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Abstract In this paper, the geometrical design for the blade’s surface & in an impeller
or for the profile of an aircraft, is modeled from the mathematical point of view by a
boundary shape control problem for the Navier-Stokes equations. The objective function
is the sum of a global dissipative function and the power of the fluid. The control variables
are the geometry of the boundary and the state equations are the Navier-Stokes equations.
The Euler-Lagrange equations of the optimal control problem are derived, which are an
elliptic boundary value system of fourth order, coupled with the Navier-Stokes equations.
The authors also prove the existence of the solution of the optimal control problem, the
existence of the solution of the Navier-Stokes equations with mixed boundary conditions,
the weak continuity of the solution of the Navier-Stokes equations with respect to the
geometry shape of the blade’s surface and the existence of solutions of the equations for
the Gateaux derivative of the solution of the Navier-Stokes equations with respect to the
geometry of the boundary.
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1 Introduction

Blade’s shape design for impellers is driven by the need of improving performances and
reliability. We are interested in the geometric design entirely from the mathematical point of
view. As it is well-known that the blade’s surface is a part of the boundary of the flow’s channel
in the impeller, the mathematical theory and methods of the boundary shape control problem
for the Navier-Stokes equations can be used to design the blades and profile of, for example,
airfoil etc. This idea is motivated by the classical minimal surface problem which accounts to
find a surface § spanning on a closed Jordan curve C' and such that J(J) = SirenjT J(S), where

J(S) = [[4dS is the area of S.
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In this paper, we attempt to set the principle for a fully mathematical design of the surface
for the blade in an impeller. This principle models a general minimal surface by minimizing
a functional proposed in this paper. A key point in this modeling process is the theoretical
rationality and the realizability of our design procedure. Using tensor analysis we realize this
procedure and obtain the Euler-Lagrange equations for the blade’s surface which is an elliptic
boundary value system coupled with the Navier-Stokes equations and with the linearized Navier-
Stokes equations. We prove the existence of solutions of the control problem, the existence
of solutions for the N-S equations with mixed boundary condition, and prove uniform weak
continuity of the solution with respect to the surface <& of the blade.

This paper is organized as follows. In Section 2, we give some preliminary results. In Section
3, we derive the rotating Navier-Stokes equations in the channel inside the impeller with mixed
boundary conditions under a new coordinate system, prove the uniform positiveness of the
bilinear form and uniform continuity of the trilinear form. In Section 4, we prove the existence
of solution of the Navier-stokes equations with mixed boundary conditions. In Section 5, we
derive the equations for the Gateaux derivative of the solution of the Navier-Stokes equation
and prove the existence of its solution. In Section 6, we present the objective functional and
derive the Euler-Lagrange equations. In Section 7, we prove the existence of the solution of the
optimal control problem.

2 Preliminary Results — The Geometry of the Blade’s Surface

Let (z',2?) € D C E? (2D-Euclidian Space), and let (r,6, z) denote a polar cylindrical
coordinate system rotating with the impeller’s angular velocity w.

Y

Figure 1 Impeller and blade

H
(?T, ?g, k) is the corresponding base vectors, here z-axis being the rotating axis of the

impeller, N the number of blade and € = . The angle between two successive blades is %’T
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The flow passage of the impeller is bounded by 99, = I'iy U Ty UT: U T, U S US_. The
middle surface & of the blade is defined as the immersion ﬁ of the closure of a domain D C R?,
where ﬁ : D — R3 is a smooth injective mapping which can be expressed by that for any point
ﬁ(w) € S by

ﬁ(x) =22, + 220(zt,2%)Fo + xlz, Ve = (2',2%) € D, (2.1)

where © € C3(D, R) is a smooth function; z = (2!, #?) is called a Gaussian coordinate system on
3. It is easy to prove that there exists a family 3¢ of surfaces with a single parameter & to cover
the domain €. defined by the mapping D — ¢ = {ﬁ(ml,xQ;f) cV(2h2?) e D}, -1 <E< 1

ﬁ(xl,IQ; §) = 2%, + 22(e€ + O(zt,2%)) ¢y + s (2.2)

It is clear that the metric tensor ang of 3¢ is homogenous and nonsingular independent of &,
and is given as follows:

oR O

Sap +17040p5, a=det(ans) =1+ 12(02 +03) > 0,

aaﬁ = 81;04 8x6 = (23)
aaﬁag,\ = 5?.
From this, a curvilinear coordinate system (z!, 22, ¢) in R? is established,
(r,0,2) = (x4, 22,&): 2l =2, 2*=r E=c10-0(z'2?)). (2.4)

Under this special coordinate system, the flow passage domain
0. = {R(z!,22,€) = 222, + 22(c€ + O(al,22)) To + 21 &, W(a!,22,€) € Q)
is mapped into a fixed domain in E? (3D Euclidian Space):
Q={(z",2*)eD,-1<£<1}, inR3

which is independent of the surface & of the blade. The Jacobian of the coordinate trans-

0(r.0.2) ) = e. This shows that the transformation {r,0,z} — {z',2?% ¢} is

formation is J(m

nonsingular.

Let (2!, 2%, 2*") = (r,0, z). Corresponding metric tensor of E? in the cylindrical coordinate
(1,0, 2) is denoted by g1/ = 1, goo =72, g3z =1, gijy =0 (Vi’ # j'). According to the rules
of tensor transformation under coordinate transformation, we have the following transformation
formulae L

ox" Ox?
Gij = gi’j’%@~
Substituting (2.3) into the above formula, the covariant and contra-variant components of the
metric tensor of E? in the new curvilinear coordinate system are given by

Jap = Qap, 933 = 9p3 = 67“2@57 933 = 827“2, 9= det(gij) =e*r? (2 5)

g*P =06P, ¢ =g® = —e7105, ¢¥ =T 2(1+17°|VOP) = (re)a,

where the notations |[VO[? = ©% + 03, and 0, = gfi will be frequently used through out this
paper.
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Tensor calculations show then the following result (see [20]).

Proposition 2.1 In the new coordinate system (z®,£), let (?i, i =1,2,3) denote the base
vectors, and a vector T in R3 s expressed as v = Ui?i, where vi,v; = gijvj are respectively
called the contra-variant and covariant components of the vector . In the new coordinate
system (x®, ), the following formulae are valid:

(1) Angular velocity vector &

j = w?l — w&“il@l?g,

2.6
w=w, w?=0, wd=-welOy; (26)
(2) Coriolis Force
— -1 w’y
C=20 x W = —2wrll(w, )¢y + 2we (r@gﬂ(w, 0) + 7) €3,
Cl=2( xW)' =0, C?=2u x ¥)? = —2wrll(w, O), )
) .
0% = 2@ x W)? = 2we! (T@gﬂ(w, ) + “i),
r
(w, ©) := ew® + w'Oy;
(3) Unit normal vector to &
— 2
o SAXC2 T (o) lads,
ICER e va
(2.8)
n —7’\6/;2, n® = (er)" " a;
(4) Second fundamental form (curvature tensors for a 2D manifold)
1 2 —1 1
= —r2(2 — 2.
bas 27“ (2020,05 + ¢ @U(@a@gﬁ-l—@g@ga))\/a, (2.9)
(5) Mean Curvature H and Gaussian Curvature K.
Let
VO] =07+ 03, [[VO|=a"0,04.
Then
1 1
2H = =r?(02]|VO|* + 7 1a*70,0,0,5)—=,
2 Va
(2.10)
K = b_ M_
a a

It is obvious that £ = constant corresponds to a surface ¢ which has the same geometry
as . This is based on the fundamental theorem in differential geometry, as it is well-known
that the geometry of < is completely determined by (aag), (bag) in the following sense. We
recall that O denotes the set of all orthogonal matrices Q of order three; and that O3 = {Q €
03;det(Q) = 1} denotes the set of all proper orthogonal matrices of order three. J, (x) =
¢+ Qox is a proper isometry of E* : E®> - E3 with c € E3, Q € Oi.
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Theorem 2.1 (see [3]) Two immersions R e CY(D; E®) and R e CY(D; E®) share the
same fundamental forms (aap) and (bag) over an open connected subset D of R if and only if

ﬁ =J;o ﬁ, where J is a proper isometry of E°. (2.11)

Furthermore, If two matrice fields (aqag) € C?*(D;S82) and (bag) € C?(D; S?) satisfy the Gauss
and Codazzi equations in D

85Faa,7 - aara,@,‘r + FZ[QFUT,/L - Fgg—l—‘ﬁT,/L = baobﬂT - baﬂbtﬂ'a
33bag — a,ba@ + Fgabﬁu — Fiﬁbgu =0,

where

1
Foz,B,T = i(aaaar + aaaBT - 8Taaﬁ)a

75 =0a""Tapr, where (a®P) = (anp) ™",

then there exists an immersion & € C3(D; E?) such that

O F xR
i = 0RO, by =240 {2 2V
Aap B B B {|81?><82?|}

Because 3¢ results from a rotation of angle & of &. Theorem 2.1 can be applied to Sy,
which means that V& € [—1,1], it has the same geometrical characteristics ang, bag, K, H, - - .

