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Abstract In this paper, the geometrical design for the blade’s surface ℑ in an impeller
or for the profile of an aircraft, is modeled from the mathematical point of view by a
boundary shape control problem for the Navier-Stokes equations. The objective function
is the sum of a global dissipative function and the power of the fluid. The control variables
are the geometry of the boundary and the state equations are the Navier-Stokes equations.
The Euler-Lagrange equations of the optimal control problem are derived, which are an
elliptic boundary value system of fourth order, coupled with the Navier-Stokes equations.
The authors also prove the existence of the solution of the optimal control problem, the
existence of the solution of the Navier-Stokes equations with mixed boundary conditions,
the weak continuity of the solution of the Navier-Stokes equations with respect to the
geometry shape of the blade’s surface and the existence of solutions of the equations for
the Gâteaux derivative of the solution of the Navier-Stokes equations with respect to the
geometry of the boundary.
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1 Introduction

Blade’s shape design for impellers is driven by the need of improving performances and

reliability. We are interested in the geometric design entirely from the mathematical point of

view. As it is well-known that the blade’s surface is a part of the boundary of the flow’s channel

in the impeller, the mathematical theory and methods of the boundary shape control problem

for the Navier-Stokes equations can be used to design the blades and profile of, for example,

airfoil etc. This idea is motivated by the classical minimal surface problem which accounts to

find a surface ℑ spanning on a closed Jordan curve C and such that J(ℑ) = inf
S ∈F

J(S), where

J(S) =
∫∫

S
dS is the area of S.
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In this paper, we attempt to set the principle for a fully mathematical design of the surface

for the blade in an impeller. This principle models a general minimal surface by minimizing

a functional proposed in this paper. A key point in this modeling process is the theoretical

rationality and the realizability of our design procedure. Using tensor analysis we realize this

procedure and obtain the Euler-Lagrange equations for the blade’s surface which is an elliptic

boundary value system coupled with the Navier-Stokes equations and with the linearized Navier-

Stokes equations. We prove the existence of solutions of the control problem, the existence

of solutions for the N-S equations with mixed boundary condition, and prove uniform weak

continuity of the solution with respect to the surface ℑ of the blade.

This paper is organized as follows. In Section 2, we give some preliminary results. In Section

3, we derive the rotating Navier-Stokes equations in the channel inside the impeller with mixed

boundary conditions under a new coordinate system, prove the uniform positiveness of the

bilinear form and uniform continuity of the trilinear form. In Section 4, we prove the existence

of solution of the Navier-stokes equations with mixed boundary conditions. In Section 5, we

derive the equations for the Gâteaux derivative of the solution of the Navier-Stokes equation

and prove the existence of its solution. In Section 6, we present the objective functional and

derive the Euler-Lagrange equations. In Section 7, we prove the existence of the solution of the

optimal control problem.

2 Preliminary Results—The Geometry of the Blade’s Surface

Let (x1, x2) ∈ D ⊂ E2 (2D-Euclidian Space), and let (r, θ, z) denote a polar cylindrical

coordinate system rotating with the impeller’s angular velocity ω.

Figure 1 Impeller and blade

(−→e r,
−→e θ,

−→
k ) is the corresponding base vectors, here z-axis being the rotating axis of the

impeller, N the number of blade and ε = π
N . The angle between two successive blades is 2π

N .
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The flow passage of the impeller is bounded by ∂Ωε = Γin ∪ Γout ∪ Γt ∪ Γb ∪ ℑ+ ∪ ℑ−. The

middle surface ℑ of the blade is defined as the immersion
−→
ℜ of the closure of a domain D ⊂ R2,

where
−→
ℜ : D → ℜ3 is a smooth injective mapping which can be expressed by that for any point

−→
ℜ (x) ∈ ℑ by

−→
ℜ (x) = x2−→e r + x2Θ(x1, x2)−→e θ + x1

−→
k , ∀x = (x1, x2) ∈ D, (2.1)

where Θ ∈ C3(D,R) is a smooth function; x = (x1, x2) is called a Gaussian coordinate system on

ℑ. It is easy to prove that there exists a family ℑξ of surfaces with a single parameter ξ to cover

the domain Ωε defined by the mapping D → ℑξ = {
−→
R (x1, x2; ξ) : ∀(x1, x2) ∈ D}, −1 < ξ < 1:

−→
R (x1, x2; ξ) = x2−→e r + x2(εξ +Θ(x1, x2))−→e θ + x1

−→
k . (2.2)

It is clear that the metric tensor aαβ of ℑξ is homogenous and nonsingular independent of ξ,

and is given as follows:

aαβ =
∂
−→
R

∂xα
∂
−→
R

∂xβ
= δαβ + r2ΘαΘβ , a = det(aαβ) = 1 + r2(Θ2

1 +Θ2
2) > 0,

aαβaβλ = δαλ .

(2.3)

From this, a curvilinear coordinate system (x1, x2, ξ) in ℜ3 is established,

(r, θ, z) → (x1, x2, ξ) : x1 = z, x2 = r, ξ = ε−1(θ −Θ(x1, x2)). (2.4)

Under this special coordinate system, the flow passage domain

Ωε = {
−→
R (x1, x2, ξ) = x2−→e r + x2(εξ +Θ(x1, x2))−→e θ + x1

−→
k , ∀(x1, x2, ξ) ∈ Ω}

is mapped into a fixed domain in E3 (3D Euclidian Space):

Ω = {(x1, x2) ∈ D,−1 ≤ ξ ≤ 1}, in ℜ3,

which is independent of the surface ℑ of the blade. The Jacobian of the coordinate trans-

formation is J
( ∂(r,θ,z)
∂(x1,x2,ξ)

)
= ε. This shows that the transformation {r, θ, z} → {x1, x2, ξ} is

nonsingular.

Let (x1
′
, x2

′
, x3

′
) = (r, θ, z). Corresponding metric tensor of E3 in the cylindrical coordinate

(r, θ, z) is denoted by g1′1′ = 1, g2′2′ = r2, g3′3′ = 1, gi′j′ = 0 (∀ i′ ̸= j′). According to the rules

of tensor transformation under coordinate transformation, we have the following transformation

formulae

gij = gi′j′
∂xi

′

∂xi
∂xj

′

∂xj
.

Substituting (2.3) into the above formula, the covariant and contra-variant components of the

metric tensor of E3 in the new curvilinear coordinate system are given by

gαβ = aαβ , g3β = gβ3 = εr2Θβ , g33 = ε2r2, g = det(gij) = ε2r2,

gαβ = δαβ , g3β = gβ3 = −ε−1Θβ , g33 = ε−2r−2(1 + r2|∇Θ|2) = (rε)−2a,
(2.5)

where the notations |∇Θ|2 = Θ2
1 +Θ2

2, and Θα = ∂Θ
∂xα will be frequently used through out this

paper.
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Tensor calculations show then the following result (see [20]).

Proposition 2.1 In the new coordinate system (xα, ξ), let (−→e i, i = 1, 2, 3) denote the base

vectors, and a vector −→v in ℜ3 is expressed as −→v = vi−→e i, where v
i, vi = gijv

j are respectively

called the contra-variant and covariant components of the vector −→v . In the new coordinate

system (xα, ξ), the following formulae are valid:

(1) Angular velocity vector −→ω

−→ω = ω−→e 1 − ωε−1Θ1
−→e 3,

ω1 = ω, ω2 = 0, ω3 = −ωε−1Θ1;
(2.6)

(2) Coriolis Force

C = 2−→ω ×−→w = −2ωrΠ(w,Θ)−→e 2 + 2ωε−1
(
rΘ2Π(w,Θ) +

w2

r

)−→e 3,

C1 = 2(−→ω ×−→w )1 = 0, C2 = 2(−→ω ×−→w )2 = −2ωrΠ(w,Θ),

C3 = 2(−→ω ×−→w )3 = 2ωε−1
(
rΘ2Π(w,Θ) +

w2

r

)
,

Π(w,Θ) := εw3 + wλΘλ;

(2.7)

(3) Unit normal vector to ℑ

−→n =
−→e 1 ×−→e 2

|−→e 1 ×−→e 2|
= −x

2Θα√
a

−→e α + (εr)−1
√
a−→e 3,

nλ = −rΘλ√
a
, n3 = (εr)−1

√
a;

(2.8)

(4) Second fundamental form (curvature tensors for a 2D manifold)

bαβ =
1

2
r2(2Θ2ΘαΘβ + ε−1Θσ(ΘαΘσβ +ΘβΘσα))

1√
a
; (2.9)

(5) Mean Curvature H and Gaussian Curvature K.

Let

|∇Θ|2 = Θ2
1 +Θ2

2, ∥∇Θ∥2 = aαβΘαΘβ .

Then

2H =
1

2
r2(Θ2∥∇Θ∥2 + ε−1aαβΘσΘαΘσβ)

1√
a
,

K =
b

a
=

det(bαβ)

a
.

(2.10)

It is obvious that ξ = constant corresponds to a surface ℑξ which has the same geometry

as ℑ. This is based on the fundamental theorem in differential geometry, as it is well-known

that the geometry of ℑ is completely determined by (aαβ), (bαβ) in the following sense. We

recall that O3 denotes the set of all orthogonal matrices Q of order three; and that O3
+ = {Q ∈

O3; det(Q) = 1} denotes the set of all proper orthogonal matrices of order three. J+(x) =

c+Q ◦ x is a proper isometry of E3 : E3 → E3 with c ∈ E3, Q ∈ O3
+.
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Theorem 2.1 (see [3]) Two immersions
−→
R ∈ C1(D;E3) and

−̃→
R ∈ C1(D;E3) share the

same fundamental forms (aαβ) and (bαβ) over an open connected subset D of ℜ3 if and only if

−̃→
R = J+ ◦

−→
R, where J+ is a proper isometry of E3. (2.11)

Furthermore, If two matrice fields (aαβ) ∈ C2(D;S2
>) and (bαβ) ∈ C2(D;S2) satisfy the Gauss

and Codazzi equations in D

∂βΓασ,τ − ∂σΓαβ,τ + Γµ
αβΓστ,µ − Γµ

ασΓβτ,µ = bασbβτ − bαβbστ ,

∂βbασ − ∂σbαβ + Γµ
ασbβµ − Γµ

αβbσµ = 0,

where

Γαβ,τ =
1

2
(∂αaατ + ∂αaβτ − ∂τaαβ),

Γσ
αβ = aστΓαβ,τ , where (aαβ) = (aαβ)

−1,

then there exists an immersion
−→
R ∈ C3(D;E3) such that

aαβ = ∂α
−→
R∂β

−→
R, bαβ = ∂2αβ

−→
R ·

{ ∂1
−→
R × ∂2

−→
R

|∂1
−→
R × ∂2

−→
R |

}
.

Because ℑξ results from a rotation of angle ξε of ℑ. Theorem 2.1 can be applied to ℑξ,

which means that ∀ ξ ∈ [−1, 1], it has the same geometrical characteristics aαβ , bαβ ,K,H, · · · .
Subsequently, we will frequently employ the third fundamental tensor of ℑ

cαβ = aλσbαλbβσ, (2.12)

and its inverse matrix (ĉ αβ) = (cαβ)
−1, (̂bαβ) = (bαβ)

−1 defined by

b̂αβbβλ = δαλ , ĉ αβcβλ = δαλ . (2.13)

Furthermore, let us introduce the permutation tensors in Euclidean space E3 and on the 2D

manifold ℑ,

εijk =


√
g,

−√
g,

0,

εijk =


1
√
g
, (i, j, k) : even permutation of (1,2,3),

− 1
√
g
, (i, j, k) : odd permutation of (1,2,3),

0, otherwise,

(2.14)

where g = det(gij), and gij is metric tensor of ℜ3,

εαβ =


√
a,

−
√
a,

0,

εαβ =


1√
a
, (α, β) : even permutation of (1,2),

− 1√
a
, (α, β) : odd permutation of (1,2),

0, otherwise.

(2.15)
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3 Rotating Navier-Stokes Equations with Mixed
Boundary Conditions in Turbo-Machinery

At first, we consider the three-dimensional rotating Navier-Stokes equations in a frame

rotating around the axis of a rotating impeller with an angular velocity ω:

∂ρ

∂t
+ div(ρw) = 0,

ρa = ∇σ + f,

ρcv

(∂T
∂t

+ wj∇jT
)
− div(κgradT ) + pdivw − Φ = h,

p = p(ρ, T ),

(3.1)

where ρ is the density of the fluid, w the velocity of the fluid, h the heat source, T the tem-

perature, k the coefficient of heat conductivity, Cv the specific heat at constant volume, and

µ the viscosity. Furthermore, the strain rate tensor, stress tensor,the dissipation function and

viscous tensor are respectively given by:

eij(w) =
1

2
(∇iwj +∇jwi), i, j = 1, 2, 3,

eij(w) = gikgjmekm(w) =
1

2
(∇iwj +∇jwi),

σij(w, p) = Aijkmekm(w)− gijp, Φ = Aijkmeij(w)ekm(w),

Aijkm = λgijgkm + µ(gikgjm + gimgjk), λ = −2

3
µ,

(3.2)

where gij and gij are the covariant and contra-variant components of the metric tensor of the

three-dimensional Euclidean space in the curvilinear coordinates (x1, x2, ξ) defined by (2.4),

respectively. Then the covariant derivatives of the velocity vector and the Christoffel symbols

are

∇iw
j =

∂wj

∂xi
+ Γj

ikw
k; ∇iwj =

∂wj

∂xi
− Γk

ijwk, Γi
jk = gil

(∂gkl
∂xj

+
∂gjl
∂xk

− ∂gjk
∂xl

)
. (3.3)

Figure 2 Impeller and passage of flow
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The absolute acceleration of the fluid is given by

ai =
∂wi

∂t
+ wj∇jw

i + 2εijkωjwk − ω2ri,

a =
∂w

∂t
+ (w∇)w + 2−→ω ×−→w +−→ω × (−→ω ×

−→
R ),

(3.4)

where −→ω = ω
−→
k is the vector of angular velocity,

−→
k the unit vector along the z axis, and

−→
R

the radial vector of the fluid particle. The flow domain occupied by the fluid in the channel in

the impeller is denoted by Ωε. The boundary ∂Ωε of the flow domain Ωε consists the inflow

boundary Γin, the outflow boundary Γout, the positive blade’s surface ℑ+, the negative blade’s

surface ℑ− and the top wall Γt and the bottom wall Γb:

∂Ωε = Γ = Γin ∪ Γout ∪ ℑ− ∪ ℑ+ ∪ Γt ∪ Γb (3.5)

(see Figure 2). The boundary conditions are given by
w|ℑ−∪ℑ+ = 0, w|Γb

= 0, w|Γt = 0,

σij(w, p)nj |Γin = giin, σij(w, p)nj |Γout = giout (Natural conditions),
∂T

∂n
+ κ(T − T0) = 0, where κ ≥ 0 is constant.

(3.6)

If the fluid is incompressible and the flow is stationary, then

divw = 0,

(w∇)w + 2−→ω ×−→w +∇p− νdiv(e(w)) = −−→ω × (−→ω ×
−→
R ) + f,

w|Γ0 = 0, Γ0 = ℑ+ ∪ ℑ− ∪ Γt ∪ Γb,

(−pn+ 2νe(w))|Γin = gin, Γ1 = Γin ∪ Γout,

(−pn+ 2νe(w))|Γout = gout,

w|t=0 = w0(x), Ωε.

(3.7)

For the polytropic ideal gas and the stationary flow, system (3.1) turns to the conservative

form
div(ρw) = 0,

div(ρw ⊗ w) + 2ρω × w +R∇(ρT ) = µ∆w + (λ+ µ)∇divw − ρω × (ω ×
−→
R ),

div
[
ρ
( |w|2

2
+ cvT +RT

)
w
]
= κ∆T + λdiv(wdivw) + µdiv[w∇w] + µ

2
∆|w|2,

(3.8)

while for isentropic ideal gases, it turns to{
div(ρw) = 0,

div(ρw ⊗ w) + 2ρω × w + α∇(ργ) = 2µdiv(e) + λ∇divw − ρω × (ω ×
−→
R ),

(3.9)

where γ > 1 is the specific heat radio and α is a positive constant.

