(ξi))(Lmi(ηi)− Lmi+2(ηi))
∣∣∣
ξi=ξi(x,y), ηi=ηi(x,y)

, on Ωi,

0, otherwise.

Next, we define the base functions corresponding to the edges of quadrilaterals. For instance,

if Li,k = Li,1 = Lk,3, then the corresponding base function

ψ0
Li,k,li,k

(x, y) =


1

2
√

4li,k + 6
(1− ξi)(Lli,k(ηi)− Lli,k+2(ηi))

∣∣∣
ξi=ξi(x,y),ηi=ηi(x,y)

, on Ωi,

1

2
√

4li,k + 6
(1 + ξk)(Lli,k(ηk)− Lli,k+2(ηk))

∣∣∣
ξk=ξk(x,y),ηk=ηk(x,y)

, on Ωk,

0, otherwise.

The third kind of base functions correspond to the vertices of quadrilaterals. For example,

if Qi1,1 = Qi2,2 = Qi3,3 = Qi4,4, then the corresponding base function

ψQi1,i2,i3,i4
(x, y) =



1

4
(1− ξi1)(1− ηi1)

∣∣∣
ξi1=ξi1 (x,y),ηi1=ηi1 (x,y)

, on Ωi1 ,

1

4
(1 + ξi2)(1− ηi2)

∣∣∣
ξi2=ξi2 (x,y),ηi2=ηi2 (x,y)

, on Ωi2 ,

1

4
(1 + ξi3)(1 + ηi3)

∣∣∣
ξi3=ξi3 (x,y),ηi3=ηi3 (x,y)

, on Ωi3 ,

1

4
(1− ξi4)(1 + ηi4)

∣∣∣
ξi4=ξi4 (x,y),ηi4=ηi4 (x,y)

, on Ωi4 ,

0, otherwise.

Now, letWN,Nb
(Ω) be the set spanned by ψ0

Ωi,li,mi
(x, y), 0 ≤ li,mi ≤ Ni−2, all ψ0

Li,k,li,k
(x,

y), 0 ≤ li,k ≤ Nb and all ψQi1,i2,i3,i4
(x, y). Clearly, WN,Nb

(Ω) ⊂ H1(Ω) ∩ C(Ω). Furthermore,

VN,Nb
(Ω) = {ϕ ∈WN,Nb

(Ω) | ϕ = P 1
Nb,∂∗Ωg1 on ∂∗Ω},

V ∗
N,Nb

(Ω) = {ϕ ∈WN,Nb
(Ω) | ϕ = 0 on ∂∗Ω}.

The Petrov-Galerkin spectral element method for (5.4) is to find wN,Nb
∈ VN,Nb

(Ω) such that

aβ(wN,Nb
, ϕ)−

∫
∂∗∗Ω

g2(x, y)ϕ(x, y)ds = (f, ϕ)Ω, ∀ϕ ∈ V ∗
N,Nb

(Ω). (5.6)
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For derivation of error estimate of numerical solution, we introduce the orthogonal projection

P 1
N,Nb,Ω

v : H1(Ω) ∩ C(Ω) → VN,Nb
(Ω) such that

aβ(P
1
N,Nb,Ω

v − v,∇ϕ) = 0, ∀ϕ ∈ V ∗
N,Nb

(Ω).

This, along with (5.4), leads to

aβ(P
1
N,Nb,Ω

W,ϕ)−
∫
∂∗∗Ω

g2(x, y)ϕ(x, y)ds = (f, ϕ)Ω, ∀ϕ ∈ V ∗
N,Nb

(Ω). (5.7)

Subtracting (5.7) from (5.4) yields

aβ(P
1
N,Nb,Ω

W − wN,Nb
,∇ϕ) = 0, ∀ϕ ∈ V ∗

N,Nb
(Ω).

This implies wN,Nb
= P 1

N,Nb,Ω
W.

Following the same line as in the derivation of (4.9), we can prove the following lemma.

Lemma 5.1 For any v ∈ Vg1(Ω) and z ∈WN,Nb
(Ω),

aβ(v − P 1
N,Nb,Ω

v, v − P 1
N,Nb,Ω

v) ≤ aβ(v − z, v − z). (5.8)

By using (5.8) with v =W and z = ∗P
1
N,Nb,Ω

U , we obtain

aβ(wN,Nb
−W,wN,Nb

−W )

= aβ(P
1
N,Nb,Ω

W −W,P 1
N,Nb,Ω

W −W )

≤ aβ(∗P
1
N,Nb,Ω

U −W, ∗P
1
N,Nb,Ω

U −W )

≤ 2aβ(∗P
1
N,Nb,Ω

U − U, ∗P
1
N,Nb,Ω

U − U) + 2aβ(U −W,U −W ). (5.9)

Finally, a combination of (5.1), (5.5) and (5.9) leads to the following conclusion.