Subsequently, we will frequently employ the third fundamental tensor of &
Cap = a " barbso, (2.12)
and its inverse matrix (€ *3) = (cap) ™, (0*8) = (bap)~* defined by
0Py = 6%, ©Pegy = 6% (2.13)

Furthermore, let us introduce the permutation tensors in Euclidean space E3 and on the 2D
manifold <&,

1
V9 77 (4,4, k) : even permutation of (1,2,3),
g
_ _ 1
Eijk = —V9 Cijk = 7 (1,4, k) : odd permutation of (1,2,3), (2.14)
g

0, 0, otherwise,

where g = det(g;;), and g;; is metric tensor of R,

1
va’
_ _ 1
€ap = 4 —Va, Cap = ~ e (o, B) : odd permutation of (1,2), (2.15)
a

0, 0, otherwise.

(a, B) : even permutation of (1,2),
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3 Rotating Navier-Stokes Equations with Mixed
Boundary Conditions in Turbo-Machinery

At first, we consider the three-dimensional rotating Navier-Stokes equations in a frame

rotating around the axis of a rotating impeller with an angular velocity w:

% + div(pw) = 0,
pa=Vo+ f,
T .
PCy (%ﬁ + wJVjT> —div(kgrad T) + pdivw — ® = h,

p=p(p,T),

(3.1)

where p is the density of the fluid, w the velocity of the fluid, h the heat source, T' the tem-
perature, k the coefficient of heat conductivity, C, the specific heat at constant volume, and
w the viscosity. Furthermore, the strain rate tensor, stress tensor,the dissipation function and

viscous tensor are respectively given by:

1 . .
eij(w) = i(Vzw] + iji), 1,7 =1,2,3,
el (w) — gzkgjmekm(w) — i(vle + Vsz)7

ot (w,p) = Aijkmekm(w) —gp, = A”kmeij(w)ekm(w),
’ 3
where g;; and g% are the covariant and contra-variant components of the metric tensor of the
three-dimensional Euclidean space in the curvilinear coordinates (z!,z?%, &) defined by (2.4),
respectively. Then the covariant derivatives of the velocity vector and the Christoffel symbols

are

Cow
Viw' = - + T " Viw; =

8wj

ox?

Oxd | Oxk ozx!

. ; (0 dg;1  0Ogj
— Ffjwk7 ;k = ng( gkl g]l g‘]k) (33)

Figure 2 Impeller and passage of flow
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The absolute acceleration of the fluid is given by

at = Ow + ijjwi + 25ijkijk — Wi,
aat (3.4)
a= g+(wV)w+23xw+ﬁx (@ x B),

where & = w? is the vector of angular velocity, ? the unit vector along the z axis, and ﬁ
the radial vector of the fluid particle. The flow domain occupied by the fluid in the channel in
the impeller is denoted by Q.. The boundary 0. of the flow domain 2. consists the inflow
boundary T'y,, the outflow boundary 'y, the positive blade’s surface 3y, the negative blade’s
surface $_ and the top wall I'; and the bottom wall I'y:

895 = F = Fin U Fout U %, U %+ U Ft U Fb (35)

(see Figure 2). The boundary conditions are given by

w|% us; =0, wlp, =0, wir, =0,
O (w,pInslrn, = Gl 09 (W, Pyl = g (Natural conditions),  (3.6)
+ k(T —Tp) =0, where x> 0 is constant.

If the fluid is incompressible and the flow is stationary, then

divw = 0,

(WV)w + 2 x @ + Vp — vdiv(e(w)) = @ x (& x B) + f,
wlp, =0, To=SyUS_UT, UTY,

(=pn +2ve(w))|ry, = gin, I't = Tin Ulous,

(=pn + 2V€(w))lrom Gout

Wi=o = wo(x), Q.

For the polytropic ideal gas and the stationary flow, system (3.1) turns to the conservative
form

div(pw) = 0,

div(pw @ w) + 2pw x w4+ RV (pT) = pAw + (A + p)Vdivw — pw X (w x ﬁ), (3.8)
2
div[ (|T| Y e, T+ RT) } = kAT + Adiv(wdivw) + pdivjwViw] + gA\wP,

while for isentropic ideal gases, it turns to

div(pw) =0, (3.9)
div(pw @ w) + 2pw x w 4+ aV(p?) = 2udiv(e) + AVdivw — pw X (w X ﬁ), )

where v > 1 is the specific heat radio and « is a positive constant.
The rate of work done by the impeller and the global dissipative energy are respectively

I(%,w(%))//gug+0~n~egwrd%, J(%,w(%))///ﬂa 3(w)dV, (3.10)

where ey is the base vector along the angular direction in the cylindrical coordinate system.



886 K. T. Li, J. Su and A. X. Huang

Let us employ the new coordinate system defined by (2.2). The flow domain ). is mapped
into Q = Dx[—1,1], where D is a domain in (2!, 22) € R2 limited by four arcs AB, CD,CB, DA
such that

D=y Umn, 7 =ABUCD, v =CBUDA,

and there exist four positive functions o (z),%0(2), ¥1(2),71(z) such that

ri=a? =9(a') =70(z), onAB, a*=7(z"), onCD,
==y (z") = (z), on DA, %= F1(z'), on BC, (3.11)
ro <7o(z) <ry, on ZE, ro < Jo(z) <7y, on@, '
ro <m(z) <ry, on 51\4, ro <71(z) <r;, on BC.
We have
8Q:fouf1, flzfoutufin, foszuf‘tu{le}u{f:—l}’
- ~ _ N (3.12)
Pin = g(rin)a 1—‘out = ﬁ(l—‘out)a Fb = ﬁ(rb)a Pt = ﬁ(l—‘t)
and
OD=7Um, v =(DNTy)U(DNTL), 71 =(DUTeuw)U(DUT), (3.13)
where R is defined by (2.1).
D "o C
71 -
———
r 7o
2
Figure 3 Sectional graph D of meridian plane in channel flow €.
Let the Sobolev spaces be
V(Q):={v|v e H(Q)? vz, =0}, HpQ) ={q|lq € H(Q), qls, =0}, (3.14)
which are equipped with the usual Sobolev norm || - ||1,o. The relation v = 0 on the boundary

is to be understood in the sense of traces. Then variational formulation of the Navier-Stokes
problems (3.7) and (3.9) are respectively given by

Find (w,p), w € V(Q), p € L*(Q), such that
a(w,v) 4+ 2(w x w,v) + blw, w,v) — (p,divv) = (F,v), Yv € V(Q), (3.15)
(q,divw) =0, VYq € L*(Q)

and

Find (w, p), w € V(Q), p € L7(Q), such that
a(w,v) + 2(w X w,v) + b(pw, w,v) + (—p + Adivw, dive) = (F,v), VYov € V(Q), (3.16)
(Vg, pw)) = (pwn, q)lr,, Yaq € H{(Q),
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where

< > = <f’ > < >F ) <§7v> = <ginav>|f.

in

a(w, v) = /Q AT 6 (1) g, (v) /G dad, (3.17)

+ <g0uta U> Ifout 5

b(w,w,v):/gkmwjvjwkvm\/ﬁdxdé.
Q

Next we rewrite (3.7) and (3.9) in the new coordinate system. Because the second kind of
Christoffel symbols in the new coordinate system can be explicitly expressed in terms of ©

I'G, = —102a050,, ISy = —eriznOg,
Fgﬂ = 6_17"_1((52&(52} + (523(52)@)\ + E_l@aﬁ + 8_1T@2@a@ﬁ, (3.18)
Fga = Fg3 = T_léga + r©90,, F§3 = —627“526,, Fg?) =10y,

the covariant derivatives of the velocity field V w? = kw possess the following forms.