The rate of work done by the impeller and the global dissipative energy are respectively

I(ℑ, w(ℑ)) =
∫∫

ℑ−∪ℑ+

σ · n · eθωrdℑ, J(ℑ, w(ℑ)) =
∫∫∫

Ωε

Φ(w)dV, (3.10)

where eθ is the base vector along the angular direction in the cylindrical coordinate system.
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Let us employ the new coordinate system defined by (2.2). The flow domain Ωε is mapped

into Ω = D×[−1, 1], whereD is a domain in (x1, x2) ∈ ℜ2 limited by four arcs ÂB, ĈD, ĈB, D̂A

such that

∂D = γ0 ∪ γ1, γ0 = ÂB ∪ ĈD, γ1 = ĈB ∪ D̂A,

and there exist four positive functions γ0(z), γ̃0(z), γ1(z), γ̃1(z) such that

r := x2 = γ0(x
1) = γ0(z), on ÂB, x2 = γ̃0(x

1), on ĈD,

r := x2 = γ1(x
1) = γ1(z), on D̂A, x2 = γ̃1(x

1), on B̂C,

r0 ≤ γ0(z) ≤ r1, on ÂB, r0 ≤ γ̃0(z) ≤ r1, on ĈD,

r0 ≤ γ1(z) ≤ r1, on D̂A, r0 ≤ γ̃1(z) ≤ r1, on B̂C.

(3.11)

We have

∂Ω = Γ̃0 ∪ Γ̃1, Γ̃1 = Γ̃out ∪ Γ̃in, Γ̃0 = Γ̃b ∪ Γ̃t ∪ {ξ = 1} ∪ {ξ = −1},

Γ̃in =
−→
ℜ (Γin), Γ̃out =

−→
ℜ (Γout), Γ̃b =

−→
ℜ (Γb), Γ̃t =

−→
ℜ (Γt)

(3.12)

and

∂D = γ0 ∪ γ1, γ0 = (D ∩ Γ̃b) ∪ (D ∩ Γ̃t), γ1 = (D ∪ Γ̃out) ∪ (D ∪ Γ̃in), (3.13)

where
−→
ℜ is defined by (2.1).

Figure 3 Sectional graph D of meridian plane in channel flow Ωε

Let the Sobolev spaces be

V (Ω) := {v | v ∈ H1(Ω)3, v|Γ̃0
= 0}, H1

Γ(Ω) = {q | q ∈ H1(Ω), q|Γ̃0
= 0}, (3.14)

which are equipped with the usual Sobolev norm ∥ · ∥1,Ω. The relation v = 0 on the boundary

is to be understood in the sense of traces. Then variational formulation of the Navier-Stokes

problems (3.7) and (3.9) are respectively given by
Find (w, p), w ∈ V (Ω), p ∈ L2(Ω), such that

a(w, v) + 2(ω × w, v) + b(w,w, v)− (p,divv) = ⟨F, v⟩, ∀ v ∈ V (Ω),

(q, divw) = 0, ∀ q ∈ L2(Ω)

(3.15)

and
Find (w, ρ), w ∈ V (Ω), ρ ∈ Lγ(Ω), such that

a(w, v) + 2(ω × w, v) + b(ρw,w, v) + (−p+ λdivw, divv) = ⟨F, v⟩, ∀ v ∈ V (Ω),

(∇q, ρw)) = ⟨ρwn, q⟩|Γ1 , ∀ q ∈ H1
Γ(Ω),

(3.16)
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where

⟨F, v⟩ := ⟨f, v⟩+ ⟨g̃, v⟩Γ̃1
, ⟨g̃, v⟩ = ⟨gin, v⟩|Γ̃in

+ ⟨gout, v⟩|Γ̃out
,

a(w, v) =

∫
Ω

Aijkmeij(w)ekm(v)
√
g dxdξ,

b(w,w, v) =

∫
Ω

gkmw
j∇jw

kvm
√
g dxdξ.

(3.17)

Next we rewrite (3.7) and (3.9) in the new coordinate system. Because the second kind of

Christoffel symbols in the new coordinate system can be explicitly expressed in terms of Θ
Γα
βγ = −rδ2αΘβΘγ , Γα

3β = −εrδ2αΘβ ,

Γ3
αβ = ε−1r−1(δ2αδ

λ
β + δ2βδ

λ
α)Θλ + ε−1Θαβ + ε−1rΘ2ΘαΘβ ,

Γ3
3α = Γ3

α3 = r−1δ2α + rΘ2Θα, Γα
33 = −ε2rδ2α, Γ3

33 = εrΘ2,

(3.18)

the covariant derivatives of the velocity field ∇iw
j = ∂wj

∂xi +Γj
ikw

k possess the following forms.

Lemma 3.1 Under the curvilinear coordinate system (x1, x2, ξ) defined by (2.4), the co-

variant derivatives of the velocity field can be expressed as

∇αw
β =

∂wβ

∂xα
− rδβ2ΘαΠ(w,Θ),

∇αw
3 =

∂w3

∂xα
+ ε−1(x2)−1w2Θα + ε−1wβΘαβ + (εx2)−1a2αΠ(w,Θ),

∇3w
α =

∂wα

∂ξ
− x2εδ2αΠ(w,Θ), ∇3w

3 =
∂w3

∂ξ
+
w2

x2
+ x2Θ2Π(w,Θ),

divw =
1

r

∂(rwα)

∂xα
+
∂w3

∂ξ
, Π(w,Θ) = εw3 + wβΘβ ,

(3.19)

while the strain velocity tensors can be split in the form

eij(w) = φij(w) + ψij(w,Θ),

ψij(w,Θ) = ψλ
ij(w)Θλ + ψλσ

ij (w)ΘλΘσ + e∗ij(w,Θ),
(3.20)

where the first terms without Θ are

φαβ(w) =
1

2

(∂wα

∂xβ
+
∂wβ

∂xα

)
,

φ3α(w) =
1

2

(∂wα

∂ξ
+ ε2r2

∂w3

∂xα

)
, φ33(w) = ε2r2

(∂w3

∂ξ
+
w2

r

) (3.21)

and the second terms containing Θ are

ψλ
αβ(w) =

1

2
εr2

(∂w3

∂xα
δλβ +

∂w3

∂xβ
δλα

)
,

ψλ
3α(w) =

1

2
εr2

(∂wλ

∂xα
+ δλα

(∂w3

∂ξ
+

2

r
w2

))
, ψλ

33(w) = εr2
∂wλ

∂ξ
,

ψλσ
αβ(w) =

1

2
r2
(∂wλ

∂xα
δβσ +

∂wλ

∂xβ
δσα +

2

r
w2δαλδσβ

)
,

ψλσ
3α (w) =

1
2r

2 ∂w
λ

∂ξ
δασ, ψλσ

33 (w) = 0.

(3.22)
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e∗αβ(w,Θ) =
1

2
r2wσ∂σ(ΘαΘβ), e∗3α(w) =

1

2
εr2wσΘσα, e∗33(w) = 0. (3.23)

The proof is omitted here.

Throughout this paper, Latin indices and exponents i, j, k · · · vary in the set {1, 2, 3}, while
Greek indices and exponents α, β, γ · · · vary in the set {1, 2}. Furthermore, the summation

convention with respect to repeated indices or exponents is systematically used in conjunction

with this rule.

From now on, we consider incompressible flows only. Let the viscosity tensor be

Aijkl = µ(gikgjl + gilgjk). (3.24)

Then in the new coordinate system the dissipative function is as follows

Φ(w, v) = Aijklekl(w)eij(v) = 2µgikgjlekl(w)eij(v)

= 2µ[eαβ(w)eαβ(v) + g33g33e33(w)e33(v)

+ g3αg3β(e33(w)eαβ(v) + eαβ(w)e33(v)) + 2(g3αg3β + gαβg33)e3α(w)e3β(v)

+ 2gαβg3λ(eβλ(w)e3α(v) + e3α(w)eβλ(v)) + 2g3αg33(e33(w)e3α(v) + e3α(w)e33(v))

= 2µ[eαβ(w)eαβ(v) + g33g33e33(w)e33(v) + 2(ε−2ΘαΘβ + δαβg33)e3α(w)e3β(v)

+ ε−2ΘαΘβ(e33(w)eαβ(v) + eαβ(w)e33(v))

− 2ε−1Θβ(eαβ(w)e3α(v) + e3α(w)eαβ(v))

− 2ε−1Θαg
33(e33(w)e3α(v) + e3α(w)e33(v)).

Taking (2.5) into account, simple calculations show that

Φ(w, v) = 2µ[(eαβ(w) + ε−2ΘαΘβe33(w)− 2ε−1Θαe3β(w))

· (eαβ(v) + ε−2ΘαΘβe33(v)− 2ε−1Θβe3α(v))

+ (ε−2r−2e33(w)− 2ε−1Θαe3α(w))(ε
−2r−2e33(v)− 2ε−1Θβe3β(v))

+ 2ε−4r−2|∇Θ|2e33(w)e33(v) + 2g33e3α(w)e3α(v)

− 6ε−2ΘαΘβe3α(w)e3β(v)]. (3.25)

Lemma 3.2 Assume that the mapping Θ is smooth and satisfies

Θ ∈ F1 =
{
ϕ ∈ C2(Ω), inf

D
{|∇ϕ|} ≤ 1

2
r−1
0

}
. (3.26)

Then the three dimensional viscosity tensor Aijkl = µ(gikgjl + gilgjk) is uniformly positive

definite in D, i.e., for any symmetric matrices of order three tij, it holds

Aijkltkltij ≥ µ|t|2,

|t|2 := tαβtαβ + (rε)−2t3αt3α +
1

2
(rε)−4t33t33.

(3.27)

Proof Indeed by (3.25),

Aijkltkltij = 2µ[tαβtαβ + g33g33t33t33 + 2(g3αg3β + gαβg33)t3α(w)t3β(v)
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+ 2g3αg3βt33tαβ + 4gαβg3λtβλt3α + 4g3αg33t33t3α]

= 2µ[(tαβ + ε−2ΘαΘβt33 − 2ε−1Θαt3β)(tαβ + ε−2ΘαΘβt33 − 2ε−1Θβt3α)

+ (ε−2r−2t33 − 2ε−1Θαt3α)(ε
−2r−2t33 − 2ε−1Θβt3β)

+ 2ε−4r−2|∇Θ|2t33t33 + 2g33t3αt3α − 6ε−2(Θαt3α)
2].

For a positive constant p0, using the Young’s inequality

2ab ≤ p0a
2 +

1

p0
b2, (a+ b)2 ≥ (1− p0)a

2 +
(
1− 1

p0

)
b2,

we assert

Aijkltkltij ≥ 2µ
[
(1− p0)tαβtαβ + (1− p0)ε

−4r−4t33t33 + 2g33t3αt3α

+
(
1− 1

p0

)
(ε−2ΘαΘβt33 − 2ε−1Θαt3β)(ε

−2ΘαΘβt33 − 2ε−1Θβt3α)

+
(
4
(
1− 1

p0

)
− 6

)
(ε−1Θαt3α)

2 + 2ε−4r−2|∇Θ|2t33t33
]
.

Since (
1− 1

p0

)
(ε−2ΘαΘβt33 − 2ε−1Θαt3β)(ε

−2ΘαΘβt33 − 2ε−1Θβt3α)

=
(
1− 1

p0

)
(ε−2|∇Θ|2t33 − 2ε−1Θαt3α)

2

and g33 = ε−2r−2(1 + r2|∇Θ|2), it yields

Aijkltkltij ≥ 2µ
[
(1− p0)tαβtαβ + (1− p0)ε

−4r−4t33t33 + 2ε−2r−2t3αt3α

+
(
1− 1

p0

)
(ε−2|∇Θ|2t33 − 2ε−1Θαt3α)

2 +
(
4
(
1− 1

p0

)
− 6

)
(ε−1Θαt3α)

2

+ 2ε−2|∇Θ|2t3αt3α + 2ε−4|∇Θ|4t33t33
]
.

Let p0 = 1
2 , 1− p0 = 1

2 . Then 1− 1
p0

= −1. In addition,∣∣∣(1− 1

p0

)
(ε−2|∇Θ|2t33 − 2ε−1Θαt3α)

2
∣∣∣ ≤ 2ε−4|∇Θ|4(t33)2 + 2× 4ε−2|∇Θ|2t3αt3α,∣∣∣(4(1− 1

p0

)
− 6

)
(ε−1Θαt3α)

2
∣∣∣ ≤ 10ε−2|∇Θ|2t3αt3α.

To sum up, we find

Aijkltkltij ≥ 2µ
[
(1− p0)tαβtαβ + (1− p0)ε

−4r−4t33t33 + 2ε−2r−2t3αt3α

+
(
1− 1

p0

)
(ε−2|∇Θ|2t33 − 2ε−1Θαt3α)

2 +
(
4
(
1− 1

p0

)
− 6

)
(ε−1Θαt3α)

2

+ 2ε−2|∇Θ|2t3αt3α + 2ε−4|∇Θ|4t33t33
]

≥ 2µ
[1
2
tαβtαβ +

1

2
ε−4r−4t33t33 + 2ε−2r−2t3αt3α

− 4ε−4|∇Θ|4(t33)2 − 20ε−2|∇Θ|2t3αt3α
]



890 K. T. Li, J. Su and A. X. Huang

= 2µ
[1
2
tαβtαβ +

1

2
ε−4r−4(1− 8r4|∇Θ|4)t33t33 + 2ε−2r−2(1− 10r2|∇Θ|2)t3αt3α

]
.

By assumptions, we have

1− 8r4|∇Θ|4 ≥ 1

2
⇒ |∇Θ| ≤ 1

2
r−1 ≤ 1

2
r−1
0 ,

1− 10r2|∇Θ|2 ≥ 1

2
⇒ |∇Θ| ≤ 1√

20
r−1 ≤ 1√

20
r−1
0 ,

and we obtain

Aijkltkltij ≥ µ
[
tαβtαβ +

1

2
ε−4r−4t33t33 + ε−2r−2t3αt3α

]
.

The proof is completed.

Let us introduce a scalar product ((u, v))Ω on the Hilbert space V (Ω) = {v ∈ H1(Ω)3, v|Γ̃1
=

0}, the dissipation functional and the associated bilinear form a( · , · )

((w, v)) := ∥φ(w, v)∥2

= µ
(
φαβ(w)φαβ(v) + (rε)−2φ3α(w)φ3α(v) +

1

2
(rε)−4φ33(w)φ33(v)

)
,

∥w∥2 = ∥φ(w)∥2 = ((w,w)),

((w, v))Ω :=

∫
Ω

((w, v))rεdξdx, ∥w∥2Ω := ((w,w))Ω,

Φ(w, v) := Aijklekl(w)eij(v),

a(u, v) :=

∫
Ω

Φ(u, v)rεdxdξ, J(u) :=
1

2
a(u, u).

(3.28)

In particular, we will use the notation

(e(w), e(v)) := µ
(
eαβ(w)eαβ(v) + (rε)−2e3α(w)e3α(v) +

1

2
(rε)−4e33(w)e33(v)

)
,

(φ(w), φ(v)) := µ
(
φαβ(w)φαβ(v) + (rε)−2φ3α(w)φ3α(v) +

1

2
(rε)−4φ33(w)φ33(v)

)
,

(ψ(w,Θ), ψ(v,Θ)) := µ
(
ψαβ(w,Θ)ψαβ(v,Θ) + (rε)−2ψ3α(w,Θ)ψ3α(v,Θ)

+
1

2
(rε)−4ψ33(w,Θ)ψ33(v,Θ)

)
,

(φ(w), ψ(v,Θ)) := µ
(
φαβ(w)ψαβ(v,Θ) + (rε)−2φ3α(w)ψ3α(v,Θ)

+
1

2
(rε)−4φ33(w)ψ33(v,Θ)

)
,

∥e(w)∥2 = (e(w), e(w)), ∥φ(w)∥2 = (φ(w), φ(w)),

∥ψ(w,Θ)∥2 = (ψ(w,Θ), ψ(w,Θ)). (3.29)

Lemma 3.3 Assume that the determinant a of the metric tensor of the surface ℑ defined

by (2.3) such that ℑ ∈ F1 where F1 is a manifold in a Banach space C2(D) defined by (3.26).