Theorem 5.1 If the hypotheses (H1)–(H5) hold, U ∈ H1(Ω) ∩ C(Ω), and all B
(j)
ri,Ωi

(v),

Drb,Ωi(v) and Krb,Ωi(v) are finite for integers 2 ≤ ri ≤ Ni +1, 1 ≤ i ≤ n and 2 ≤ rb ≤ Nb +1,

then

∥U − wN,Nb
∥H1(Ω)

≤ c

n∑
i=1

σΩiδ
−1
Ωi

(
N1−ri

i

4∑
j=1

B
(j)
ri,Ωi

(U) +N1−rb
b Drb,Ωi(U) +N

1
2−rb
b Krb,∂∗Ωi(g1)

)
. (5.10)

Remark 5.1 If all elements are rectangles, then

∥U − wN,Nb
∥H1(Ω)

≤ c
n∑

i=1

σΩiδ
−1
Ωi

(
N1−ri

i

3∑
j=1

B
(∗,j)
ri,Ωi

(U) +N1−rb
b D

(∗)
rb,Ωi

(U) +N
1
2−rb
b Krb,∂∗Ωi(g1)

)
. (5.11)

Hereafter, D
(∗)
rb,Ωi

(v) = B
(∗,3)
rb,Ωi

(v), as long as ∂∗∗Ωi = ∅. If ∂∗∗Ωi = Li,1 ∪ Li,2, then

D
(∗)
rb,Ωi

(v) = (∥(a2 − x2)
r−1
2 ∂rxv∥2L2(Li,4)

+ ∥(b2 − y2)
r−1
2 ∂ryv∥2L2(Li,3)

)
1
2 .
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If ∂∗∗Ωi = Li,1, then

D
(∗)
rb,Ωi

(v) = (∥(a2 − x2)
r−1
2 ∂rxv∥2L2(Li,2∪Li,4)

+ ∥(b2 − y2)
r−1
2 ∂ryv∥2L2(Li,3)

)
1
2 .

Remark 5.2 We have max(|ai,3|, |bi,3|, |σΩi |) ≤ chi. Therefore, the result (5.10) implies

∥U − wN,Nb
∥H1(Ω) ≤ c

n∑
i=1

N1−ri
i

( ri∑
k=0

hri−1
i ∥∂kx∂ri−k

y U∥Ω +

ri−1∑
k=0

hri−2
i ∥∂kx∂ri−k

y U∥Ω

+
4∑

ν=1

ri∑
k=0

hri−1
i ∥∂kx∂ri−k

y U∥L2(Li,ν)

)
+ cN1−rb

b

n∑
i=1

4∑
ν=1

rb∑
k=0

hrb−1
i (∥∂kx∂rb−k

y U∥L2(L∗
i,ν)

+ cN
− 1

2

b ∥∂kx∂rb−k
y g1∥L2(Li,ν∩∂∗Ω)). (5.12)

Hereafter, L∗
i,ν = ∅ if L∗

i,ν ⊆ ∂∗∗Ω. Otherwise L∗
i,ν = Li,ν . The above result is similar to

[5, (5.4.16)] and the corresponding result of [17] for multi-domain pseudospectral method of a

special problem.

Remark 5.3 If all elements are rectangles, then

∥U − wN,Nb
∥H1(Ω) ≤ c

n∑
i=1

ri∑
k=0

N1−ri
i hri−1

i

(
∥∂kx∂ri−k

y U∥Ω +
4∑

ν=1

∥∂kx∂ri−k
y U∥L2(Li,ν)

)
+ cN1−rb

b

n∑
i=1

4∑
ν=1

rb∑
k=0

hrb−1
i (∥∂kx∂rb−k

y U∥L2(L∗
i,ν)

+N
− 1

2

b ∥∂kx∂rb−k
y g1∥L2(Li,ν∩∂∗Ω)). (5.13)

Since the error estimate (5.13) does not contain the term of order N1−ri
i hri−2

i , which appears

in (5.12) for the general case, our new method with rectangular elements provides the global

super-convergence automatically. For example, if hi = h, Ni = Nb = N and U ∈ HN+1(Ω),

then ∥U − wN,Nb
∥H1(Ω) ≤ c( h

N )N∥U∥HN+1(Ω).

Remark 5.4 We could regard the above suggested spectral element method as a new h−p
version. However, there exist several differences between them. Firstly, unlike the finite element

method, we use spectral approximation on each element. Next, there are some Jacobi weights

in the piece-wise norms involved in the error estimates, which cover certain weak singularity

of solution. Thirdly, our new method with rectangular elements provides the global super-

convergence automatically.

Remark 5.5 The Petrov-Galerkin spectral element was also discussed in [10]. Whereas,

the Robin boundary condition was not considered in that paper. Next, one supposed in [10]

that each element has at most one edge belonging to ∂∗∗Ω. This may bring some difficulties in

numerical process at the corners of polygons. By the way, the first result of (3.19) was used in

[10], but without the proof.
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6 Concluding Remarks

In this paper, we develop the Petrov-Galerkin spectral element method for polygons. We

establish the basic results on the Legendre irrational quasi-orthogonal approximation, which

still keeps the spectral accuracy, even if the considered function has certain weak singularity.

These results play important roles in Petrov-Galerkin spectral and spectral element methods

for mixed inhomogeneous boundary value problems of partial differential equations defined on

polygons. As examples of applications, we provide the Petrov-Galerkin spectral element schemes

for two mixed inhomogeneous boundary value problems, with the spectral accuracy. It is also

demonstrated that if all elements are rectangular, then the global super-convergence follows

automatically. The approximation results and techniques of this work are also applicable to

many other problems with complex geometry, as well as exterior problems with non-rectangular

obstacles.
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