Lemma 3.1 Under the curvilinear coordinate system (z',2% &) defined by (2.4), the co-
variant derivatives of the velocity field can be expressed as

ow?
s _ _ 5P 11
Vow 9 795 O,I(w, ©),
3 ow? —1/.2\—1, 2 -1, 8 2\ —1
Vow® = W+€ ()" w 04 + 7w O + (e2%) a2 Il(w, ©),
- ot w2 (319)
Viw® = o 12e62,11(w, ©), Vaw® = G + po) + 220,II(w, ©),
1 « 3
divw = ;a(ar;l; ) 68%7 H(’U}, @) = 5’(1)3 + U}ﬁ@ﬁu
while the strain velocity tensors can be split in the form
eij(w) = gij(w) + i (w, ©), (3.20)
ij(w,0) = i)‘j(w)GA + i)‘j"(w)@A@U + e;‘j(w, 0), )
where the first terms without © are
1/0w*  ow®
paslw) = 5 (7 + g ) (3.21)
1w 4 0wt g g (0w w? '
P3a(w) = 5(675 + &2r Bxa)’ p3z(w) = e7r (75 + 7)
and the second terms containing © are
1 w3 ow?
as(w) = Qgrg(axa‘sﬁ 927° )
1 ow? ow? ow?
A _ 12 L _ 20w
Wa(w) = Jer* (5om + (35 o)), ) = et .
1 70w ow? 2 ’
25(w) = 572 (Gox 090 + Gz dra + ~0%0ardes),
ow* -
A (w) = %728755&0’ §\3 (w) = 0.
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1 1
ezﬁ(w,@) = Erzw"@g(@a@ﬂ), es(w) = iarzw"@m, ess(w) = 0. (3.23)

The proof is omitted here.

Throughout this paper, Latin indices and exponents 4, j, k- - - vary in the set {1, 2, 3}, while
Greek indices and exponents «, 3,7 -- vary in the set {1,2}. Furthermore, the summation
convention with respect to repeated indices or exponents is systematically used in conjunction

with this rule.
From now on, we consider incompressible flows only. Let the viscosity tensor be

Aijkl _ u(gzkg]l + gilgjk). (324)
Then in the new coordinate system the dissipative function is as follows

D (w,v) = A ey (w)e;; (v) = 2ug™ gl eri (w)eij(v)

= 2pleas(w)eas(v) + g% g% ezz(w)ess (v)
+ 9% g% (eaz(w)eap(v) + eap(w)ess(v) +2(9>* 9% + ¢*P g% )esa(w)ess (v)
+29°7 g% (epa(w)esa (v) + esa(w)epr (v)) +29°7 9% (ez3(w)esa (v) + eza(w)ess (v))

= 2pfeap(w)eas(v) + g% g% ess(w)ess (v) + 2(e2OaOp + 57 g% )esa (w)ess(v)
+e720,05(e33(w)eas (V) + eap(w)ess(v))
—2e710p(eap(w)esa(v) + eza(w)eas(v))
—26710,0% (e33(w)esq (V) + e3q(w)ess(v)).

Taking (2.5) into account, simple calculations show that

®(w,v) = 2u[(eap(w) + 20,0 5e33(w) — 26 1Oy e35(w))
(eap(v) +£720,05e33(v) — 267 O ge34(v))
+ (€72 2egy(w) — 267 Oqeza(w)) (67 Pens(v) — 267 1 Opesp(v)
+ 267472 |VOess(w)ess(v) + 2g%3esq (w)esq (v)
— 6e720,05e34(w)eszs(v)]. (3.25)

Lemma 3.2 Assume that the mapping © is smooth and satisfies
@e]i:{¢60%m,mﬂWM}<—m } (3.26)

Then the three dimensional viscosity tensor AU = (g git + gl gi*) is uniformly positive

definite in D, i.e., for any symmetric matrices of order three t;;, it holds

ATt > plt)?,
_ 1, (3.27)
t1? := taptas + (1€) *tzatza + 5(rs) Ytastss.

Proof Indeed by (3.25),

ARt = 2pltaptas + 9% % tastas + 2(9% 6% + 7P 6*% )30 (w)tas(v)
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+20°% 0% tastap + 49°° g tartsa + 49 g% t35t50]
= 2[1[@&5 + 5_2@(1@51533 — 26_1(9&1535)@&5 + 5_26a65t33 — 25_1@5153&)
+ (6727“72'@,3 — 2671@011*,304)(5727’722?33 — 2571@51*,3/3)
+ 25_47”_2\V@|2t33t33 + 2933t3at3a — 66_2(@at3a)2].
For a positive constant pg, using the Young’s inequality

2, 19 2 2 Ly,o

2ab < ppa® + —b*, (a+b)* > (1 —po)a” + (1——)6 ,
Po Po

we assert
ARt > 2#[(1 —po)tagtas + (1 — po)e ™ r Hastss + 2% 3050

1
+(1—— 672@0(@ t33—2€71@at3 672906@ t33 —27'0 t3a
D B B B B
0
1

_ ) = —1 2 -4, -2 2
+ (4(1 po) 6) (6 @atBa) + 2 r |V®\ t33t33 .
Since
1
(1 — 270>(8_2@a®5t33 — 26_1@at33)(8_2@a@gt33 — 28_1@5t3a)

1
= (1 - —)(5_2|V@|2t33 — 26710, t3,)?
Po

and ¢33 = e~ 2r72(1 4 r2|[VO[2), it yields

ATt > 2p [(1 — Po)taptap + (1= po)e™"r " tastas + 267 *tzatsa
1 1
+ (1 - —>(€*2|V@|2t33 — 267100 t30)% + <4(1 - *) - 6) (7' Oatza)’?
Po po

+2672|VO Pt satsa + 25’4|V9|4t33t33} .

Let po =3, 1 —po = 4. Then 1 — p% = —1. In addition,
1
‘(1 _ p—)(e‘2|V@|2t33 - 2e—1@at3a)2) < 267 4VO4(t33)? + 2 x 42| VO *t3atsa,
0
1
‘(4(1 - 7) - 6) (6_1@at3a)2) < 10e72|VO 30tz

Po

To sum up, we find

ATt > 20 {(1 —po)taplas + (1 — po)e ™ *r *tastss + 2621 2t3ats4

1 1

+ (1 - 7) (5_2|V®|2t33 — 26_1@af3a)2 + (4(1 — 7) _ 6) (5_1®at3a)2
Do Do

+ 2672 VO Ptsatsa + 26_4|V®|4t33t33]

1 1
> 2:“’ {itaﬁtaﬁ + 55747"74t33t33 + 25727"721530[1530‘
— 47|V  (t)? — 20272V O Psata
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1 1
—taplag + *5_47”_4(1 — 8r4|V®|4)t33t33 + 2€_2’I“_2(1 — 1OT2‘V@|2)t3at3a .

—9
My 2

By assumptions, we have
4 a1 I _1 4
1-8r%VO|* > - = |VO| < —r " < -1y,
2 2 2
1 1
1—-10r% Ve[ > 5 = Vel < R
and we obtain
y 1
ARt > [toc,@’ta,[i + 55*4r*4t33t33 + 8727"72253()(253&]

The proof is completed.