Then following estimates of the dissipative function Φ(w, v), ∀w, v ∈ V (Ω) hold{
Φ(w,w) ≥ κ0∥φ(w)∥2 = κ0∥w∥2,
|Φ(w, v)| ≤ κ3∥φ(w)∥∥φ(v)∥,

(3.30)
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where C(Ω) is a constant independent of Θ and

κ0 :=
1

2
− κ1C2(Ω) > 0, if κ1 small enough,

κ1 := sup
D

{3(1 + r21)|∇Θ|2, 3(1 + r41)|∇Θ|4},

κ2 = sup
D

{3|∇Θ|2, 3|∇Θ|4, 3r21(1 + r21|∇Θ|2)|∇2Θ|2},

κ3 = 12µκ2(1 + κ1C2(Ω)),

(3.31)

where C1(Ω), C2(Ω) are defined by
C1(Ω)∥φ(w)∥2 ≤ ∥|ψ(w)∥|2 ≤ C2(Ω)∥φ(w)∥2,

∥|ψ(w)∥|2 =
∑
λ

∥ψλ(w)∥2 +
∑
λ,σ

∥ψλ,σ(w)∥2 + wλwλ,
(3.32)

and r1 is defined by (3.11). Later on, the constant C(Ω) appearing in different places may have

different meanings at different occasions.

Proof By virtue of (3.20), (3.27) and (3.33), we claim

Φ(w,w) ≥ (e(w), e(w)) = (φ(w) + ψ(w,Θ), φ(w) + ψ(w,Θ))

= (φ(w), φ(w)) + (ψ(w,Θ), ψ(w,Θ)) + 2(φ(w), ψ(w,Θ)). (3.33)

By the symmetry of the indices and by the Cauchy and Young inequalities, we infer that

2((φ(w), ψ(w))) = 2µ
[
φαβ(w)ψαβ(w,Θ) + (rε)−2φ3α(w)ψ3α(w,Θ)

+
1

2
(rε)−4φ33(w)ψ33(w,Θ)

]
≤ 2µ

[√
φαβ(w)φαβ(w)

√
ψαβ(w,Θ)ψαβ(w,Θ)

+ (rε)−2
√
φ3α(w)φ3α(w)

√
ψ3α(w,Θ)ψ3α(w,Θ)

+
1

2
(rε)−4|φ33(w)||ψ33(w,Θ)|

]
≤ 2µ

[1
2
∥φ(w)∥2 + 2∥ψ(w,Θ)∥2

]
. (3.34)

Hence

Φ(w,w) ≥ 1

2
∥φ(w)∥2 − ∥ψ(w,Θ)∥2. (3.35)

Due to (3.22) and (3.23),

∥ψ(w,Θ)∥2 = ∥ψλ(w)Θλ + ψλσ(w)ΘλΘσ + e∗(w,Θ)∥2

= ((ψλ, ψσ))ΘλΘσ + ((ψλσ, ψνµ))ΘλΘσΘνΘµ + ((e∗(w,Θ), e∗(w,Θ)))

+ 2((ψλ(w), ψνµ(w)))ΘλΘνΘµ + 2((e∗(w,Θ), ψλ(w)))Θλ

+ 2((e∗(w,Θ), ψλσ(w)))ΘλΘσ.

Set 
|∇Θ|2 =

∑
λ

|Θλ|2, |∇∇Θ|2 =
∑
α,β

(Θαβ)
2 = |∇2Θ|2,∑

σ

∇σ

(∑
α,β

(ΘαΘβ)
)
= |∇((∇Θ)(∇Θ))| = 2|∇2Θ||∇Θ|.

(3.36)
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Taking (3.20), (3.22) and (3.23) into account and using the Cauchy’s inequality, we claim that

|((ψλ(w,Θ), ψσ(w,Θ)))ΘλΘσ| ≤
∑
λ

∥ψλ∥2|∇Θ|2,

((ψλσ(w,Θ), ψνµ(w,Θ)))ΘλΘσΘνΘµ ≤
∑
λ,σ

∥ψλσ∥2|∇Θ|4,

2((ψλσ(w,Θ), ψν(w,Θ)))ΘλΘσΘν ≤ 2

√∑
λ,σ

∥ψλσ∥2
√∑

ν

∥ψν∥2 |∇Θ|3

≤
∑
λ

∥ψλ∥2|∇Θ|2 +
∑
λ,σ

∥ψλσ∥2|∇Θ|4,

((e∗(w,Θ), e∗(w,Θ))) = ∥e∗(w,Θ)∥2 ≤ r2|w|2∗|∇2Θ|2(1 + r2|∇Θ|2)
= r2a|w|2∗|∇2Θ|2,

2((e∗(w,Θ), ψλ(w)))Θλ ≤ 2∥e∗(w,Θ)∥∥ψλ(w)∥|Θλ|

≤ ∥e∗(w,Θ)∥2 +
∑
λ

∥ψλ(w)∥2|∇Θ|2,

2((e∗(w,Θ), ψλσ(w)))ΘλΘσ ≤ ∥e∗(w,Θ)∥2 +
∑
λ,σ

∥ψλσ(w)∥2|∇Θ|4,

where

∥ψλ(w)∥2 = ((ψλ
αβ(w), ψ

λ
αβ)) + (rε)−2((ψλ

3α, ψ
λ
3α)) +

1

2
(rε)−4((ψλ

33(w), ψ
λ
33)),

|w|2∗ = w1w1 + w2w2 = wλwλ.
(3.37)

To sum up, we have

∥ψ(w,Θ)∥2 ≤ 3
(
|∇Θ|2

∑
λ

∥ψλ(w)∥2 + |∇Θ|4
∑
λ,σ

∥ψλ,σ(w)∥2 + r2a|∇2Θ|2|w|2∗
)
. (3.38)

Set 
k1 = sup

D
{3|∇Θ|2, 3|∇Θ|4, 3r21(1 + r21|∇Θ|2)|∇2Θ|2},

∥|ψ(w)∥|2 :=
∑
λ

∥ψλ(w)∥2 +
∑
λ,σ

∥ψλ,σ(w)∥2 + |w|2∗.
(3.39)

We conclude that

∥ψ(w,Θ)∥2 ≤ k1∥|ψ(w)∥|2. (3.40)

On the other hand, (3.21) and (3.22) show that there exists constants C1(Ω) and C2(Ω) inde-

pendent of w such that

C1(Ω)∥φ(w)∥2 ≤ ∥|ψ(w)∥|2 ≤ C2(Ω)∥φ(w)∥2. (3.41)

Therefore,

∥ψ(w,Θ)∥2 ≤ k1C2(Ω)∥φ(w)∥2. (3.42)

Let us return to (3.39). We infer that

Φ(w,Θ) ≥ 1

2
∥φ(w)∥2 −m1C2(Ω)∥φ(w)∥2 ≥ κ0∥φ(w)∥2, (3.43)
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where

κ0 :=
1

2
− k1C2(Ω) > 0, if m1 is small enough. (3.44)

Therefore (4.30) holds.

Next, we consider the continuity of the dissipation function Φ. Note that the Cauchy’s

inequality shows that

AαβBαβ ≤
√
AαβAαβ

√
BαβBαβ ,

and then

lαβ(w,Θ) := (eαβ(w) + ε−2ΘαΘβe33(w)− 2ε−1Θβe3α(w)),

lαβ(w,Θ)lαβ(v,Θ) ≤
√
lαβ(w,Θ)lαβ(w,Θ)

√
lαβ(v,Θ)lαβ(v,Θ),

lαβ(w,Θ)lαβ(w,Θ) ≤ 3[eαβ(w)eαβ(w) + ε−4|∇Θ|4e33(w)e33(w) + 4ε−2|∇Θ|2e3α(w)e3α(w)]
≤ k2(e(w), e(w)),

lαβ(w,Θ)lαβ(v,Θ) ≤ k2
√
(e(w), e(w))

√
(e(v), e(v)),

k2 := 3max
D

{1, r41|∇Θ|4, 8r21|∇Θ|2}.

From (3.25) we claim that

Φ(w, v) ≤ 2µ3k2
√

(e(w), e(w))
√
(e(v), e(v)).

From the triangle inequality and e(w) = φ(w) + ψ(w), we get

(e(w), e(w)) ≤ 2[(φ(w), φ(w)) + (ψ(w), ψ(w))] ≤ 2(1 + k1C2(Ω))(φ(w), φ(w)).

From (3.25), we assert Φ(w, v) ≤ 12µk2(1+k1C2(Ω))∥φ(w)∥∥φ(v)∥. The proof is completed.

Next, we consider the bilinear form. To do this, at first we have

Lemma 3.4 The function ∥ · ∥Ω defined by (3.28) is a norm on the Hilbert space V (Ω),

V (Ω) := {v ∈ H1(D)3, v|Γ̃1
= 0}. (3.45)

Proof Indeed it is enough to prove that ∥w∥Ω = 0, w ∈ V (Ω) ⇒ w = 0. Indeed, this means

that

∥w∥Ω = 0, i.e., φij(w) = 0.

We have to prove w = 0. Firstly, the following identity holds:

∂γ(∂αw
β) = ∂γφαβ(w) + ∂αφγβ(w)− ∂βφαγ(w).

This shows that

φαβ(w) = 0, inD ⇒ ∂γ∂αw
β = 0, inD′(D).

By a classical result from distribution theory, each function w is therefore a polynomial of

degree at most 1 (recall that the set D is connected). In other words, there exist constants cα

and dαβ such that

wα(x) = cα + dαβx
β , ∀x = (x1, x2) ∈ D.
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But φαβ(w) = 0 also implies that dαβ = −dβα. Hence there exist two vectors −→c ,
−→
d ∈ ℜ2 such

that w = −→c +
−→
d × −→x , ∀x ∈ D. Since w|Γ̃ = 0 and the set where such a vector field wα

vanishes is always of zero area unless −→c =
−→
d = 0, it follows that wα = 0 when the area Γ̃0 > 0.

On the other hand, in view of the boundary condition (3.13)

φ33(w) = ε2r2
(∂w3

∂ξ
+
w2

r

)
= 0 ⇒ ∂w3

∂ξ
= 0 ⇒ w3 = 0.

The proof is completed.

Lemma 3.5 The norm ∥ · ∥Ω and the semi-norm

|w|21,Ω =

∫
Ω

[ 3∑
i=1

( 2∑
α=1

(∂wi

∂xα

)2

+
(∂wi

∂ξ

)2)]
rεdξdx, ∀w ∈ V (Ω)

are equivalent on V (Ω), i.e., there exist constants Ci(Ω) > 0 (i = 3, 4) only depending upon Ω

such that

C3(Ω)|w|1,Ω ≤ ∥w∥Ω ≤ C4(Ω)|w|1,Ω, ∀w ∈ V (Ω). (3.46)

Proof Firstly, we indicate that in view of (3.11), (3.12), there exist constants Ci(Ω) >

0 (i = 3, 4) depending upon Ω only such that

C3(Ω)
( 3∑

i,j=1

∥φij(w)∥20,Ω
) 1

2 ≤ ∥w∥Ω ≤ C4(Ω)
( 3∑

i,j=1

∥φij(w)∥20,Ω
) 1

2

, ∀w ∈ V (Ω), (3.47)

and φij(w) can be viewed as the strain tensor in Cartesian coordinates in ℜ3. Then according

to the Korn’s inequality (see [14, 15]),
( 3∑

i,j=1

∥φij(w)∥20,Ω
) 1

2

is a norm equivalent to ∥w∥1,Ω,

therefore this yields (3.46). The proof is completed.

Lemma 3.6 The bilinear form a( · , · ) =
∫
Ω
Φ( · , · )√g dξdx defined by (3.25) is a symmet-

ric, continuous and uniformly coercive mapping from V (Ω)× V (Ω) into ℜ:
( i ) Symmetry: a(w, v) = a(v, w), ∀w, v ∈ V (Ω);

( ii ) Continuity: |a(w, v)| ≤ κ1(Ω)∥w∥Ω∥v∥Ω, ∀w, v ∈ V (Ω);

(iii) If the function Θ ∈ S, then a(w, v) is coercive uniformly with respect to Θ :

a(w,w) ≥ κ0∥w∥2Ω, (3.48)

where κ0, κ1 are defined by (3.31).

Proof The conclusions follow immediately from Lemma 3.3.

Next, we consider the trilinear form and Coriolis force form

b(w, u, v) =

∫
D

∫ 1

−1

gkmw
j∇ju

kvm
√
g dξdx, (3.49)

C(w, v) : =

∫
D

∫ 1

−1

2gij(
−→ω × w)ivj

√
g dξdx
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=

∫
D

∫ 1

−1

2rω[(w2Θβ − δ2βΠ(w,Θ))vβ + εw2v3]rεdξdx. (3.50)

By virtue of (2.5) and (3.19), we have

B(w, u, v) : = gkmw
j∇ju

kvm

=
(
wλ ∂u

α

∂xλ
+ w3 ∂u

α

∂ξ

)
(aαβv

β + r2εΘαv
3)

+
(
wλ ∂u

3

∂xλ
+ w3 ∂u

3

∂ξ

)
(εr2Θβv

β + r2ε2v3)

− rδ2αΠ(w,Θ)Π(u,Θ)(aαβv
β + r2εΘαv

3)

+ [ε−1wλuβΘλβ + (rε)−1(u2Π(w,Θ) + w2Π(u,Θ))

+ ε−1rΘ2Π(w,Θ)Π(u,Θ)](εr2Θβv
β + r2ε2v3),

B(w, u, v) : =
(
wλ ∂u

α

∂xλ
+ w3 ∂u

α

∂ξ

)
(aαβv

β + r2εΘαv
3)

+
(
wλ ∂u

3

∂xλ
+ w3 ∂u

3

∂ξ

)
(εr2Θβv

β + r2ε2v3) + πijkw
iujvk,

(3.51)

where

παβ,λ = r2ΘλΘαβ + rΘλ(δ2αΘβ + δ2βΘα)− rδ2λΘαΘβ ,

πα3,λ = rε(δ2αΘλ − δ2λΘα), π3β,λ = rε(δ2βΘλ + rΘλΘβ − a2λΘβ),

π33,λ = −rε2δ2λ,
παβ,3 = rε(Θαδ2β +Θβδ2α), πα3,3 = 0,

π3β,3 = rε2(δ2β + rΘβ − r2Θ2Θβ), π33,3 = rε3.

(3.52)

Lemma 3.7 The trilinear form b( · , · , · ) is uniformly continuous

|b(w, u, v)| ≤ C(Ω)(1 + κ3)∥w∥Ω∥u∥Ω∥v∥Ω, (3.53)

if the mapping Θ is smooth enough and satisfies

sup
Ω

(|∇Θ|, |∇Θ|2, |∇2Θ|) ≤ κ3. (3.54)

The from C( · , · ) is uniformly continuous

|C(w, v)| ≤ C(Ω)ω(1 + k3)∥w∥0,2,Ω∥v∥0,2,Ω, (3.55)

and

C(w,w) = 0. (3.56)

Proof Indeed, from (3.51) and (3.52), by virtue of a standard process as in [13, 16], we

assert that (3.52) is valid. Similarly, from (3.50) it yields directly (3.55). In addition, the

Coriolis form is

C(w,w) :=

∫
D

∫ 1

−1

2gij(
−→ω × w)iwj√g dξdx =

∫
D

∫ 1

−1

[2(−→ω ×w) ·w]εx2dξdx = 0, (3.57)

i.e.,

C(w,w) = 0.