Let us introduce a scalar product ((u,v))q on the Hilbert space V(Q) = {v € H*(Q)3, Vg, =
0}, the dissipation functional and the associated bilinear form a(-, -)

((w,0)) := [lp(w,v)]? ,
= 1(fas(W)pas(V) + (r8) 2paa(w)psa(v) + 5 (re) oss(w)pas(v)),
lwl® = llpw)|* = ((w, w)),
((w,v))a = /((wvv))%didx, lwlg, = ((w, w))e,
/Q
O(w,v) := A”klekl(w)eij(v), '
a(u,v) = /be(u, v)rededé, J(u) = ia(u,u).

(3.28)

In particular, we will use the notation

(re)eas(w)eas (v) ).

Pap(10)Pas () + (1) 3a(w)psalv) + 5(72) pss(w)pss(v)),

waﬁ (w @)1/}045 (’U 6) (TE) dj?mc (w7 ®)w3a (Ua 6)

l\)\»—t

(e(w), e(v)) := u(eaﬁ(w)eaﬂ(v) + (re) esa(w)esa(v) +
(p(w), ¢(v)) :
(¥ (w,0),1(v,0)) :

I
=

i
=
/N TN

+502) s (0, 0)s (0,0) ),
(p(w), ¥ (v,0)) ZM(SO 5(W)as (v, ©) + (re) pa(w)ihsa(v,0)
+ %(7’6)_4@33(711)1/133(”7 @)),
le(w)[* = (e(w), e(w)), llpw)|* = (p(w), p(w)),
[4(w, ©)1 = (¢ (w, ©), ¢ (w, ©)). (3.29)

Lemma 3.3 Assume that the determinant a of the metric tensor of the surface S defined
by (2.3) such that S € Fy where Fy is a manifold in a Banach space C?(D) defined by (3.26).
Then following estimates of the dissipative function ®(w,v), YVw,v € V(Q) hold

d(w,w) > kollpw)||? = Kol|wl|?,
{I‘P(w’v)l < rgllo(w)]llle@)ll, (3.30)
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where C(Q) is a constant independent of © and

1
o =5 — k1C2(2) > 0, if K1 small enough,

k1 = sup{3(1 +72)|VO|?,3(1 + r})|VO|*},
D

ks = sup{3|VOI2, 3[VO4, 312(1 + 12|VO[2)| V20 2}, (331
ks = 1202 (1 + 11 Co(),
where C1(Q), C2(Q2) are defined by
CrO)[lpw)]? < [[lY(w)l[* < Co(Q)[[0(w)]?,
Il = I @l + 1 @)+t (3.82)

and r is defined by (3.11). Later on, the constant C’(Q) appearing in different places may have

different meanings at different occasions.
Proof By virtue of (3.20), (3.27) and (3.33), we claim
O(w, w) = (e(w), e(w)) = (p(w) + P(w, ©), p(w) + Y (w, ©))
= (p(w), p(w)) + (Y (w, 0), ¥ (w, 0)) + 2(p(w), ¥(w,0)).  (3.33)
By the symmetry of the indices and by the Cauchy and Young inequalities, we infer that

2((p(w), P(w))) = 2p {waﬂ(w)%,@(w ) + (re) g3 (w)ihsa(w, ©)

+ %(rs)%sﬁgs(w)w%(w’ 6)]

< 2#[\/%5 (w)pas( w)\/%ﬁ(w@)l/)aﬁ(w,@
\/@3& 90304 )\/wi%oz (wa 6)1/)304 (w7 6)

+ %(rer (s ()[4, ©)
< 2u[ ()P + 2w, ©)]7]. (3.34)
Hence
D(w,w) > ()| ~ o(w, O)| (3.35)

Due to (3.22) and (3.23),
[ (w, )7 = [[¥} (w)Ox + ¥ (w)©x0, + € (w, O)]?
= ((¥",97))0x0, + (Y 7,9"))020,0,0,, + ((¢*(w, 0), ¢*(w, 0)))
+2((M (), ¥ (w)))020,0, + 2((e” (w, ©), ¥ (w))) O
+2((e* (w, ), ¥ (w)))©x6,.
Set
VO =D [sf%, [VVO[* =) (0ap)° = V?6P,

A b (3.36)
> Vo (Do(0:00)) = [V(VO)(VE))| = 2726 |Vel.
o o,
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Taking (3.20), (3.22) and (3.23) into account and using the Cauchy’s inequality, we claim that
(0w, 0), 47 (w,0))0r04| < D [ VOP,

A
(177 (w, ©), 9" (w,0)))0r0,0,0, < > [ [I*|Vel*,

Ao

2((* (w, ©),9" (w, 9)))020,0,, < 2 /Z 212, > w2 [veP?

<ZH¢ PIVOr + > v I*|vel,

Ao
(" 0,). " (,6)) = e O IO + (70
= ralul? V6,
2((e* (w, ©), (1))@ < 21|e” (w, O)] [ (w) 10|
< e, O + I w) I ver,

2((e" (w, ©), 9™ (0))OrO, < [|e* (w, ©)]|? +Z 127 (w) 2 VO,
Ao

where

[ (W)II? = (Was(w), ¥ag)) + (re 2((¢§a7w§a))+%(T€)_4((¢§3(w),w§3)),
A

lw|? = wlw! + ww? = wrw.

(3.37)

To sum up, we have
lw, )] < 3(|ve)? Il £ Ve ZHW )2+ r2al V2O Pwf?).  (3.38)
Set

k1 :sup{?)|V@|2 3|IVOL, 3r2 (1 +r2|VO|?)|V20|?},
o’ 3.39
)12 = ZIW ||2+Z|W )2 + [wf2. (3:39)

We conclude that

1w (w, ©)* < Kl (w)[[*. (3.40)

On the other hand, (3.21) and (3.22) show that there exists constants C1(€2) and C5(£2) inde-
pendent of w such that

CrQllp()[* < [l ()]II” < Co()llp(w)]*- (3.41)

Therefore,

[ (w, ©)]|* < k1C2(Q) | (w) 1. (3.42)

Let us return to (3.39). We infer that

O(w,0) > %Hw(w)\lz’ —miCa(Q)llp(w)|* > rollp(w)]?, (3.43)
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where

1
Ko =5 = k1C2(Q2) > 0, if my is small enough. (3.44)

Therefore (4.30) holds.
Next, we consider the continuity of the dissipation function ®. Note that the Cauchy’s
inequality shows that

AaﬁBaB < \/Aa,BAaﬁ \/Ba,BBaBa

and then

lap(w,®©) := (eaﬁ(w) “2040e33(w) — 26 Ogeza(w)),
Lo (0,015 (0, 0) < \/las(w, ©)las(w, 0)y/las (v, ©)lap (v, ©),
Lo (1, 0)lap(w, ©) < Bleas(w )em >+e 4|V exs(w)ess (w) + de % VO|Pesa (w)esa (w)]
< ka(e(w), e(w)),

lap(w, ©)lag(v,0) < kav/(e(w), e(w))y/(e(v), e(v)),
ko = 3mgx{17ril|V@\4,8T%|V@|2}.

From (3.25) we claim that
®(w,v) < 2u3kz/(e(w), e(w))/(e(v), e(v)).
From the triangle inequality and e(w) = o(w) + ¥ (w), we get

(e(w), e(w)) < 2[(p(w), p(w)) + (Y(w), P(w))] < 2(1 + k1C2(2)) (e (w), p(w)).

From (3.25), we assert ®(w, v) < 12pks(14+k1C2(2))||e(w)]||¢(v)||. The proof is completed.

Next, we consider the bilinear form. To do this, at first we have

Lemma 3.4 The function || - ||q defined by (3.28) is a norm on the Hilbert space V (),
V(Q) :={ve H' (D) vlg, =0}. (3.45)

Proof Indeed it is enough to prove that |[w|lq = 0, w € V() = w = 0. Indeed, this means
that

[wllo =0, ie., ¢i(w)=0.
We have to prove w = 0. Firstly, the following identity holds:

0 (6 w ) 8’)’(/704,6( )"' aa‘ﬁ'yﬁ(w) - 85@0(7(“’)'

This shows that
Yap(w) =0, inD = 9,9,w” =0, inD'(D).

By a classical result from distribution theory, each function w is therefore a polynomial of
degree at most 1 (recall that the set D is connected). In other words, there exist constants c,
and d,p such that

w*(2) = Co + dapr®, V= (z'2?) € D.
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But ap(w) = 0 also implies that dag = —dgo. Hence there exist two vectors 7, 7 € R? such
that w = @ + d x Z, Vo € D. Since w|x = 0 and the set where such a vector field w®
vanishes is always of zero area unless 7= 7 =0, it follows that w® = 0 when the area fo > 0.
On the other hand, in view of the boundary condition (3.13)

ow?  w? ow?
9033('(1)):527”2(875“!‘7): =>87£=0:>w3:
The proof is completed.
Lemma 3.5 The norm || - || and the semi-norm
9 L s 0w Owi 2
wio= | > (> (&CQ) +( ag) )|redéds, Vw e V(@)
i=1 a=l1

are equivalent on V(Q), i.e., there exist constants C;(Q) > 0 (i = 3,4) only depending upon
such that

C3()|wh.e < [lwllo < Ca(Q)|w

Lo, Yw € V(Q). (3.46)

Proof Firstly, we indicate that in view of (3.11), (3.12), there exist constants C;(Q) >
0 (i = 3,4) depending upon 2 only such that

n|=

3 1 3
Cs@( D lew@)lEa)” < lwla < Ca@)( Y leu@)lde)’. vw e V@), (347)

i,j=1 4,J=1

and ;;(w) can be viewed as the strain tensor in Cartesian coordinates in 2. Then according
3 1
to the Korn’s inequality (see [14, 15]), ( > H<p1;j(w)||g79) * is a norm equivalent to lw]1,0,
i,j=1

therefore this yields (3.46). The proof is completed.

Lemma 3.6 The bilinear forma(-, ) = fQ (-, -)y/gdédz defined by (3.25) is a symmet-
ric, continuous and uniformly coercive mapping from V(Q) x V() into R:

(i) Symmetry: a(w,v) = a(v,w), Yw,v € V(Q);

(ii) Continuity: |a(w,v)| < k1 () |w|lallvlle, Yw,v € V(Q);

(iil) If the function © € S, then a(w,v) is coercive uniformly with respect to © :

a(w,w) > kollwl|g, (3.48)

where Ko, k1 are defined by (3.31).
Proof The conclusions follow immediately from Lemma 3.3.

Next, we consider the trilinear form and Coriolis force form
1 .
b(w,u,v) = / / GemwI V juFv™, /g déde, (3.49)
DJ-1

Clw,v): = /D/_l1 291,(F x w)iv! /g deda
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1
:/ / 2rw[(w?0 5 — G211 (w, ©))v” + cw?v3|redéda.
DJ-1

By virtue of (2.5) and (3.19), we have
B(w,u,v) : = gemw! VjuFo™
Aout | s0u®

:<w EINT:

ou? ou’

Aou” 3ou”

+ (0t g a¢
— 102 II(w, ©)II(u, ©) (aaﬁvﬁ + 12e0,0%)

+ [P Oy + (re) T (WP (w, ©) + w?TI(u, ©))

+ e 10,11 (w, ©)(u, ©))(er?0 50”7 + r2e%0?),

)(aagvﬁ + 1r260,0°)

)(5r2@5vﬁ + 7“2521)3)

ou® ou® .
B(w,u,v) : = (w’\a—z)\ + ws%ﬁ) (aagvﬁ + rzs@avs)
ous 2 0u3 o
+ (w)‘ az,\ + wda—ug) (57’2@51;6 + 1"252113) + mjkwlujvk,
where

Taf N = Tz@A@ag + T@)\((sga@g + 525@a) — T(SQA@a@ﬁ,

Ta3 A = 7“8((520[@)\ — 62)\@a)7 T3/, N = 7‘6((52/3@)\ + T@)\@ﬁ - ag)\(ag),
T3z 0 = —TE202y,

TaB,3 = TE(G(X(SQB + 9552a)7 Ta3,3 = 0;

m38,3 = 7“62((525 + ’I“@,g — 7‘2@2@6), m33,3 = red.

Lemma 3.7 The trilinear form b(-, -, -) is uniformly continuous

b(w, u,v)| < C(Q)(1 + rs)[[wlelulellv]e,
if the mapping © is smooth enough and satisfies

sup(|Ve|,[VOP,|V?6)) < k3.
Q

The from C(-, ) is uniformly continuous

|C(w,v)| < C(Qw(1 + ks)|lwlo2,0lv

0,2,

and

C(w,w) =0.

895

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

Proof Indeed, from (3.51) and (3.52), by virtue of a standard process as in [13, 16], we
assert that (3.52) is valid. Similarly, from (3.50) it yields directly (3.55). In addition, the

Coriolis form is

= ' g w)tw? r = 1 w) - wlez?déda = .
C(w,w)._/D/_12g”(:?x )iw? /g déd /D/_lp(ﬁx ) - wlez?dédz =0,  (3.57)

i.e.,
C(w,w) = 0.
The proof is completed.
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4 The Existence of the Solution of Rotating Navier-Stokes Equations
with Mixed Boundary Conditions

Next, we consider the existence of the solutions for the Navier-Stokes equations. Indeed
the flow’s domain is an unbounded domain. In Section 3, we introduce an artificial boundary,
with the inflow boundary I'j,, and the outflow boundary I',,t, and impose the natural boundary

conditions (3.6). We can also impose the pressures p|r,, = Pin, P|ro = Pout, O fluxes

/ pw-ndl’ = Q, / pw-ndl' = Q.
Tin r

out

Let us consider the energy inequality. Since
(2w x w,w) =0, (4.1)
the moment equations (3.11) show that a(w,w) + b(w, w,w) = (f,w). However,
b(w, w,w) = /ijvjwigikwk\/ﬁdxdf

= / (Vj(wiw') — widivw)ggw®/gdedé
Q

z/(div(|w|2w) — gixw'w! Vjwk)/gdade (4.2)
Q
= |w]?w - ndl — b(w, w, w),
I
1 2
b(w,w,w) = = |w|“w - ndT.

2 Jr,

Here we denote
[w|* = gipw'w®, Tp=TinUToy. (4.3)

The inflow and outflow fluxes of kinetic energy are respectively given by

Kin(w) = / |w?w - ndl,  Kou(w) = / |w|*w - ndT,
r r

in out

where w - n = g;;w'n? and n is the outward normal unit vector of the inflow or the outflow
boundaries. Therefore (4.1) shows that

b(w,w,w) = Koyt (w) + Kin(w). (4.4)
Let us come back to (3.7), (3.15) and (3.17),

a(wvw) + b(wvw’w) - <9in7w> - <goutaw> = <faw>7

b(w,w,w) - <gin7w> - <gout7w> = / [pwn — QVG('U))n . U)}dS,
TinUlout
o ow d|wl|?
Cm e — . ank T RN T gyt — -
2ve(w) -n-w=v(gVw" + g;pxViw®)n'w V(asn—i— o )

is the flux of dissipative energy,



Boundary Shape Control of the Navier-Stokes Equations and Applications 897

where P = %|w|2 +p is a total pressure, for a non-viscous flow it is conservative by the Bernoulli
theorem, and s is the direction along the steam line. According to the conservation law of energy,
we assert that b(w, w, w)—(gin, w) — (gout, w) = 0. Therefore a(w,w) = (f,w), |w|,q < +|f|-1,0.
By a standard method, it is easy to prove that there exists at least one solution for the Navier-
Stokes equations. If the energy from outside is thus that

b(wa w7w) - <gin>w> - <gout7w> 7é 07
for example, for a hydroelectric and compressor, then we have the following theorem.