The proof is completed.
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4 The Existence of the Solution of Rotating Navier-Stokes Equations
with Mixed Boundary Conditions

Next, we consider the existence of the solutions for the Navier-Stokes equations. Indeed

the flow’s domain is an unbounded domain. In Section 3, we introduce an artificial boundary,

with the inflow boundary Γin and the outflow boundary Γout, and impose the natural boundary

conditions (3.6). We can also impose the pressures p|Γin
= pin, p|Γout

= pout, or fluxes∫
Γin

ρw · ndΓ = Q,

∫
Γout

ρw · ndΓ = Q.

Let us consider the energy inequality. Since

(2ω × w,w) = 0, (4.1)

the moment equations (3.11) show that a(w,w) + b(w,w,w) = (f, w). However,

b(w,w,w) =

∫
Ω

wj∇jw
igikw

k√gdxdξ

=

∫
Ω

(∇j(w
jwi)− widivw)gikw

k√gdxdξ

=

∫
Ω

(div(|w|2w)− gikw
iwj∇jw

k)
√
gdxdξ

=

∫
Γ1

|w|2w · ndΓ− b(w,w,w),

b(w,w,w) =
1

2

∫
Γ1

|w|2w · ndΓ.

(4.2)

Here we denote

|w|2 = gikw
iwk, Γ1 = Γin ∪ Γout. (4.3)

The inflow and outflow fluxes of kinetic energy are respectively given by

Kin(w) =

∫
Γin

|w|2w · ndΓ, Kout(w) =

∫
Γout

|w|2w · ndΓ,

where w · n = gijw
inj and n is the outward normal unit vector of the inflow or the outflow

boundaries. Therefore (4.1) shows that

b(w,w,w) = Kout(w) +Kin(w). (4.4)

Let us come back to (3.7), (3.15) and (3.17),

a(w,w) + b(w,w,w)− ⟨gin, w⟩ − ⟨gout, w⟩ = ⟨f, w⟩,

b(w,w,w)− ⟨gin, w⟩ − ⟨gout, w⟩ =
∫
Γin∪Γout

[pwn− 2νe(w)n · w]dS,

2νe(w) · n · w = ν(gik∇jw
k + gjk∇iw

k)njwi = ν
(∂w
∂s

n+
∂|w|2

∂n

)
is the flux of dissipative energy,
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where P = 1
2 |w|

2+p is a total pressure, for a non-viscous flow it is conservative by the Bernoulli

theorem, and s is the direction along the steam line. According to the conservation law of energy,

we assert that b(w,w,w)−⟨gin, w⟩−⟨gout, w⟩ = 0. Therefore a(w,w) = ⟨f, w⟩, |w|1,Ω ≤ 1
ν |f |−1,Ω.

By a standard method, it is easy to prove that there exists at least one solution for the Navier-

Stokes equations. If the energy from outside is thus that

b(w,w,w)− ⟨gin, w⟩ − ⟨gout, w⟩ ̸= 0,

for example, for a hydroelectric and compressor, then we have the following theorem.

Theorem 4.1 Suppose that the exterior force f and normal stress g at the inflow and the

outflow boundaries Γ1 = Γin ∪ Γout satisfy

∥F∥∗ := ∥f∥0,Ω + ∥gin∥− 1
2 ,Γin

+ ∥gout∥− 1
2 ,Γout

≤ µ2

C2(Ω)(1 + κ23)
, (4.5)

and the mapping Θ defined in (2.1) is a C2(D)-function satisfying (3.59) and (3.53). Then

there exists a smooth solution of the variational problem (3.15)
Find (w, p), w ∈ V (Ω), p ∈ L2(Ω), such that

a(w, v) + 2(ω × w, v) + b(w,w, v)− (p,divv) = ⟨F, v⟩, ∀ v ∈ V (Ω),

(q, divw) = 0, ∀ q ∈ L2(Ω),

satisfying

C(Ω)|w|1,Ω ≤ ∥w∥Ω ≤ κ0
2C(Ω)(1 + κ3)

[
1−

√
1− 4C2(Ω)(1 + κ23)∥F∥∗

κ20

]
, (4.6)

where ∥w∥Ω is defined in (3.37), C(Ω) is a constant depending on Ω which has different meaning

at different place.

Proof To prove the theorem for a steady Navier-Stokes problem, it is convenient to con-

struct the solution as the limit of Galerkin approximations in terms of the eigenfunctions of

the corresponding stationary Stokes problem. Galerkin equations are a system of algebraic

equations and the Galerkin approximation solution w is a solution of the finite dimensional

problem

a(w, v) + 2(ω × w, v) + b(w,w, v) = ⟨F, v⟩, ∀ v ∈ Vm := span{ϕ1, ϕ2 · · · , ϕm}, (4.7)

where ϕi (i = 1, 2, · · ·m) are the eigenfunctions of the corresponding Stokes operator. Let Sρ

denote the spheres in Vm satisfying inequality (4.6). Assume that w∗ ∈ Sρ. We find w such

that

a(w, v) + 2(ω × w, v) + b(w∗, w, v) = ⟨F, v⟩, ∀ v ∈ Vm, (4.8)

(4.8) is uniquely solvable. To do this it is enough to prove that for any w∗ ∈ Sρ, w = 0 is the

only one solution of (4.8) with (F = 0). Owing to Lemma 3.6,

a(w,w) ≥ κ0∥w∥2Ω
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and by virtue of (3.59) and (4.2), we assert that

κ0∥w∥2Ω ≤ |b(w∗, w, w)| ≤ C6(Ω)(1 + δ3)∥w∗∥Ω∥w∥2Ω

< C(Ω)(1 + κ3)
c(Ω,Θ)µ

(1 + δ3)C(Ω)
∥w∥2Ω. (4.9)

This implies that w = 0. In order to apply Brouwer’s fixed point theorem, we have to show

that the mapping w∗ ⇒ w takes the ball Sρ defined by (4.7) into itself. Since w∗ satisfies (4.7)

and

Fw = gijF
iwj = (δαβ + r2ΘαΘβ)F

αwβ + εΘα(F
αw3 + F 3wα) + ε2r2F 3w3,

we claim that

κ0∥∇w∥2Ω ≤ |b(w∗, w, w)|+ |⟨F,w⟩|
≤ (1 + κ3)[C(Ω)∥w∗∥Ω∥w∥2Ω + C(Ω)∥F∥∗∥w∥Ω],

κ0∥w∥Ω ≤ (1 + κ3)[C(Ω)∥w∗∥Ω∥w∥Ω + C(Ω)∥F∥∗],
(4.10)

For simplicity, let

X := 1− C2(Ω)(1 + κ3)
2∥F∥∗

κ20
.

Therefore

∥w∥Ω ≤ C(Ω)(1 + κ3)∥F∥∗
κ0 − C(Ω)(1 + κ3)∥w∗∥Ω

≤ 8C(Ω)(1 + κ3)∥F∥∗
κ0

2 (1 +
√
X)

=
κ0

2C2(Ω)

1−X

1 +
√
X

=
κ0

2C(Ω)(1 + κ3)
[1−

√
X].

This is (4.6). Thus Brouwer’s fixed point theorem can be applied and it gives the existence

of the Galerkin approximations satisfying (6.8). Hence, by a standard compactness argument

there exists at least a subsequence of the Galerkin approximation converging to a weak solution

w ∈ V (Ω) of the steady problem (3.11):
Find (w, p), w ∈ V (Ω), p ∈ L2(Ω), such that

a(w, v) + 2(ω × w, v) + b(w,w, v) +−(p,div v) = ⟨F, v⟩, ∀ v ∈ V (Ω),

(q, divw) = 0, ∀ q ∈ L2(Ω).

Its smoothness is easily proven if one obtains a further estimate from the Galerkin approxima-

tions by setting v = −Aw in (6.9). This gives

µ∥Aw∥20 = −2(ω × w,Aw)− b(w,w,Aw) + ⟨F,Aw⟩. (4.11)

Because Aw is solenoidal, one has the rather unusual trace estimate

|2(ω × w,Aw)| ≤ C(Ω)∥w∥0∥Aw∥0, |⟨F,Aw⟩| ≤ c3∥F∥∗∥Aw∥0, (4.12)

which we combine with (4.12) and the Agmon’s inequality

∥w∥∞ ≤ C(Ω)∥∇w∥
1
2
0 ∥Aw∥

1
2
0 , ∀w ∈ D(A) (4.13)

to get

µ∥Aw∥20 ≤ C(Ω)∥∇w∥
3
2
0 ∥Aw∥

3
2
0 + C(Ω)∥w∥0∥Aw∥0 + c3∥F∥∗∥Aw∥0. (4.14)



Boundary Shape Control of the Navier-Stokes Equations and Applications 899

Then, by using the Young’s inequality, we obtain

µ∥Aw∥0 ≤ 2C2(Ω)

µ2
∥∇w∥30 +

8C2(Ω)

µ
∥w∥20 +

8C2(Ω)

µ
∥F∥2∗, (4.15)

which is then inherited by the solution. The full classical smoothness of the solution can now

be obtained by using the L2-regularity theory for the steady Stokes equations. This completes

the proof of Theorem 4.1.

5 Gâteaux Derivatives and Their Equations

In order to obtain the Gâteaux derivative of the solution of the Navier-Stokes equations

with respect to the boundary shape Θ, we first consider the Navier-Stokes equations in the new

coordinate system (xα, ξ) defined by (2.4). Indeed, we refer to [20].

Theorem 5.1 Under the new coordinate system, the incompressible rotating stationary

Navier-Stokes equations (3.7) can be explicitly expressed via Θ :

∂wα

∂xα
+
∂w3

∂ξ
+
w2

r
=

1

r

∂(rwα)

∂xα
+
∂w3

∂ξ
= d̃iv2w +

∂w3

∂ξ
= 0,

N k(w, p,Θ) := Lk(w, p,Θ) +Nk(w,w) = fk, ∀ k = 1, 2, 3,

Lk(w, p,Θ) := −ν∆̃wk − ν(rε)−2a
∂2wk

∂ξ2
− νP k3

j (Θ)
∂wj

∂ξ
− 2νε−1Θβ

∂2wk

∂ξ∂xβ

−νP kβ
j (Θ)

∂wj

∂xβ
− νqkj (Θ)wj + gkβ(Θ)∇βp+ gk3(Θ)∂ξp+ Ck(w,ω),

(5.1)

where C(w,ω) is the Coriolis forces defined in (2.7),Nk(w,w) =
∂(w3wk)

∂ξ
+ ∂β(w

kwβ) + πk
ijw

iwj =
∂(w3wk)

∂ξ
+Bk(w,w),

Bk(w,w) := ∂β(w
kwβ) + πk

ijw
iwj ,

(5.2)



Pλβ
α (Θ) =

1

r
δβ2δ

λ
α, Pλβ

3 (Θ) = 0,

P 3β
α (Θ) = 2(rε)−1(δ2βΘα + rΘαβ), P 3β

3 =
3

r
δβ2,

Pα3
λ (Θ) = −[(rε)−1(δαλΘ2 + 2δ2αΘλ) + ε−1δαλ∆Θ], Pα3

3 = −2r−1δ2α,

P 33
σ (Θ) = 2ε−2(r−3δ2σ −ΘβΘβσ),

P 33
3 (Θ) = −(rε)−1(Θ2 + r∆Θ),

(5.3)

{
qασ (Θ) = −r−2δ2αδ2σ, qα3 (Θ) = 0, q33(Θ) = 0,

q3σ(Θ) := (rε)−1[r−1δ2σΘ2 + 3Θ2σ] + ε−1∂σ∆Θ,
(5.4)Θα :=

∂Θ

∂xα
, Θαβ :=

∂2Θ

∂xα∂xβ
, Π(w,Θ) := εw3 + wλΘλ,

∆Θ := Θαα = Θ11 +Θ22, |∇Θ|2 = Θ2
1 +Θ2

2

(5.5)

and

πk
ij = Γk

ij + r−1δ2iδjk. (5.6)
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By using the above formula, we claim that there exists the Gâteaux derivative of the solu-

tion of the Navier-Stokes equations exists and satisfies the following linearized Navier-Stokes

equation.

Theorem 5.2 Assume that a solution (w(Θ), p(Θ)) of the Navier-Stokes problem (3.7) such

that we can define a mapping Θ ⇒ (w(Θ), p(Θ)) from H1
0 (D) ∩H2(D) to H1,q(Ω) × L2,q(Ω).

Then the Gâteaux derivative of (w, p) at a point Θ ∈ H1
0 (D) ∩ H2(D) with respect to any

direction η ∈ H1
0 (D) ∩ H2(D) exists, ŵη

.
=

Dw
DΘ

η, p̂η
.
=

Dp
DΘ

η and it satisfies the following

linearized equations:

d̃ivw :=
1

r

∂(rŵα)

∂xα
+
∂ŵ3

∂ξ
= 0,

−ν∆ŵk − ν(rε)−2a
∂2ŵk

∂ξ2
− νP k3

j (Θ)
∂ŵk

∂ξ
− 2νε−1Θβ

∂2ŵk

∂ξ∂xβ

−νP kβ
j (Θ)∂ŵ

j

∂xβ − νqkj (Θ)ŵj + gkβ∂β p̂+ gk3∂ξp̂

+Ck(ŵ, ω) +Nk(w, ŵ) +Nk(ŵ, w) +Rk(w, p,Θ) = 0,

(5.7)

ŵ = 0, on Γs ∩ {ξ = ξk},

ν
∂ŵ

∂ n
− p̂ n = 0, on Γin ∩ Γout,

(5.8)

where

Rα(w, p,Θ) := − ∂

∂xβ

{
− 2νε−1rΘβ

∂2wα

∂ξ2
+ ν(rε)−1 ∂w

λ

∂ξ
(δαλδβ2 + 2δ2αδλβ)

−3νε−1 ∂
2wα

∂ξ∂xβ
− ε−1∂ξpδαβ − 2rδ2αΠ(w,Θ)wβ

}
,

R3(w, p,Θ) = − ∂

∂xβ

{
νε−1 ∂2wσ

∂xβ∂xσ
+ νε−1 ∂

∂ξ

(∂w3

∂xβ
− 2

∂wσ

∂xσ
Θβ

)
−2νε−1rΘβ

∂2w3

∂ξ2
− 2ν(rε)−1

((
δ2β + r

∂

∂xβ

)∂w3

∂ξ
+
∂wβ

∂r

+
w2

r
δ2β

)
− ε−1 ∂p

∂xβ
+ ε−2Θβ

∂p

∂ξ
− ∂

∂xα
(ε−1wαwβ)

+(rε)−1(a2αδ
β
λ + a2λδ

β
α + aαλδ

β
2 − δαλδ

β
2 )w

λwα

+2r(Θ2δαβ +Θαδ2β)w
3wα + rεδ2βw

3w3
}
.