Theorem 4.1 Suppose that the exterior force f and normal stress g at the inflow and the
outflow boundaries I'y = Ty, U Loyt satisfy

12

F * = in||—1 O 1 2V
1] 1fllo,2 + lginll—1 C2(Q)(1 + K2)

w T lgouell -1 p,, < (4.5)

and the mapping © defined in (2.1) is a C*(D)-function satisfying (3.59) and (3.53). Then
there exists a smooth solution of the variational problem (3.15)

Find (w,p), w € V(), p€ L*), such that
a(w,v) + 2(w X w,v) + blw,w,v) — (p,dive) = (F,v), Vv € V(Q),
(q,divw) =0, Vq € L*Q),

satisfying
4C2(Q)(1 DIE] «

where |w||q is defined in (3.37), C(Q) is a constant depending on 2 which has different meaning
at different place.

Proof To prove the theorem for a steady Navier-Stokes problem, it is convenient to con-
struct the solution as the limit of Galerkin approximations in terms of the eigenfunctions of
the corresponding stationary Stokes problem. Galerkin equations are a system of algebraic
equations and the Galerkin approximation solution w is a solution of the finite dimensional
problem

a(w,v) + 2(w X w,v) + blw,w,v) = (F,v), Vv €& V,, :=span{o1,¢2-- ,dm}, (4.7)

where ¢; (i = 1,2,---m) are the eigenfunctions of the corresponding Stokes operator. Let S,
denote the spheres in V;, satisfying inequality (4.6). Assume that w, € S,. We find w such
that

a(w,v) + 2(w X w,v) + b(ws, w,v) = (F,v), YveE V,, (4.8)

(4.8) is uniquely solvable. To do this it is enough to prove that for any w. € S,, w = 0 is the
only one solution of (4.8) with (F' = 0). Owing to Lemma 3.6,

a(w, w) > kollwl|g
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and by virtue of (3.59) and (4.2), we assert that

rollwll§y, < [b(ws, w, w)| < Co(Q)(1+ &) [[wlllwlE
c(2,0)u

(14 33)C()

This implies that w = 0. In order to apply Brouwer’s fixed point theorem, we have to show

that the mapping w, = w takes the ball S, defined by (4.7) into itself. Since w, satisfies (4.7)
and

< CQ) 1+ ra) [w]f?,- (4.9)

Fw = g;j F'w? = (60 + 120,05 F w’ + 0, (F*w? + F3w®) + 2r? F3uw?,
we claim that
kol [Vwlg, < [b(ws, w, w)| + |(F,w)]
< (1 + K3)[COQ)lwsllllwlg + CONF | lwlle], (4.10)
rollwlla < (14 £3)[C(Q)lwillollwlla + CQ)F.],

For simplicity, let

2 2
oy G+ P F

K
Therefore
= ko — C(Q)(1 + r3)[[w*]lo — B (14 VX) 202(0) 1 + VX
L
= AT [1-VX].

This is (4.6). Thus Brouwer’s fixed point theorem can be applied and it gives the existence
of the Galerkin approximations satisfying (6.8). Hence, by a standard compactness argument
there exists at least a subsequence of the Galerkin approximation converging to a weak solution
w € V(Q) of the steady problem (3.11):

Find (w,p), w € V(Q), p € L*(Q), such that
a(w,v) + 2(w x w,v) + b(w,w,v) + —(p,dive) = (F,v), Vv € V(Q),
(q,divw) =0, Vq € L*(Q).

Its smoothness is easily proven if one obtains a further estimate from the Galerkin approxima-
tions by setting v = —Aw in (6.9). This gives

pl|Awl|2 = —2(w x w, Aw) — b(w, w, Aw) + (F, Aw). (4.11)
Because Aw is solenoidal, one has the rather unusual trace estimate
20w x w, Aw)| < C@)wllol| Awllo,  |(F, Aw)| < es|F .| Awl]o, (4.12)
which we combine with (4.12) and the Agmon’s inequality
1 1
[wl[oe < CO)IVwll§[[Awllg, Vw e D(A) (4.13)
to get

pllAwl§ < C@)[Vulig | Awllg + C@)[wlollAwlo + cs]| Fll[lAwlo. (4.14)
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Then, by using the Young’s inequality, we obtain

202(Q) 8C2(Q) 8C2(Q)

pllAwllo < 2 IVl + THU/II% + THFHf, (4.15)

which is then inherited by the solution. The full classical smoothness of the solution can now
be obtained by using the L2-regularity theory for the steady Stokes equations. This completes
the proof of Theorem 4.1.

5 Gateaux Derivatives and Their Equations

In order to obtain the Gateaux derivative of the solution of the Navier-Stokes equations
with respect to the boundary shape ©, we first consider the Navier-Stokes equations in the new
coordinate system (x®,¢) defined by (2.4). Indeed, we refer to [20].

Theorem 5.1 Under the new coordinate system, the incompressible rotating stationary
Navier-Stokes equations (3.7) can be explicitly expressed via © :

awa+87w3 ’uﬁ_l@(T'wa)jLaiwg_(ﬁ/ w+87w3—0
Oz~ 0¢ rr Ox® oE V2 o
N¥(w,p,0) := LF(w,p,0) + N¥(w,w) = f*, VEk=1,2,3,
~ 0wk ow’ O?w* (5.1)
k o k_ -2 _ pk3 o W 5 1
LY (w,p,0) := —vAw v(re) “a o€z vP; (©) 3 2ve” 04 0E07
ow’ , .
—vP(0) 5 — va} (©)w! + ¢ (0)Vsp + g"(0)2ep + C* (w,w),
where C(w,w) is the Coriolis forces defined in (2.7),
3,k o 3,k
N*(w,w) = a(u(;gu) + g (whw?) + ijwle = 8(11()%10) + B*(w, w), (5.2)
BF(w,w) := dg(wFw?) + ijwiwj,
1
PY(©) = ;5/32537 Py’ (@) =0,
3
P3%(0) = 2(re) "1 (62400 + 1O0g), Py’ = ~ 32,
PE3(0) = —[(re) " (0ax@2 + 202005) + £ 16,nAO],  PIS = —2 16y, (5:3)
P5’3(®) = 25_2(7“_3520 — @g@ﬁ(,—),
P33(0) = —(re) (O3 + rAO),
q?(@) = _T_262a62<7a qg‘(@) = Oa qg(@) = 07 (5 4)
43(0) = (re) " [r~ 02,02 + 302,] + 710, A6, '
00 %0
o« = T af = 7, 1l = ew? A
© Oz’ B gpogah’ (w,8) = ew” + w0, (5.5)

AO =044 =011 + Oy, |VO|? =074 032
and

ij = Ffj =+ 7‘71521‘5]%- (56)
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By using the above formula, we claim that there exists the Gateaux derivative of the solu-
tion of the Navier-Stokes equations exists and satisfies the following linearized Navier-Stokes

equation.

Theorem 5.2 Assume that a solution (w(0),p(0)) of the Navier-Stokes problem (3.7) such
that we can define a mapping © = (w(0),p(O)) from HE (D) N H?(D) to H-9(Q) x L*9().
Then the Gdteauz derivative of (w,p) at a point © € H&(D) N H2(D) with respect to any

D
direction n € HY(D) N H?(D) exists, wn = %n, on = 6
linearized equations:

—  19(r@®)  9@°

17 and it satisfies the following

d = - —_— =
wvw S + ¢ 0,
82@k 8’\1@ 52@k
~ ) k3 -1
—VvAW® —v(re) a oe2 —vP; (@)TE —2ve @BW (5.7)
—vP?(0)3%; — gk (©)d + ¢ 0sp + 9" Och
+CF (W, w) + N*(w, @) + N*¥(@, w) + R*(w,p, ©) = 0,

o 5.8
Vi»w —pn=0, onlyNTou, ( )

{w:o, on T's N{E =&,
on

where
0 _ O*w® _, 0wt
R*(w,p,0) := _W{ — 2ue 171@58762 + v(re) 1876(5QA552 + 2020,013)

we - ,
D€D2P 2 € 0¢plap 27‘5%131(@0’ O)w }7
0 0*w” 9 ot _du”
3 _ . »
R(w,pv@) —_@{7/5 W+UE 5{(875_2ﬁ 5)
O2w3 5~ Jud aw[ﬁ (59)
_ -1 ow o’
2ve” rOp ¢ 2u(re)~ ((525—|—r ) 5

2
W N_ 1P oy O a8
+r525) € axBJre @58€ 8300‘(6 Lw*w?)

+(T£)_1(a2a5§ + a2>\5§ + aaAég - §a)\5§)w’\w

+2r(©200p5 + ®a525)w3w0‘ + rséggwsw?’}.
The variational formulation associated with (5.7) and (5.8) is given by

Find @ € V(Q), p € L3(Q) such that Vv € V (),

ap(w, v) + (C(W,w), v) + b(W, w,v) + b(w, W,v) — (P, Igv® + Ocv®) + (I(w, ©),v)
= (R(w,p,0),v), (5.10)
10(rw®)  @* ow? B 5

(7o + 7 e e) =0 Vae F@),

where

— +(re)2a € ¢ dzdé,

- [8wi ow? ow® Ow’

ow' v’ oWt . ) _
~ —1 k T M
(l(w, ©),v) = V/Q [* £ @Bgz‘jw@fg +d¢j(@)@1}j + 9ijm @™ v’ |dzdé,

d5(0) : = gmiPF™(0) — 65059;

(5.11)
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with

2,0

0w ouw*
= —2ve~! i 2
(R(w,p,0),v) /Q [(—2ve1r0s S + v(re) ™ S Gandon + 2820610)

P?w®
— -1 7 1 _ B A 2 3
3ve €017 €7 0¢pdap — 2rozIl(w, ©)w )(“)5(aa)\v +er“©,v°)
0?we d [ow? ow? 0?w?
~1 -1 0 (0w’ 0w o1
+ (VE 928977 +ve 3§<8z5 ang @5) 2ve”"rBg aez
o \ow?  ow’ w? dp dp
_ —1 _v \ow'  ow'  w” _—19P 2o OP
2u(re) ((525+7’8x6) o€ to -t 625> e 55 tE @[—}ag
0
= e (e tww?) + (ra)fl(agadf + ag202 + aard5 — 5ax05 ) w®
+ 2r(©2008 + @aégg)wao‘ + rséggwswg)
: %(57‘2@,\1}’\ + 527“2113)} Vg dzdE. (5.11")
Proof The Navier-Stokes equations (5.1) read
et ot
dz>  r  Ox3 7 (5.12)

Na(w7p7@)€>a +N3(w,p,@)€>3 = fa?a + fg?&

The Gateaux derivative with respect to © along any director n € W := H?(D) N H(D) is
denoted by %n. Then from (5.12), we obtain

D N (10, 0) T aty + -2 N (10, ©) g + N (1, p, ©) D
DO w, p, €l DO w,p, €30 w,p, DO n
D DE D
3 3, _ ra o 3 3
+ N (w,p, ©) 55 = [ 5 gmn + [P 557,
D « — D 3 — « _ ra D?Oé
%N (W,p,@)€a+D®N (w,p,@)e;:,—k[ (w7pa®) f ] DO
+ V3 (w,p, ©) ff3]D?3? =0
» D, DO 3 .

Substituting (5.1) into the above equations, we claim that

D D D
%Nk(wap7@) = 7‘Ck(wap7@) + 7Nk(w7pa 6) =0.

DO DO
However
D _ i k ~ 2 k ~ i k
Dk _ 9 ~ 9 ik )
%N (w,w,O)n = 8wN (w,w,@)wn+a@N (w,w, O)n.

Since L are the linear operators and N are the bilinear operators defined by (5.2), we assert

i k -~ g k ~ _ pk( o
aw’c (U),p, @)U”? + ap’c (wapv @)pn - 'C' (vaa @)777
DN, w,0)in = (N (i, w, ©) + N*(u, @, 0))1.
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Therefore
D . . .
Di(_)Nk(waZL 6)77 = Ek(w,p, 9)7] + Nk(wa w)n + Nk(wv w)n + Rk(wapv @)77 = 07

0 0
Rk(w7p7@) = %Ek(wvl’a@)ﬂ + %Nk(vaag)n

A2wk 0 ow? H2wk

_ -2 oTwr O pk3 ow” -1, Cwr

= —2v(re) " “Oana o vog i (©)n o€ 2ue nﬁaf(’)xﬁ
1o}

ow? . 0 0
_, 2 pkB o, Yk j Y kB Y k3
vaghi Oy 5 — V56 (O)mw’ + 559" (O)ndsp + 559" (O)ndep

+2wr[—w 85 4 e 71 (8xoIT(w, ©) + Oow™) 651y + %ij(@)nwiwj.

In order to obtain the expressions for the R*(w,p,®), at the first, by (2.3), (2.7), (3.18) and
(5.6), it is clear that

da

(5.14)

oct oC?

—n=2r?0 =0, —n=—2rww’
8977 9snNs, 00 n Ve n rLwweng,
oc? . 5
201" 2we ™ (rII(w, ©)da25 + rO2w" )ng,
or% ord ore. o
By, _ _ A A 3g 9z 55,
50 " = ~02a(0803 + O505)n,  —ETN = ot = —redaans, 55N =0,
on3
~20 = (re) (4300 + 4250 + 008 — 8asd)s + & i,
o3, on? or3
aé 77 - 86377 = T(®260¢B + 60‘525)776? 8(3377 = T5772-
By using the above formula and (5.1)-(5.4) and (5.6), we assert that
0 .. _1 0w® ~ 1 D?w™ _, 0wt
%IJ (w,p,©)n = v(e) o€ An+ {— e rOg a¢? +v(re) a—g(éa,\égg + 20240x3)
O?w™
o1 -1
2ue DEDLP € 85p6a/3}n5,
0 .3 B 0w ~ oo x _q (0w’ ow’
%E (w,p,©)n = —v(e) a—gAn —ve  w?0,An+ 2ve (8—g 58— a?)ng(,
0%w? ow® ow® 0%w?
1 -2 —1 —1
+ |:— 2ue ’I"@ﬂai52 + 21/(5) 875(‘)50- — (TE) (52,@875 — 2 858;35
_, 0w’ _ _, Op _ op
— 2u(re) IW — e lrw?dop — € 1@ +e 2658—5}775,
%N“(w, w,0)n = 7[7’520((655,); + @Wég‘)wﬁuﬂ + 2redaqw3w Ny,
%N3(w, w,0)n = e W wPnag + [(re) M (a2a0} + a2p0) + aapdy — 6ap03 ) wlw®

+ 2r(020ax + @aégA)w?’wa + r552>\w3w3]m.

Hence, from (5.14) it is yields that

_ 0w® ~ _ 0w
R*(w,p,0)n: =v(e)™? G An+ [f 2ve"1r0p o€z
ow? _, 0%

+ V(T€)7175(50A5g2 + 2520[5)\,3) — 2ue

e ~ < depbon|s
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- [27’5ga@>\w>‘w3 + 2T552aw3wﬁ}n[3,

~ ow’ ow’  Ow?
3 _ 1o _
R (w,p,0)n = —ve  w’d,An + ve~ (2 o€ ©p 5P o€ 550>n50
23 o, 0w _1 d \ ow?
+ [ 2ve rOg oe2 + 2v(e) 72 o€ @50 —2u(re) <(52B+TW)87§

0 _ Op
75 _ 29, L
+ g + 28 e 8x5+€ @5a£}ng
+ 5_1waw5na5 + [(r&:)_l(agaéf + agAég + aM\ég — 5a>\5§)w)‘wo‘
+ 2r(©2008 + @a525)w3w0‘ + rs§25w3w?’]nﬁ.

(5.9) is derived. It is obvious that since the arbitrary of the direction n with homogenous
boundary conditions in V(2), (5.9) can be expressed as follows

o 62 « o A
RY(w,p,0) : = —W{ - 2VE_1T656‘72UQ + V(rs)‘la—ué(éaﬁgz + 2024053)
3t LU s — 2rbaTT(w, O
—3ve 8{81}576 epOag — 2102 I1(w, ©)w },
0 0?w° 0 /ow? 6 8?*w?
3 ___ 9 -1 -1 0 (Ow” _9
R (w,p,©) axﬂ{”g 9xPome T V° ag(axﬁ 97 @5) ve'rOg €2
d \ ow? 8w/3 w? 1 8p -2 Op
—2u(re)” (((523 + ’I“ ) o€ — + 752[3) —€ 8.%6 Os~— o€
0
—%(5_1100‘10/3) + (re)” (agaé)\ + agAég + aw\dg — 5a>\5§)w)‘wo‘
+2r(©2005 + @adg,g)wswa + Ts§25w3w3}.