(5.9)

The variational formulation associated with (5.7) and (5.8) is given by

Find ŵ ∈ V (Ω), p̂ ∈ L2
0(Ω) such that ∀ v ∈ V (Ω),

a0(ŵ, v) + (C(ŵ, ω), v) + b(ŵ, w, v) + b(w, ŵ, v)− (p̂, ∂αv
α + ∂ξv

3) + (l(ŵ,Θ), v)

= (R(w, p,Θ), v),(1
r

∂(rŵα)

∂xα
+
ŵ2

r
+
∂ŵ3

∂ξ
, q
)
= 0, ∀ q ∈ L2(Ω),

(5.10)

where

a0(ŵ, v) =

∫
Ω

νgij

[∂wi

∂xα
∂wj

∂xα
+ (rε)−2a

∂wi

∂ξ

∂wj

∂ξ

]
dxdξ,

(l(ŵ,Θ), v) = ν

∫
Ω

[
− ε−1Θβgij

∂ŵi

∂xβ
∂vj

∂ξ
+ dkij(Θ)

∂ŵi

∂xk
vj + gijq

i
mŵ

mvj
]
dxdξ,

dkij(Θ) : = gmiP
km
j (Θ)− δkβ∂βgij

(5.11)
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with

(R(w, p,Θ), v) =

∫
Ω

[(
− 2νε−1rΘβ

∂2wα

∂ξ2
+ ν(rε)−1 ∂w

λ

∂ξ
(δαλδβ2 + 2δ2αδλβ)

− 3νε−1 ∂
2wα

∂ξ∂xβ
− ε−1∂ξpδαβ − 2rδ2αΠ(w,Θ)wβ

)
∂β(aαλv

λ + εr2Θαv
3)

+
(
νε−1 ∂2wσ

∂xβ∂xσ
+ νε−1 ∂

∂ξ

(∂w3

∂xβ
− 2

∂wσ

∂xσ
Θβ

)
− 2νε−1rΘβ

∂2w3

∂ξ2

− 2ν(rε)−1
((
δ2β + r

∂

∂xβ

)∂w3

∂ξ
+
∂wβ

∂r
+
w2

r
δ2β

)
− ε−1 ∂p

∂xβ
+ ε−2Θβ

∂p

∂ξ

− ∂

∂xα
(ε−1wαwβ) + (rε)−1(a2αδ

β
λ + a2λδ

β
α + aαλδ

β
2 − δαλδ

β
2 )w

λwα

+ 2r(Θ2δαβ +Θαδ2β)w
3wα + rεδ2βw

3w3
)

· ∂

∂xβ
(εr2Θλv

λ + ε2r2v3)
]√

g dxdξ. (5.11′)

Proof The Navier-Stokes equations (5.1) read

∂wα

∂xα
+
w2

r
+
∂w3

∂x3
= 0,

Nα(w, p,Θ)−→e α +N 3(w, p,Θ)−→e 3 = fα−→e α + f3−→e 3.

(5.12)

The Gâteaux derivative with respect to Θ along any director η ∈ W := H2(D) ∩ H1
0 (D) is

denoted by D
DΘη. Then from (5.12), we obtain

D
DΘ

Nα(w, p,Θ)−→e αη +
D
DΘ

N 3(w, p,Θ)−→e 3η +Nα(w, p,Θ)
D−→e α

DΘ
η

+N 3(w, p,Θ)
D−→e 3

DΘ
η = fα

D−→e α

DΘ
η + f3

D−→e 3

DΘ
η,

D
DΘ

Nα(w, p,Θ)−→e α +
D
DΘ

N 3(w, p,Θ)−→e 3 + [Nα(w, p,Θ)− fα]
D−→e α

DΘ

+ [N 3(w, p,Θ)− f3]
D−→e 3

DΘ
−→e 3 = 0.

Substituting (5.1) into the above equations, we claim that

D
DΘ

N k(w, p,Θ)
.
=

D
DΘ

Lk(w, p,Θ) +
D
DΘ

Nk(w, p,Θ) = 0.

However
D
DΘ

Lk(w, p,Θ)η =
∂

∂w
Lk(w, p,Θ)ŵη +

∂

∂p
Lk(w, p,Θ)p̂η +

∂

∂Θ
Lk(w, p,Θ)η,

D
DΘ

Nk(w,w,Θ)η =
∂

∂w
Nk(w,w,Θ)ŵη +

∂

∂Θ
Nk(w,w,Θ)η.

(5.13)

Since L are the linear operators and N are the bilinear operators defined by (5.2), we assert
∂

∂w
Lk(w, p,Θ)ŵη +

∂

∂p
Lk(w, p,Θ)p̂η = Lk(ŵ, p̂,Θ)η,

∂

∂w
Nk(w,w,Θ)ŵη = (Nk(ŵ, w,Θ) +Nk(w, ŵ,Θ))η.
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Therefore

D
DΘ

N k(w, p,Θ)η = Lk(ŵ, p̂,Θ)η +Nk(w, ŵ)η +Nk(ŵ, w)η +Rk(w, p,Θ)η = 0,

Rk(w, p,Θ) =
∂

∂Θ
Lk(w, p,Θ)η +

∂

∂Θ
Nk(w, p,Θ)η

= −2ν(rε)−2Θαηα
∂2wk

∂ξ2
− ν

∂

∂Θ
P k3
j (Θ)η

∂wj

∂ξ
− 2νε−1ηβ

∂2wk

∂ξ∂xβ

−ν ∂

∂Θ
P kβ
j (Θ)η

∂wj

∂xβ
− ν

∂

∂Θ
qkj (Θ)ηwj +

∂

∂Θ
gkβ(Θ)η∂βp+

∂

∂Θ
gk3(Θ)η∂ξp

+2ωr[−wλδk2 + ε−1(δλ2Π(w,Θ) + Θ2w
λ)δk3 ]ηλ +

∂

∂Θ
πk
ij(Θ)ηwiwj .

(5.14)

In order to obtain the expressions for the Rk(w, p,Θ), at the first, by (2.3), (2.7), (3.18) and

(5.6), it is clear that

∂a

∂Θ
η = 2r2Θβηβ ,

∂C1

∂Θ
η = 0,

∂C2

∂Θ
η = −2rωwβηβ ,

∂C3

∂Θ
η = 2ωε−1(rΠ(w,Θ)δ2β + rΘ2w

β)ηβ ,

∂πα
βγ

∂Θ
η = −rδ2α(Θβδ

λ
γ +Θγδ

λ
β)ηλ,

∂πα
3β

∂Θ
η =

∂πα
β3

∂Θ
η = −rεδ2αηβ ,

∂πα
33

∂Θ
η = 0,

∂π3
αβ

∂Θ
η = (rε)−1(a2αδ

λ
β + a2βδ

λ
α + aαβδ

λ
2 − δαβδ

λ
2 )ηλ + ε−1ηαβ ,

∂π3
3α

∂Θ
η ==

∂π3
α3

∂Θ
η = r(Θ2δαβ +Θαδ2β)ηβ ,

∂π3
33

∂Θ
η = rεη2.

By using the above formula and (5.1)–(5.4) and (5.6), we assert that

∂

∂Θ
Lα(w, p,Θ)η = ν(ε)−1 ∂w

α

∂ξ
∆̃η +

[
− 2νε−1rΘβ

∂2wα

∂ξ2
+ ν(rε)−1 ∂w

λ

∂ξ
(δαλδβ2 + 2δ2αδλβ)

− 2νε−1 ∂
2wα

∂ξ∂xβ
− ε−1∂ξpδαβ

]
ηβ ,

∂

∂Θ
L3(w, p,Θ)η = −ν(ε)−1 ∂w

3

∂ξ
∆̃η − νε−1wσ∂σ∆̃η + 2νε−1

(∂wσ

∂ξ
Θβ − ∂wσ

∂xβ

)
ηβσ

+
[
− 2νε−1rΘβ

∂2w3

∂ξ2
+ 2ν(ε)−2 ∂w

σ

∂ξ
Θβσ − (rε)−1δ2β

∂w3

∂ξ
− 2νε−1 ∂

2w3

∂ξ∂xβ

− 2ν(rε)−1 ∂w
β

∂r
− ε−1rw2δ2β − ε−1 ∂p

∂xβ
+ ε−2Θβ

∂p

∂ξ

]
ηβ ,

∂

∂Θ
Nα(w,w,Θ)η = −[rδ2α(Θβδ

λ
γ +Θγδ

λ
β)w

βwγ + 2rεδ2αw
3wλ]ηλ,

∂

∂Θ
N3(w,w,Θ)η = ε−1wαwβηαβ + [(rε)−1(a2αδ

λ
β + a2βδ

λ
α + aαβδ

λ
2 − δαβδ

λ
2 )w

βwα

+ 2r(Θ2δαλ +Θαδ2λ)w
3wα + rεδ2λw

3w3]ηλ.

Hence, from (5.14) it is yields that

Rα(w, p,Θ)η : = ν(ε)−1 ∂w
α

∂ξ
∆̃η +

[
− 2νε−1rΘβ

∂2wα

∂ξ2

+ ν(rε)−1 ∂w
λ

∂ξ
(δαλδβ2 + 2δ2αδλβ)− 2νε−1 ∂

2wα

∂ξ∂xβ
− ε−1∂ξpδαβ

]
ηβ
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− [2rδ2αΘλw
λwβ + 2rεδ2αw

3wβ ]ηβ ,

R3(w, p,Θ)η = −νε−1wσ∂σ∆̃η + νε−1
(
2
∂wσ

∂ξ
Θβ − 2

∂wσ

∂xβ
− ∂w3

∂ξ
δβσ

)
ηβσ

+
[
− 2νε−1rΘβ

∂2w3

∂ξ2
+ 2ν(ε)−2 ∂w

σ

∂ξ
Θβσ − 2ν(rε)−1

((
δ2β + r

∂

∂xβ

)∂w3

∂ξ

+
∂wβ

∂r
+
w2

r
δ2β

)
− ε−1 ∂p

∂xβ
+ ε−2Θβ

∂p

∂ξ

]
ηβ

+ ε−1wαwβηαβ + [(rε)−1(a2αδ
β
λ + a2λδ

β
α + aαλδ

β
2 − δαλδ

β
2 )w

λwα

+ 2r(Θ2δαβ +Θαδ2β)w
3wα + rεδ2βw

3w3]ηβ .

(5.9) is derived. It is obvious that since the arbitrary of the direction η with homogenous

boundary conditions in V (Ω), (5.9) can be expressed as follows

Rα(w, p,Θ) : = − ∂

∂xβ

{
− 2νε−1rΘβ

∂2wα

∂ξ2
+ ν(rε)−1 ∂w

λ

∂ξ
(δαλδβ2 + 2δ2αδλβ)

−3νε−1 ∂
2wα

∂ξ∂xβ
− ε−1∂ξpδαβ − 2rδ2αΠ(w,Θ)wβ

}
,

R3(w, p,Θ) = − ∂

∂xβ

{
νε−1 ∂2wσ

∂xβ∂xσ
+ νε−1 ∂

∂ξ

(∂w3

∂xβ
− 2

∂wσ

∂xσ
Θβ

)
− 2νε−1rΘβ

∂2w3

∂ξ2

−2ν(rε)−1
((
δ2β + r

∂

∂xβ

)∂w3

∂ξ
+
∂wβ

∂r
+
w2

r
δ2β

)
− ε−1 ∂p

∂xβ
+ ε−2Θβ

∂p

∂ξ

− ∂

∂xα
(ε−1wαwβ) + (rε)−1(a2αδ

β
λ + a2λδ

β
α + aαλδ

β
2 − δαλδ

β
2 )w

λwα

+2r(Θ2δαβ +Θαδ2β)w
3wα + rεδ2βw

3w3
}
.

In order to consider the variational formulation for the Gâteaux derivatives (ŵ, p̂), let compute

(R(w, p,Θ),v). Indeed,

(R(w, p,Θ),v) =

∫
Ω

gijR
ivj

√
gdxdξ

=

∫
Ω

[aαβR
αvβ + εr2Θα(R

αv3 +R3vα) + ε2r2R3v3]
√
gdxdξ

=

∫
Ω

[Rα(w, p,Θ)(aαλv
λ + εr2Θαv

3) +R3(w, p,Θ)(εr2Θλv
λ + ε2r2v3)]

√
gdxdξ,

from which it follows

(R(w, p,Θ),v) =

∫
Ω

[(
− 2νε−1rΘβ

∂2wα

∂ξ2
+ ν(rε)−1 ∂w

λ

∂ξ
(δαλδβ2 + 2δ2αδλβ)− 3νε−1 ∂

2wα

∂ξ∂xβ

− ε−1∂ξpδαβ − 2rδ2αΠ(w,Θ)wβ
)
∂β(aαλv

λ + εr2Θαv
3)

+
(
νε−1 ∂2wσ

∂xβ∂xσ
+ νε−1 ∂

∂ξ

(∂w3

∂xβ
− 2

∂wσ

∂xσ
Θβ

)
− 2νε−1rΘβ

∂2w3

∂ξ2

− 2ν(rε)−1
((
δ2β + r

∂

∂xβ

)∂w3

∂ξ
+
∂wβ

∂r
+
w2

r
δ2β

)
− ε−1 ∂p

∂xβ
+ ε−2Θβ

∂p

∂ξ
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− ∂

∂xα
(ε−1wαwβ) + (rε)−1(a2αδ

β
λ + a2λδ

β
α + aαλδ

β
2 − δαλδ

β
2 )w

λwα

+ 2r(Θ2δαβ +Θαδ2β)w
3wα + rεδ2βw

3w3
) ∂

∂xβ
(εr2Θλv

λ + ε2r2v3)
]√

g dxdξ.

This is (5.11′). The proof is completed.

Corollary 5.1 Assume that Θ is small enough and such that (3.38) holds and that the

solution (w, p) ∈ H2(Ω) × H1(Ω). Then there exists a constant C9 independent of w and Θ,

which makes the following estimate to be valid:

∥R(w,Θ)∥∗ ≤ C(Ω)(1 + κ3)(∥w∥22.Ω + ∥p∥1,Ω). (5.15)

Theorem 5.3 Assume that the assumptions in Theorem 5.1 are satisfied. Furthermore,

(w, p) ∈ V (Ω) ∩H3(Ω)×H2(Ω) is a solution of (3.7) and satisfies

∥w∥Ω ≤ 1

2

κ0
C(Ω)(1 + κ3)

, ∥w∥2,Ω + ∥p∥1,Ω ≤ κ0
2C3(Ω)(1 + κ3)(1 + κ3)2

. (5.16)

Then there exists a pair (ŵ, p̂) ∈ V (Ω) × L2(Ω) solutions of (5.10), i.e., the G-derivatives of

the solution of the Navier-Stokes equation (3.7), and it satisfies

∥ŵ∥Ω ≤ κ0
4C(Ω)(1 + κ3)

[
1−

√
1− 4C2(Ω)(1 + κ23)∥R(w,Θ)∥∗

κ20

]
. (5.17)

Proof First, the bilinear form

ã(ŵ, v) := a(ŵ, v) + b(w; ŵ, v) + b(ŵ;w, v) + 2(ω × ŵ, v)

is continuous form V (Ω)×L2(Ω) to R; in particular, it is coercive. Indeed, by Lemma 3.6 and

Lemma 3.7, we claim that

ã(ŵ, ŵ) ≥ κ0∥ŵ∥2Ω − 2C(Ω)(1 + κ3)∥w∥Ω∥ŵ∥2Ω = (κ0 − 2C(Ω)(1 + κ3)∥w∥Ω)∥ŵ∥2Ω.

In view of (4.6),

κ0 − 2C(Ω)(1 + κ3)∥w∥Ω ≥ κ0 − 2C(Ω)κ3
κ0

2C(Ω)(1 + κ3)
≥ 1

2
κ0.

Therefore, ã(ŵ, ŵ) ≥ κ0

2 ∥ŵ∥2Ω. Furthermore, combining (5.13) and (5.14), we assert that

∥R(w,Θ)∥∗ ≤ κ0
2C2(Ω)(1 + κ3)2

.

By an analog argument as in the proof of Theorem 4.1, we claim that there exists a smooth

solution (ŵ, p̂) of the variational problem (5.10) which satisfies

∥ŵ∥Ω ≤ κ0
4C(Ω)(1 + κ3)

[
1−

√
1− 4C2(Ω)(1 + κ3)2∥R(w,Θ)∥∗

κ20

]
.

This is (5.15) and this completes our proof.
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For the compressible case, we resolve

div(ŵρ+ wρ̂) = 0,

div(ρŵiw + ρwiŵ + ρ̂wwi) + 2ρ̂(ω × w)i + 2ρ(ωω × ŵ)i

+ agij∇j(γρ
γ−1ρ̂)−∇j(A

ijkmekm(ŵ)) = Si(w, ρ),

(5.18)

where

Si(w, p,Θ) = −∂βSi;β(w, p; Θ) + ∂2λσS
i;(λ,σ)(w, p; Θ) (5.19)

with

Sα;β(w, p,Θ) = rδα2 [(δ
β
λΘσ + δβσΘλ)w

λwσ + 2εw3wβ ] + 2ρrωδα2w
β

− ε−1δαβ
∂(aργ)

∂ξ
+ 2νε−1[−Θαg

jm∇je
β
3m(w)− (ε−2ΘαΘβ

+ δαβg
33)∇3e33(w) + ε−1(Θαδβλ +Θλδαβ)∇λe33(w)

+ ε−1(Θαδβλ + 2Θβδαλ +Θλδαβ)∇3e3λ(w)

− δαβ∇λe3λ(w)−∇βe3α(w)−∇3eαβ(w)

− r−1(δα2δβλ + 3δαλδβ2)(e3λ(w)− ε−1Θλe33(w))],

Sα;(λ,σ)(w, p, ; Θ) = −2νε−1[(δαβδγλ + δαγδβλ)(e3γ(w)− ε−1Θγe33(w))

+ Θαg
jm(∇je

βλ
3m(w,Θ)];

(5.20)

S3;β(w, p,Θ) = −[(rε)−1(δ2λδ
β
σ + δ2σδ

β
λ + r2(δβ2ΘλΘσ +Θ2δ

β
σΘλ

+Θ2Θσδ
β
λ))w

λwσ + 2r(δβλΘ2 + δβ2Θλ)w
3wλ + rεδβ2w

3w3]

+ 2rω((w3 + ε−1wλΘλ)δβ2 + ε−1wβΘ2)− ε−1∇βp

+ 2ε−2Θβ
∂p

∂ξ
+ 2νg3kgjm∇je

β
km(w)

+ 2νε−1[g33(4ε−1∇3e33(w)−∇βe33(w)) +∇λeβλ(w)

+ ε−1(2δβλ∇σe3σ(w)−∇λe3β(w) +∇βe3λ(w))Θλ

− 2ε−2(2∇3e3λ(w) +∇λe33(w))]− 2ν[−(rε)−1e2β(w)

+ e3γ(w)[ε
−2r−1(δγ2Θβ − 3δβ2Θγ) + rε−2(δβγΘ2 − δ2βΘγ)|∇Θ|2]

+ e33(w)(rε)
−3δ2β(4 + 3r2|∇Θ|2)],

S3;(λ,σ)(w, p, ; Θ) = 2ν[ε−1(ε−2ΘλΘσ + δλσg
33)e33(w)− ε−2(Θλδγσ +Θγδλσ)e3γ(w)]

− ε−2wλwσ + 2νg3kgjm∇je
λσ
km(w,Θ).

(5.21)

6 Control Problem of the Boundary Shape

The notations used in this paper are usual, for example, the norms in the space L2(D) and

Hm(D),m ≥ 1 are denoted as usually by | · |0,D and ∥ · ∥m,D and those in the spaces L∞(D)

and W 1,∞(D) are denoted by | · |0,∞,D and ∥ · ∥1,∞,D. The same notations are used for the

norms in the corresponding spaces of vector fields, such spaces being then denoted by boldface

letters. Strong and weak convergences are denoted by → and ⇀, respectively (a review of all

the properties relevant here about weak convergence and lower semi-continuity is found, e.g.,
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in [19]). Naturally, we choose global dissipative energy to be the objective functional for the

shape control of the blade surface. The global dissipative energy functional is given by

Φ(w, v) = Aijklekl(w)eij(v),

J(S) =
1

2

∫∫∫
Ωε

Φ(w(S), w(S))dV =

∫∫∫
Ωε

Aijklekl(w)eij(w)
√
g dxdξ,

Aijkl = µ(gikgjl + gilgjk) for the incompressible viscous fluid,

(6.1)

where Ω = D× [−1, 1] and Ωε is the flow passage in the Turbo-machinery bounded by Γt∪Γb∪
Γin ∪ Γout ∪ S+ ∪ S−. We propose the following variational principle for the geometric design

of the blade: 
Find a surface ℑ ∈ F of the blade such that

J(ℑ) = inf
S∈F

J(S),

F = {ζ ∈ H2(D), ζ = Θ0, ζ = Θ∗, on ∂D, ∥ζ∥2,D ≤ κ0},
(6.2)

where Θ0 and Θ∗ are functions in H2(D). The ℑ which achieves minimum of the object

dissipative energy functional, is called a general minimal surface. In other words, from the

mathematical point of view, this minimum problem of geometric sharp of the surface of the

blade is a general minimal surface problem.

Note that (6.2) is also an optimal control problem with distributed parameters, where the

control variable is the surface of the blade and the Navier-Stokes equations are the state equa-

tions of this control problem.

Subsequently, we establish the Euler-Lagrange equations of the optimization problem (6.2)

with the Navier-Stokes equations being its state equations.

In order to investigate the optimal control problem (6.2), we should consider the object

functional J in a fixed domain in the new coordinate system. In this case, we rewrite with

(3.25)

J(ℑ) : = 1

2
a(w,w) =

1

2

∫
Ω

Φ(w)
√
g dξdx,

Φ(w) : = Aijklekl(w)eij(w)

= Aijkl[φkl(w)φij(w) + 2φkl(w)ψij(w,Θ) + ψkl(w,Θ)ψij(w,Θ)].

(6.3)

Lemma 6.1 Assume that (w, p) is the solution of the Navier-Stokes equations (3.7) asso-

ciated with Θ ∈ H1(D) which defines a mapping (w(Θ), p(Θ)) :

Θ ∈ C2(D) ⇒ (w(Θ), p(Θ)) ∈ H1(Ω)× L2(D).

Then the strain rate tensor eij(w) of the velocity w defined by (3.2) possesses a Gâteaux deriva-

tive D
DΘeij(w)η at any point Θ ∈ C2(D) along every direction η ∈ W (D) := H1

0 (D) ∩H2(D),

and

D
DΘ

eij(w)η = eij(ŵ)η + eλij(w)ηλ + eλσij (w)ηλσ, (6.4)
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where 

ŵ =
D
DΘ

w, ηλ =
∂η

∂xλ
, ηλσ =

∂2η

∂xλ∂xσ
,

eλαβ(w) = ψλ
αβ(w) + (ψλσ

αβ(w) + ψσλ
αβ(w))Θσ +

1

2
r2wσ(δαλΘσβ + δβλΘασ),

eλσαβ(w) =
1

2
r2wσ(δαλΘβ + δβλΘα),

eλ3α(w) = ψλ
3α(w) + (ψλσ

3α (w) + ψσλ
3α (w))Θσ, eλσ3α(w) =

1

2
εr2wσδαλ,

eλ33(w) = ψλ
33(w), eλσ33 (w) = 0,

(6.5)

where ψ,ψλ, ψλσ are defined by (3.22).

Proof By similar manner in the proof of Theorem 5.2 and using (3.20)–(3.22),

D
DΘ

eij(w)η =
∂eij
∂w

ŵη +
∂eij
∂Θ

η = eij(ŵ)η +
∂eij
∂Θ

η,

∂eij
∂Θ

η = ψγ
ij(w)ηγ + ψλσ

ij (w)(δλγΘσδσγΘλ)ηγ +
∂e∗ij
∂Θ

η,

where

∂e∗αβ
∂Θ

η =
1

2
r2wσ∂σ(Θαδβγ +Θβδαγ)ηγ ,

∂e∗3α
∂Θ

η =
1

2
εr2wσηασ,

∂e∗33
∂Θ

η = 0.

From this it is easy to obtain (6.4) and (6.5) . The proof is completed.

Lemma 6.2 The dissipative functions Φ(w) defined by (4.1) is Gâteaux differentiable at

Θ ∈ C2(D) along any direction η ∈ W . The Gâteaux derivative is a polynomial of degree 5 :

DΦ(w)

DΘ
η = Φ0(ŵ, w)η +Φλ(w,Θ)ηλ +Φλσ(w,Θ)ηλσ, (6.6)

where

Φ0(ŵ, w) = 2Aijkleij(ŵ)ekl(w)

= 4µ[eαβ(ŵ)eαβ(w) + g33g33e33(ŵ)e33(w)

+ 2(ε−2ΘαΘβ + δαβg33)e3α(ŵ)e3β(w)

+ ε−2ΘαΘβ(e33(ŵ)eαβ(w) + eαβ(w)e33(ŵ))

− 2ε−1Θβ(eαβ(ŵ)e3α(w) + e3α(ŵ)eαβ(w))

− 2ε−1Θαg
33(e33(ŵ)e3α(v) + e3α(ŵ)e33(v))],

Φλ(w,Θ) = 2Aijklekl(w)e
λ
ij(w) +

DAijkl

DΘ
ηekl(w)eij(w)

= 4µ[(eαβ(w) + ε−2ΘαΘβe33(w)− 2ε−1Θβe3α(w))e
λ
αβ(w)

+ (2(rε)−2(r2ΘαΘβ + aδαβ)e3β(w)− 2ε−1Θβeαβ(w)

− 2ε−1Θαg
33e33(w))e

λ
3α(w)

+ (g33g33e33(w) + ε−2ΘαΘβeαβ(w)− 2ε−1Θαg
33e3α(w))e

λ
33(w)]

+ 2µ[4r−4ε−4aΘλe33(w)e33(w) + 4ε−2(Θαδβλ +Θλδαβ)e3α(w)e3β(w) (6.7)

+ 4ε−2Θαe33(w)eαλ(w)− 4ε−1e3α(w)eαλ(w)
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− 4ε−3r−2(aδαλ + 2r2ΘαΘλ)e33(w)e3α(w)],

Φλσ(w,Θ) = 2Aijkleλσij (w)ekl(w)

= 4µ[eαβ(w)e
λσ
αβ(w) + g33g33e33(w)e

λσ
33 (w)

+ 2(ε−2ΘαΘβ + δαβg33)e3α(w)e
λσ
3β (w)

+ ε−2ΘαΘβ(e33(w)e
λσ
αβ(w) + eαβ(w)e

λσ
33 (w))

− 2ε−1Θβ(eαβ(w)e
λσ
3α(w) + e3α(w)e

λσ
αβ(w))

− 2ε−1Θαg
33(e33(w)e

λσ
3α(w) + e3α(w)e

λσ
33 (w))]

= 2µwσ
[
ε−1

(∂wλ

∂ξ
+ r2

∂w3

∂xλ

)
+ r2

(∂wν

∂xλ
− δλν

∂w3

∂ξ

)
Θν − ε−1r2ΘλΘν

∂wν

∂ξ

]
+ 2µr2wνwσΘνλ,

where eλij(w), e
λσ
ij (w) are defined by (5.12).

Proof At first,

DΦ(w,Θ)

DΘ
η = 2AijklDekl(w)

DΘ
ηeij(w) +

DAijkl

DΘ
ηekl(w)eij(w). (6.8)

Due to (5.11) and (5.12), we assert that

DΦ(w,Θ)

DΘ
=

[
2Aijkl(ekl(ŵ)η + eλkl(w)ηλ + eλσkl (w)ηλσ) +

DAijkl

DΘ
ηekl(w)

]
eij(w)

= Φ0(ŵ, w,Θ)η +Φλ(w,Θ)ηλ +Φλσ(w,Θ)ηλσ. (6.9)

Thanks to (2.5) and (3.24), simple calculations show that

DAijkl

DΘ
ηekl(w)eij(w) = 2µ[4r−4ε−4aΘλe33(w)e33(w)

+ 4ε−2(Θαδβλ +Θλδαβ)e3α(w)e3β(w)

+ 4ε−2Θαe33(w)eαλ(w)− 4ε−1e3α(w)eαλ(w)

− 4ε−3r−2(aδαλ + 2r2ΘαΘλ)e33(w)e3α(w)]ηλ, (6.10)

2Aijkleλkl(w)eij(w) = 4µ[(eαβ(w) + ε−2ΘαΘβe33(w)− 2ε−1Θβe2α(w))e
λ
αβ(w)

+ (2(rε)−2(r2ΘαΘβ + aδαβ)e3β(w)− 2ε−1Θβeαβ(w)

− 2ε−1Θαg
33e33(w))e

λ
3α(w) + (g33g33e33(w)

+ ε−2ΘαΘβeαβ(w)− 2ε−1Θαg
33e3α(w))e

λ
33(w)]. (6.11)

In particular,

Φλσ(w,Θ) = 2Aijkleλσij (w)ekl(w)

= 4µ[eαβ(w)e
λσ
αβ(w) + g33g33e33(w)e

λσ
33 (w)

+ 2(ε−2ΘαΘβ + δαβg33)e3α(w)e
λσ
3β (w)

+ ε−2ΘαΘβ(e33(w)e
λσ
αβ(w) + eαβ(w)e

λσ
33 (w))

− 2ε−1Θβ(eαβ(w)e
λσ
3α(w) + e3α(w)e

λσ
αβ(w))

− 2ε−1Θαg
33(e33(w)e

λσ
3α(w) + e3α(w)e

λσ
33 (w))].
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By virtue of (6.5), eλσ33 (w) = 0, we obtain

Φλσ(w,Θ) = 4µ[(eαβ(w) + ε−2ΘαΘβe33(w)− 2ε−1Θβe3α(w))e
λσ
αβ(w)

+ (2(rε)−2(r2ΘαΘβ + aδαβ)e3β(w)− 2ε−1Θβeαβ(w)− 2ε−1g33Θαe33(w))e
λσ
3α(w)]

= 4µ
[
(eαβ(w) + ε−2ΘαΘβe33(w)− 2ε−1Θβe3α(w))

1

2
r2wσ(δαλΘβ + δβλΘα)

+ (2(rε)−2(r2ΘαΘβ + aδαβ)e3β(w)− 2ε−1Θβeαβ(w)

− 2ε−1g33Θαe33(w))
1

2
εr2wσδαλ

]
= 4µ

1

2
r2wσ[(2ε−2Θλ|∇Θ|2 − 2g33Θλ)e33(w) + 2ε−1r−2δαλ(a− r2|∇Θ|2)e3α(w)]

= 4µ
1

2
r2wσ[−2(rε)−2Θλe33(w) + 2ε−1r−2e3λ(w)]

= ε−2wσ[−Θλe33(w) + εe3λ(w)].

Taking (3.20)–(3.23) into account yields

Φλσ(w,Θ) = 4µε−2wσ[−Θλe33(w) + εe3λ(w)]

= 2µwσ
[
ε−1

(∂wλ

∂ξ
+ r2

∂w3

∂xλ

)
+ r2

(∂wν

∂xλ
− δλν

∂w3

∂ξ

)
Θν − ε−1r2ΘλΘν

∂wν

∂ξ

]
+ 2µr2wνwσΘνλ. (6.12)

Summing up (6.7) is derived. The proof is completed.

Theorem 6.1 Assume that Θ ∈ C2(D,R) is an injective mapping. Then the objec-

t functional J defined by (6.1) has a Gâteaux derivative gradΘJ ≡ DJ
DΘ

in every direction

η ∈ W := H2(D) ∩H1
0 (D) that is determined by

⟨gradΘ(J(Θ)), η⟩ =
∫∫

D

[Φ̂0(w; ŵ)η + Φ̂λ(w,Θ)ηλ + Φ̂λσ(w,Θ)ηλσ

+ 2µr2W νσΘλνηλσ]εrdx
1dx2, (6.13)

where 

Φ̂0(w; ŵ) =

∫ 1

−1

Φ0(w; ŵ)dξ, Φ̂λ(w,Θ) =

∫ 1

−1

Φλ(w,Θ)dξ,

Φ̂λσ(w,Θ) =

∫ 1

−1

2µwσ
[
ε−1

(∂wλ

∂ξ
+ r2

∂w3

∂xλ

)
+ r2

(∂wν

∂xλ
− δλν

∂w3

∂ξ

)
Θν

−ε−1r2ΘλΘν
∂wν

∂ξ

]
dξ,

Wαβ =

∫ 1

−1

wαwβdξ,

(6.14)

and where ŵ = Dw
DΘ is the Gâteaux derivative of the velocity w of the fluid at the point Θ, and

Φ0,Φλ are defined by (6.5).

Proof Indeed, taking into account of (6.5) and (6.6), and
√
g = εr we assert that

⟨gradΘ(J(Θ)), η⟩ =
∫
D

∫ 1

−1

DΦ(w,Θ)

DΘ
ηεrdξdx
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=

∫
D

∫ 1

−1

2µ[Φ0(ŵ, w)η +Φλ(w,Θ)ηλ +Φλσ(w,Θ)ηλσ]rεdξdx. (6.15)

By using (6.6) and (6.7) it is easy to obtain (6.13). The proof is completed.

Taking integration by part of (6.13) and considering homogenous boundary conditions for

η ∈ W (D), this implies

⟨gradΘ(J(Θ)), η⟩ =
∫
D

ε[∂λσ(2µr
3W σνΘνλ) + rΦ̂λσ(w,Θ))− ∂λ(rΦ̂

λ(w,Θ)) + rΦ̂0(w, ŵ)]ηdx.

From the above discussion we obtain directly the following result.

Theorem 6.2 The Euler-Lagrange equation for the extremum Θ of J is given by:

∂2

∂xλ∂xσ

(
2µr3W νσ ∂2Θ

∂xν∂xλ

)
+

∂2

∂xλ∂xσ
(rΦ̂λσ(w,Θ))

− ∂

∂xλ
(rΦ̂λ(w,Θ)) + Φ̂0(w, ŵ)r = 0,

Θ|γ = Θ0,
∂Θ

∂n

∣∣∣
γ
= Θ∗,

(6.16)

and the variational formulation associated with (6.16) reads
Find Θ ∈ V (D) =

{
q
∣∣∣ q ∈ H2(D), q|γ = Θ0,

∂q

∂n

∣∣∣
γ
= Θ∗

}
such that∫

D

{(2µr2WλαΘαλ + Φ̂λσ(w,Θ))ηλσ + Φ̂λ(w,Θ)ηλ + Φ̂0(w, ŵ)η}εrdx,

∀ η ∈ H2
0 (D).

(6.17)

7 The Controllability

In this section, we discuss the existence of solutions of the optimal control problem (4.1)

and (4.2) for the incompressible case. As well-known, the object functional

J(Θ) =
1

2

∫
Ω

Aijkl(Θ)eij(w(Θ))ekl(w(Θ))
√
g dxdξ =

1

2
a(w(Θ), w(Θ)) (7.1)

depends upon the existence of a solution w to the Navier-Stokes equations. Since the solution

w of the Navier-Stokes equations and Aijkl are functions of Θ, J itself is a function of Θ and

the general minimum problem is
Find the surface ℑ of the blade such that

J(ℑ) = inf
S∈F

J(S),

F = {ζ ∈ H2(D), ζ = Θ0, ζ = Θ∗, on ∂D, ∥ζ∥2,D ≤ κ0}.
(7.2)

However, J can be read as a function of w : J(Θ) = J̃(w(Θ)). As well-known, if there exists

a Gâteaux derivative DJ
DΘ of J(Θ) with respect to Θ at Θ∗, then the minimum point Θ of (4.2)

must satisfy

gradΘJ(Θ) = 0, (7.3)
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and from this, if Θ is smooth enough and it must satisfy Euler-Lagrange equations.

At first, it is well-known that the following theorem, which is a theorem analogous to the

Generalized Weierstrass Theorem (see [7, 19]) in the calculus of variation, gives a sufficient

condition for the existence.

Theorem 7.1 Let X be a reflexive Banach space, and U a bounded and weakly closed subset

of X. If the functional J is weakly lower semi-continuous on U, then J is bounded from below

and J achieves its infimum on U.

We consider the functional defined in a closed set of the Sobolev space

V (Ω) := {u | u ∈ H1,p(Ω), u|Γ0 = 0, ∂Ω = Γ0 ∪ Γ1,meas(Γ0) ̸= 0}.

Lemma 7.1

J̃(w) =
1

2
a(w,w)

is weakly lower semi-continuous with respect to w in H1(Ω).

Proof Indeed, assume

wk ⇀ w0 (weakly), inH1(D).

Owing to

0 ≤ a(wk − w0, wk − w0) = a(wk, wk)− 2(wk, w0) + a(w0, w0)

⇒ a(wk, wk) ≥ 2a(wk, w0)− a(w0, w0),

we have

lim
k→∞

inf J̃(wk) ≥ a(w0, w0)−
1

2
a(w0, w0) =

1

2
a(w0, w0) = J̃(w0).

By virtue of Lemma 7.1, we directly obtain the following result.

Lemma 7.2 If the solution w(Θ) of the Navier-Stokes equations satisfies:

Assumption P : Θn ⇀ Θ0 (weakly) ⇒ wn = w(Θn)⇀ w0 = w(Θ0) (weakly),

then the functional J(Θ) defined by (7.1) is weakly lower semi-continuous with respect to Θ.

Finally, we have the next theorem.

Theorem 7.2 Assume that (w, p) is a solution of the Navier-Stokes equations with mixed

boundary conditions such that

inf
D

{∫ 1

−1

w1w1dξ,

∫ 1

−1

w2w2dξ,

∫ 1

−1

[(∂w3

∂xα

)(∂w3

∂xα

)
+
(∂w3

∂ξ
+
w2

r

)2]
dξ

}
> 0. (7.4)

Then at least there exists a two dimensional surface ℑ defined by a smooth mapping

Θ : D → F = {ζ ∈ H2(D), ∥ζ∥2,D ≤ κ0, ζ|∂D = Θ0, ∂νζ|∂D = Θ∗},

such that J(Θ) achieves its minimum at {Θ},

Θ ∈ F , J(Θ) = inf
ζ∈F

J(ζ). (7.5)



912 K. T. Li, J. Su and A. X. Huang

Furthermore, Θ also is a stationary point:

⟨gradJ(Θ), η⟩ =
∫
Ω

gradΘΦ(w,Θ)dV = 0.

Proof Indeed, according to Theorem 7.1 it is enough to prove that

( i ) The manifold F(D) is sequentially weakly closed, i.e.,

∀
−→
ζ l ∈ F(D), l ≥ 1 and ζl ⇀ ζ, in H2(D) ⇒ ζ ∈ F(D).

( ii ) The functional J is sequentially weakly lower semi-continuous over the manifold W(D),

i.e.,

ζl ∈ W(D), l ≥ 1 and ζl ⇀ ζ ∈ F(D) in H2(D) ⇒ J(η) ≤ lim inf
l→∞

J(ηl).

(iii) The functional J is bounded from below, i.e., there exist constants C1 and C2 such

that

C1 > 0, J(ζ) ≥ C1∥ζ∥2,D + C2, ∀ ζ ∈ F . (7.6)

In fact, the Hilbert space H2(D) is a reflexive Banach Space. Furthermore,

( i ) Let ζl ∈ F(D) (l ≥ 1) be such that ζl ⇀ ζ in H2(D). We have to prove that ζ ∈ F(D).

Since the trace operator trI and tr ∂
∂n from H2(D) into L2(D) are continuous with respect to

the strong topologies of both spaces, it remains so with respect to the weak topologies of both

spaces. Hence ζl|∂D ⇀ ζ|∂D and ∂nζl|∂D ⇀ ∂nζ|∂D into L2(D) and thus ζ|∂D = Θ0, ∂nζ|∂D =

Θ∗ since tr ζl = Θ0, trnζl = Θ∗, for all l ≥ 1. Moreover, the weakly convergence sequence in

H2(D) is a bounded sequence in H2(D), hence ∥ζ∥2,D ≤ κ0 and ζ ∈ F(D).

( ii ) According to Lemma 7.1 and Lemma 7.2, it is enough to prove that the solution

(w(Θ), p(Θ)) of the rotating Navier-Stokes equations (3.15) is weakly continuous with respect

to Θ. That means that for any weakly continuous sequence Θk (k = 1, 2, · · · ) in W, the

corresponding sequence of the solutions (w(Θk), p(Θk)) is weakly continuous. By virtue of

Theorem 4.1, (4.6) shows that there exists a subsequence of (w(Θk)) (for simplicity, we still

denote it (w(Θk))), which is weakly convergent, i.e., there exists a w∗ ∈ V (D) such that

w(Θk)⇀ w∗, in V (D).

(iii) It remains to prove that the functional J is coercive on the manifold F , i.e., (7.6) holds.

By proceeding as for the proof of (3.35) it is easy to derive that

J(Θ) =

∫
Ω

Φ(w,w)rεdξdx ≥
∫
Ω

µ
[1
2
∥ψ(w,Θ)∥2 − ∥φ(w)∥2

]
rεdξdx. (7.7)

By virtue of (3.20), (3.23) and using the Young’s inequality, we have

∥ψ(w,Θ)∥2 = ∥ψλΘλ + ψλσΘλΘσ + e∗(w,Θ)∥2

= ∥e∗(w,Θ)∥2 + ∥ψλ(w)Θλ + ψλσ(w)ΘλΘσ∥2

+ 2(e∗(w), ψλ(w)Θλ + ψλσ(w)ΘλΘσ). (7.8)
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On the other hand, from (3.29) and (3.23), we get

∥e∗(w)∥2 = e∗αβ(w)e
∗
αβ(w) + (rε)−2e∗3α(w)e

∗
3α(w) +

1

2
(rε)−4e∗33(w)e

∗
33(w)

=
1

4
r4wλwσ∂λ(ΘαΘβ)∂σ(ΘαΘβ) +

1

4
r2wλwσΘλαΘσβ

=
1

4
r2wλwσ(2r2(ΘλαΘσα|∇Θ|2 +ΘλαΘσβΘαΘβ) + ΘλαΘσα)

=
1

2
r4

∑
α

(wλΘαλ)
2 +

1

4
r2(wλΘαΘλα)

2 +
1

4
r2wλwσΘλαΘσα

≥ 1

4
r2wλwσΘλαΘσα

=
1

4
r2(w11Θ2

11 + w22Θ2
22 + (w11 + w22)Θ2

12) +
1

2
r2w12(Θ11 +Θ22)Θ12,

wλσ = wλwσ,

(7.9)

where aαβ and a are defined by (2.3). Taking (3.22) and (3.23) into account, simple calculations

show that

∥ψλ(w)Θλ + ψλσ(w)ΘλΘσ∥2

= (ψλ(w), ψσ(w))ΘλΘσ + (ψλσ(w), ψµν(w))ΘλΘσΘνΘµ + 2((ψλ(w), ψνµ(w))ΘλΘνΘµ,

(ψλ(w), ψσ(w))ΘλΘσ

=
[1
2
ε2r4

(∂w3

∂xα
∂w3

∂xα
δλσ +

∂w3

∂xλ
∂w3

∂xσ

)
+

1

4
r2
(∂wλ

∂xα
∂wσ

∂xα
+ 2

∂wλ

∂xσ

(∂w3

∂ξ
+

2

r
w2

)
+
(∂w3

∂ξ
+

2

r
w2

)2

δλσ

)
+ ε−2

(∂wλ

∂ξ

∂wσ

∂ξ

)]
ΘλΘσ

=
1

2
r2
[
r2
∂w3

∂xα
∂w3

∂xα
+

1

2

(∂w3

∂ξ
+

2

r
w2

)2]
|∇Θ|2 + 1

2
ε2r4

(∂w3

∂xλ
Θλ

)2

+ ε−2
(∂wλ

∂ξ
Θλ

)2

+
1

4
r2
(∂wλ

∂xα
Θλ

)(∂wσ

∂xα
Θσ

)
+

1

2
r2
∂wλ

∂xσ

(∂w3

∂ξ
+

2

r
w2

)
ΘλΘσ

≥ 1

4
r2
[
2r2

∂w3

∂xα
∂w3

∂xα
+

1

2

(∂w3

∂ξ
+
w2

r

)2]
|∇Θ|2 + 1

2
r2
∂wλ

∂xσ

(∂w3

∂ξ
+

2

r
w2

)
ΘλΘσ,

(ψλσ(w), ψνµ(w))ΘλΘσΘνΘµ

=
[1
2
r4
((∂wλ

∂xα
Θλ

)(∂wσ

∂xα
Θσ

)
+

1

r
w2

(∂wσ

∂xλ
+
∂wλ

∂xσ

)
ΘλΘσ

)
+

1

4
ε−2r2

(∂wλ

∂ξ
Θλ

)2]
|∇Θ|2 + r2w2w2|∇Θ|4

=
[1
2
r4
((∂wλ

∂xα
Θλ

)(∂wσ

∂xα
Θσ

)
+ 2

1

r
w2

(∂wλ

∂xσ

)
ΘλΘσ

)
+

1

4
ε−2r2

(∂wλ

∂ξ
Θλ

)2]
|∇Θ|2 + r2w2w2|∇Θ|4,

(ψµν(w), ψλ(w))ΘλΘνΘµ

=
1

4
εr4

[
2
∂wλ

∂xα
∂w3

∂xα
+

2

r
w2 ∂w

3

∂xλ
+ ε−2 ∂w

λ

∂ξ

(∂w3

∂ξ
+

2

r
w2

)]
Θλ|∇Θ|2
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+
[1
2
εr4

∂wλ

∂xν
∂w3

∂xµ
+

1

4
ε−1r2

∂wλ

∂ξ

∂wν

∂xµ

]
ΘλΘµΘν .

Hence, using (∂w
σ

∂xλ + ∂wλ

∂xσ )ΘλΘσ = 2∂wσ

∂xλ ΘλΘσ, we have

∥ψλ(w)Θλ + ψλσ(w)ΘλΘσ∥2

≥ 1

4
r2
[
2r2

∂w3

∂xα
∂w3

∂xα
+

1

2

(∂w3

∂ξ

)2]
|∇Θ|2

+
1

2
r2
[∂wλ

∂xσ

(∂w3

∂ξ
+

4

r
w2

)
− 1

2
w2w2δλσ

]
ΘλΘσ

+
1

4
εr4

[
2
∂wλ

∂xα
∂w3

∂xα
+

2

r
w2 ∂w

3

∂xλ
+ (rε)−2 ∂w

λ

∂ξ

(∂w3

∂ξ
+

2

r
w2

)]
Θλ|∇Θ|2

+
[1
2
εr4

∂wλ

∂xν
∂w3

∂xµ
+

1

4
ε−1r2

∂wλ

∂ξ

∂wν

∂xµ

]
ΘλΘµΘν .

Furthermore,

2(e∗(w), ψλ(w)Θλ + ψλσ(w)ΘλΘσ)

= 2(e∗(w), ψλ(w)Θλ) + 2(e∗(w), ψλσ(w)ΘλΘσ)

=
1

2
r2wνΘαν

[
2r2

(
ε
∂w3

∂xα
+
∂wλ

∂xα
Θλ +

2

r
w2Θα

)
|∇Θ|2 + 2r2

(∂wλ

∂xβ
Θλ + ε

∂w3

∂xβ

)
ΘβΘα

+
∂wλ

∂xα
Θλ +

(∂w3

∂ξ
+

2

r
w2

)
Θα + ε−1 ∂w

λ

∂ξ
ΘλΘα

]
.

To sum up,

∥ψ(w,Θ)∥2 ≥ 1

4
r2(w11Θ2

11 + w22Θ2
22 + (w11 + w22)Θ2

12)

+
1

4
r2
[
2r2

∂w3

∂xα
∂w3

∂xα
+

1

2

(∂w3

∂ξ
+
w2

r

)2]
|∇Θ|2 + T (w,Θ),

T (w,Θ) =
1

2
r2w12(Θ11 +Θ22)Θ12 +

1

2
r2
[∂wλ

∂xσ

(∂w3

∂ξ
+

4

r
w2

)
− 1

2
w2w2δλσ

]
ΘλΘσ

+
1

4
εr4

[
2
∂wλ

∂xα
∂w3

∂xα
+

2

r
w2 ∂w

3

∂xλ
+ (rε)−2 ∂w

λ

∂ξ

(∂w3

∂ξ
+

2

r
w2

)]
Θλ|∇Θ|2

+
[1
2
εr4

∂wλ

∂xν
∂w3

∂xµ
+

1

4
ε−1r2

∂wλ

∂ξ

∂wν

∂xµ

]
ΘλΘµΘν

+
1

2
r2wνΘαν

[
2r2

(
ε
∂w3

∂xα
+
∂wλ

∂xα
Θλ +

2

r
w2Θα

)
|∇Θ|2

+ 2r2
(∂wλ

∂xβ
Θλ + ε

∂w3

∂xβ

)
ΘβΘα

+
∂wλ

∂xα
Θλ +

(∂w3

∂ξ
+

2

r
w2

)
Θα + ε−1 ∂w

λ

∂ξ
ΘλΘα

]
. (7.10)

Since w is bounded in H1(Ω), by Theorem 5.3 and Θ ∈ F , we claim that

∥T∥0,Ω + ∥φ(w)∥20,Ω ≤ C, (7.11)

where C is a constant. Therefore, from (9.7), (9.10) and (9.11),

J(Θ) =

∫
Ω

Φ(w,w)rεdξdx ≥
∫
Ω

{1

4
µr2

[
(w11Θ2

11 + w22Θ2
22 + (w11 + w22)Θ2

12)
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+
(
2r2

∂w3

∂xα
∂w3

∂xα
+

1

2

(∂w3

∂ξ
+
w2

r

)2)
|∇Θ|2

]
+ µT (w,Θ)− µ∥φ(w)∥2

}
εrdξdx

≥
∫
D

1

4
µr2

[
ε
(
(W 11Θ2

11 +W 22Θ2
22 + (W 11 +W 22)Θ2

12)

+

∫ 1

−1

(
2r2

∂w3

∂xα
∂w3

∂xα
+

1

2

(∂w3

∂ξ
+
w2

r

)2)
dξ|∇Θ|2

)]
rdx− C

≥ µ

8
εr20µ inf

D

{
W 11,W 22,

∫ 1

−1

(∂w3

∂xα
∂w3

∂xα
+

(∂w3

∂ξ
+
w2

r

)2)
dξ

}
∥Θ∥22,D − C

≥ C1∥Θ∥22,D + C2, ∀Θ ∈ F , (7.12)

where

Wλσ =

∫ 1

−1

wλwσdξ,

C1 =
µ

8
εr20 inf

D

{
W 11,W 22,

∫ 1

−1

(∂w3

∂xα
∂w3

∂xα
+
(∂w3

∂ξ
+
w2

r

)2)
dξ

}
.

(7.13)

Thanks to the first equation (5.1), we have

∂wα

∂xα
= −

(∂w3

∂ξ
+

1

r
w2

)
,

and therefore,

C1 =
ν

8
εr20 inf

D

{
W 11,W 22,

∫ 1

−1

[∂w3

∂xα
∂w3

∂xα
+

(∂wα

∂xα

)(∂wβ

∂xβ

)]
dξ

}
> 0. (7.14)

(7.6) is valid. The proof is completed.

8 Second Model

Let us consider second minimization function, the power done by the impeller, or the left

force of the aircraft, for example, the airfoil:

I(ℑ) =
∫
ℑ−∪ℑ+

σ(w, p) · n · eθrωdS, (8.1)

where n is the unite normal vector to the surface ℑ, ω the angular velocity of the impeller,

dS =
√
a is the element on the surface ℑ,

σ(w, p) = (−p+ λdivw)gij + 2µeij(w)

the stress tensor (λ = 0 corresponds the impressible fluid), and (er, eθ, k) are the bases vectors

of rotating cylindrical coordinate system. Our purpose is that find a surface ℑ of the blade

such that

I(ℑ) = inf
S∈F

I(S), (8.2)

where F denotes a set of the smooth surface spanning on a given Jordan’s curve C ∈ E3.

Under the new coordinate system, (8.1) can be rewritten as

I(ℑ) =
∫
D

{((−p+ λdivw)gij + 2µeij(w))ni(eθ)
jrω

√
a|ξ=+1
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− (−p+ λdivw)gij + 2µeij(w))ni(eθ)
jrω

√
a|ξ=−1}dx, (8.3)

where n and eθ can be foundn = niei, nα = −rΘα√
a
, n3 = (rε)−1 1 + r2Θ2

2√
a

,

eθ = eiθei, eαθ = 0, e3θ = (rε)−1.

(8.4)

In view of (2.5), (3.20), (3.21) and (3.22), we have

gijn
i(eθ)

j = (rε)−1(gα3n
α + g33n

3) =
1− r2Θ2

1√
a

,

e3α(w) =
1

2

(
aαβ

∂wβ

∂ξ
+ εr2Θα

∂w3

∂ξ

)
+

1

2

(
Θβ

∂wβ

∂xα
+ ε

∂w3

∂xα

)
+
(1
2
εr2Θασ + rεδ2σΘα

)
wσ,

e33(w) = r2ε2
∂w3

∂ξ
+ rε2w2 + εr2Θα

∂wα

∂ξ
,

eij(w))ni(eθ)
j =

1

r2ε2
√
a
[r2Θαe3α(w) + (1 + r2Θ2

2)e33(w)]

=
1

rε
√
a

[1
2
rε
(
1 +

1

2
r2(Θ2

2 −Θ2
1)
)∂w3

∂ξ
+

1

2
rΘα(1 + r2(Θ2

2 −Θ2
1))

∂wα

∂ξ

− 1

2
rΘα

(∂wβ

∂xα
+ ε

∂w3

∂xα

)
+ ε

(
(1− r2Θ2

1)δ2σ − 1

2
r3ΘαΘασ

)
wσ

]
.

(8.5)

Therefore, the integrand in (8.3) can be expressed by

AD(w, p,Θ) : = ((−p+ λdivw)gij + 2µeij(w))ni(eθ)
jrω

√
a

=
[1− r2Θ2

1√
a

(−p+ divw) + 2µ
( 1

rε
√
a

[1
2
rε
(
1 +

1

2
r2(Θ2

2 −Θ2
1)
)∂w3

∂ξ

+
1

2
rΘα(1 + r2(Θ2

2 −Θ2
1))

∂wα

∂ξ
− 1

2
rΘα

(∂wβ

∂xα
+ ε

∂w3

∂xα

)
+ ε

(
(1− r2Θ2

1)δ2σ − 1

2
r3ΘαΘασ

)
wσ

])]
rω

√
a. (8.6)

Taking the boundary conditions into account yields that
w|ξ=±1 = 0,

(∂wβ

∂xα
+ ε

∂w3

∂xα

)∣∣∣
ξ=±1

= 0,

divw =
∂w3

∂ξ
.

(8.7)

In particular, if the fluid is incompressible then
divw =

∂wα

∂xα
+
∂w3

∂ξ
+
w2

r
= 0,

∂wα

∂xα

∣∣∣
ξ=±1

= 0,
(∂w3

∂ξ

)∣∣∣
ξ=±1

= 0.
(8.8)
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Substituting (8.7) into (8.6) leads to

AD(w, p,Θ)=
[
(1− r2Θ2

1)
(
− p+ λ

∂w3

∂ξ

)
+ µ

((
1 +

1

2
r2(Θ2

2 −Θ2
1)
)∂w3

∂ξ

+ε−1Θα(1 + r2(Θ2
2 −Θ2

1))
∂wα

∂ξ

)]
rω for the compressible flow,

AD(w, p,Θ)=
[
− (1− r2Θ2

1)p+ µε−1Θα(1 + r2(Θ2
2 −Θ2

1))
∂wα

∂ξ

]
rω

for the incompressible flow.

(8.9)

Hence, we conclude that

I(ℑ) =
∫
D

[AD(w, p,Θ)|ξ=1 −AD(w, p,Θ)|ξ=−1]rωdx. (8.10)

Theorem 8.1 Assume that Θ ∈ C2(D,R) is an injective mapping. Then the objec-

t functional I defined by (8.1) has a Gâteaux derivative gradΘI ≡ DI
DΘ in every direction

η ∈ W := H2(D) ∩H1
0 (D) that is determined by

⟨gradΘ(I(Θ)), η⟩ =
∫∫

D

[(Eα(w, p,Θ)ηα + E0(w, p,Θ))|ξ=1

− (Eα(w, p,Θ)ηα + E0(w, p,Θ))|ξ=−1η]ωrdx, (8.11)

where

Eα(w; p) = 2r2pΘ1δ1α + r2(µΘ2δ2α − (2λ+ µ)Θ1δ1α)
∂w3

∂ξ

+ µε−1(2r2Θβ(Θ2δ2α −Θ1δ1α) + (1 + r2(Θ2
2 −Θ2

1))δαβ)
∂wβ

∂ξ
,

E0(w, p,Θ) =
(
λ(1− r2Θ2

1) + µ
(
1 +

1

2
r2(Θ2

2 −Θ2
1)
))∂ŵ3

∂ξ

+ ε−1Θα(1 + r2(Θ2
2 −Θ2

1))
∂ŵα

∂ξ
+ (r2Θ2

1 − 1)p̂,

(8.12)

and where ŵ =
Dw
DΘ

is the Gâteaux derivative of the velocity (w) of the fluid at the point Θ,

and p̂ = Dp
DΘ is the Gâteaux derivative of the pressure at the point Θ.

Proof Indeed, taking into account of (8.10), and
√
g = εr, we assert that

⟨gradΘ(I(Θ)), η⟩ =
∫∫

D

[DAD(w, p,Θ)

DΘ

∣∣∣
ξ=1

η − DAD(w, p,Θ)

DΘ

∣∣∣
ξ=1

η
]
ωrdx,

DAD(w, p,Θ)

DΘ
η =

∂AD(w, p,Θ)

∂Θ
η +

∂AD(w, p,Θ)

∂w
ŵη +

∂AD(w, p,Θ)

∂p
p̂η.

(8.13)

By virtue of (8.9), it yields

∂AD(w, p,Θ)

∂Θ
η = Eα(w, p,Θ)ηα,

∂AD(w, p,Θ)

∂w
ŵη =

[
λ(1− r2Θ2

1)
∂ŵ3

∂ξ
+ µ

(
1 +

1

2
r2(Θ2

2 −Θ2
1)
)∂ŵ3

∂ξ
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+ µε−1Θβ(1 + r2(Θ2
2 −Θ2

1))
∂ŵβ

∂ξ

]
η,

∂AD(w, p,Θ)

∂p
p̂η = (1− r2Θ2

1)p̂η,

where

Eα(w, p,Θ) :=
[
2r2

(
p− λ

∂w3

∂ξ

)
Θ1δα + µr2(Θ2δ2α −Θ1δ1α)

∂w3

∂ξ

+ µε−1(2r2Θβ(Θ2δ2α −Θ1δ1α) + (1 + r2(Θ2
2 −Θ2

1))δαβ)
∂wβ

∂ξ

]
. (8.14)

Substituting above equalities into (8.13) leads to (8.11) and (8.12). The proof is completed.

Taking integration by part of (6.13) and considering homogenous boundary conditions for

η ∈ W (D), this implies that

⟨gradΘ(I(Θ)), η⟩ =
∫
D

{[−∂αEα(w, p,Θ) + rE0(ŵ, p̂,Θ)]|ξ=1

− [−∂αEα(w, p,Θ) + rE0(ŵ, p̂,Θ)]|ξ=−1}ωηdx. (8.15)

Owing to (8.14) we assert that

∂αE
α(w, p,Θ) = Aαβ(w, p,Θ)Θαβ +Π(w, p,Θ),

A22(w, p,Θ) = 2µε−1r3
(
2Θ2

∂w2

∂ξ
+Θ1

∂w1

∂ξ

)
,

A12(w, p,Θ) = 2µε−1r3
(
Θ2

∂w1

∂ξ
−Θ1

∂w2

∂ξ

)
,

A11(w, p,Θ) = r3
(
2p− (2λ+ µ)

∂w3

∂ξ
− 2µε−1Θβ

∂wβ

∂ξ
− 4µε−1Θ1

∂w1

∂ξ

)
,

Π(w, p,Θ) = r2
(
2rΘ1

∂p

∂x2
+ 3Θ2

∂w3

∂ξ

)
+ 6µε−1r2Θ2Θβ

∂wβ

∂ξ

+ µε−1(1 + 3r2(Θ2
2 −Θ2

1))
∂w2

∂ξ
.

(8.16)

Let us introduce the notation

[A]− = A|ξ=1 −A|ξ=−1.

Then (8.15) becomes

⟨gradΘ(I(Θ)), η⟩ =
∫
D

([Aαβ ]−Θαβ + [Π]− + r[E0(ŵ, p̂,Θ)]−)ωηdx. (8.17)

We get

(1) [A22(w, p,Θ)]− = 2µε−1r3
(
2Θ2

[∂w2

∂ξ

]−
+Θ1

[∂w1

∂ξ

]−)
,

(2) [A12(w, p,Θ)]− = 2µε−1r3
(
Θ2

[∂w1

∂ξ

]−
−Θ1

[∂w2

∂ξ

]−)
,

(3) [A11(w, p,Θ)]− = r3
(
2p− (2λ+ µ)

[∂w3

∂ξ

]−
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− 2µε−1Θβ

[∂wβ

∂ξ

]−
− 4µε−1Θ1

[∂w1

∂ξ

]−)
, (8.18)

(4) [Π(w, p,Θ)]− = r2
(
2rΘ1

[∂p
∂r

]−
+ 3Θ2

[∂w3

∂ξ

]−)
+ 6µε−1r2Θ2Θβ

[∂wβ

∂ξ

]−
+ µε−1(1 + 3r2(Θ2

2 −Θ2
1))

[∂w2

∂ξ

]−
,

(5) [E0(w, p,Θ)]− =
(
λ(1− r2Θ2

1) + µ
(
1 +

1

2
r2(Θ2

2 −Θ2
1)
))[∂ŵ3

∂ξ

]−
+ ε−1Θα((1 + r2(Θ2

2 −Θ2
1))

[∂ŵα

∂ξ

]−
+ (r2Θ2

1 − 1)[p̂]−.

If the flow is incompressible, then

∂w3

∂ξ

∣∣∣
ξ=±1

= 0,
[∂w3

∂ξ

]−
= 0.

From the above discussion we obtain directly the following theorem.

Theorem 8.2 The Euler-Lagrange equation for the extremum Θ of I is given by{
[Aαβ(w, p,Θ)]−Θαβ + [Π(w, p,Θ)]− + r[E0(ŵ, p̂,Θ)]− = 0,

Θ|γ = Θ0,
(8.19)

and the variational formulation associated with (6.16) reads
Find Θ ∈ V (D) =

{
q
∣∣∣ q ∈ H2(D), q|γ = Θ0,

∂q

∂n

∣∣∣
γ
= Θ∗

}
such that∫

D

{∫∫
D

[[Eα(w, p,Θ)]−ηα + [E0(w, p,Θ)]−η]
}
ωrdx = 0, ∀ η ∈ H2

0 (D),
(8.20)

where

[Eα(w, p,Θ)]− :=
[
2r2

(
[p]− − λ

[∂w3

∂ξ

]−)
Θ1δα + µr2(Θ2δ2α −Θ1δ1α)

[∂w3

∂ξ

]−
+ µε−1(2r2Θβ(Θ2δ2α −Θ1δ1α) + (1 + r2(Θ2

2 −Θ2
1))δαβ)

[∂wβ

∂ξ

]−]
. (8.21)
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