In order to consider the variational formulation for the Gateaux derivatives (@, p), let compute
(R(w, p,©),v). Indeed,

(R(w.p,0),v) = [ gy 07 o
Q
= /[aagR“vﬂ + er?0, (R*v® + R3v®) + e2r? R*v%)\/gdwd¢
o)
= /[R“(w,p, 0)(aart* +er?0,0°) + R*(w, p, 0)(er?©r0* + *r?v?)]\/gdade,
Q

from which it follows

_ 9*w® L ow 9P
(R(w,p,©),v) = / K — e 'Oy oe? +v(re) 1875(%/\5,82 + 26206x5) — 3ve~! 9E07
Q
- 5*185p5 58— 2r62aH(w, @)w5>85(aa,\v)‘ +er?Q,v?)
9w 923
—1 _
+ (1/6 p ﬁax" (893/3 @5) 2ue™ T‘@g ez
Ow wﬂ w _1 Op o Op
—2v(re)” ((52/3 + Ta:cﬁ) 52ﬁ> —e g5 te Op—= 9
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0

 Oae

+ 2r(O2048 + @aégﬂ)w?’wa + 7“5(52511)311)3) %(Eﬁgﬂ)/\ + 527“2’1}3)} Vg dzdE.

(5_1wo‘wﬂ) + (re)_l(agaéf + a2>\(5§ + aa>\5§ — 5aA626)w>‘wa

This is (5.11"). The proof is completed.

Corollary 5.1 Assume that © is small enough and such that (3.38) holds and that the
solution (w,p) € H*(Q) x HY(Q). Then there exists a constant Cy independent of w and ©,
which makes the following estimate to be valid:

IR(w, ©)ll. < C)(1 + r3) (w3 o + lIpll.0)- (5.15)

Theorem 5.3 Assume that the assumptions in Theorem 5.1 are satisfied. Furthermore,
(w,p) € V(Q) N H3(Q) x H?(Q) is a solution of (3.7) and satisfies

K K
|wlle < d :

1
S 20O rry Mleetlehe < sevmynroiree 019

Then there exists a pair (©,p) € V(Q) x L?(Q) solutions of (5.10), i.e., the G-derivatives of
the solution of the Navier-Stokes equation (3.7), and it satisfies

R \/1 _ 1@+ DIRw O)l. ) (517)

Wllg < ————
I@le < Fe@)i v K

Proof First, the bilinear form

~

a(w,v) := a(w,v) + blw; @, v) + b(wW;w,v) + 2(w X W, v)

is continuous form V() x L?(2) to R; in particular, it is coercive. Indeed, by Lemma 3.6 and
Lemma 3.7, we claim that

a(@, @) > rol|@g — 2C(Q)(1 + ks)llwllellBll = (ko — 2C(Q)(1 + k) [wlla)[1D][3-

In view of (4.6),

Ko

ko = 20() (L + ko)l > ro — 20(Vks g

S 1
—KkQ-

Therefore, a(®, w) > %2 ||@||3. Furthermore, combining (5.13) and (5.14), we assert that

Ko
< semm@y i T

| R(w, ©

By an analog argument as in the proof of Theorem 4.1, we claim that there exists a smooth
solution (@, p) of the variational problem (5.10) which satisfies

_ Ko AC(Q)(1 + k3)% || R(w, ©)]|«
< e [ z '

This is (5.15) and this completes our proof.
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For the compressible case, we resolve

div(wp 4+ wp) = 0,

div(pw'w + pw'® + pww®) + 2p(w x w)* + 2p(ww X W) (5.18)

+ag’V;(vp7 7 p) = V(AT ey (9)) = S (w, p),
where

S (w,p,0) = fagSi‘B(w,p; 0) + 83\05“()"") (w, p; ©) (5.19)

with

S4B (w,p,0) = 7"53[(5?\60 + 820\ ) wrw + 2ewiw?] + 2prwdaow’®

Y .
— e 0, 8<g§ i 20 [=Oug’"V el () — (6720uOp
+ 0059°2)Vaesz(w) + 71 (Ondgr + Ordas)Vaess(w)
+ 671 (Oadpr +20504x + Ordas) Vaesr(w) (5.20)

— dapVaesa(w) — Vgega(w) — Vaeqs(w)

— 7"71(5&25,3,\ + 30ar0p2) (e3x (W) — 871@>\€33(’w))],
SN (1, p, 1 ©) = =20 [(8ap0yx + Garydpn) (€34 (W) — 71O, e33(w))

+ 009" (Ve (w,O)];

S35 (w, p, ©) = —[(re) "M (322052 + 8200y + 172 (55 0204 + 02570,
+ 00,0 wrw + 2r(65 04 + 050\ )wPw + rediuwin?]
+ 2rw((w? + et 0,)ds2 + e w’Oy) — e 1Vgp
op
23
+ 20 g*3 (47 ' V3esz(w) — Vgess(w)) + Vaega (w)
+ e (2052 Voeso (W) — Vaesg(w) + Vgesa(w))Oy
— 2672(2V e (w) + Vaess(w))] — 2v[—(re) teas(w)
+ €3, ()21 716,205 — 30420.,) + re (35,02 — d250,)|VO|?]
+ ea3(w) (re) "2895(4 + 3r2|VO?)],
53 (o) (w,p,;0) = 2u[6_1(5_2®>\®g + 5,\0933)633(111) — S_Q(G)A(SW + 0,055 )3y (w)]

— e 2wt 4 2vg3F gI™V jend (w, ©).

+ 267205 — + 2ug3kgjmvjefm(w)

(5.21)

6 Control Problem of the Boundary Shape

The notations used in this paper are usual, for example, the norms in the space L?(D) and
H™(D),m > 1 are denoted as usually by | - |o,p and || - ||,,p and those in the spaces L>(D)
and W1°°(D) are denoted by | - |0.0o.0 and || - ||1.00,p. The same notations are used for the
norms in the corresponding spaces of vector fields, such spaces being then denoted by boldface
letters. Strong and weak convergences are denoted by — and —, respectively (a review of all
the properties relevant here about weak convergence and lower semi-continuity is found, e.g.,
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n [19]). Naturally, we choose global dissipative energy to be the objective functional for the
shape control of the blade surface. The global dissipative energy functional is given by

O(w,v) = A”klekl w)e;;(v),

/// w(S))dV = ///Q AT ey (w)ei; (w)/g dadg, (6.1)

AR — (g It 4 gt gI®) for the incompressible viscous fluid,

where Q = D x [—1, 1] and €. is the flow passage in the Turbo-machinery bounded by I'; UT, U
i Ul US4 US_. We propose the following variational principle for the geometric design
of the blade:

Find a surface & € F of the blade such that
J(S) Jnf J(S), (6.2)
F={¢ € H*D), (=00, (=6,, ondD, (|20 < Ko},

where ©g and O, are functions in H?(D). The § which achieves minimum of the object
dissipative energy functional, is called a general minimal surface. In other words, from the
mathematical point of view, this minimum problem of geometric sharp of the surface of the
blade is a general minimal surface problem.

Note that (6.2) is also an optimal control problem with distributed parameters, where the
control variable is the surface of the blade and the Navier-Stokes equations are the state equa-
tions of this control problem.

Subsequently, we establish the Euler-Lagrange equations of the optimization problem (6.2)
with the Navier-Stokes equations being its state equations.

In order to investigate the optimal control problem (6.2), we should consider the object
functional J in a fixed domain in the new coordinate system. In this case, we rewrite with
(3.25)

IQ) i = gatw.w) = 5 [ () Gaeds
(w) : = AWM ey (w)es;(w)
= AT [ (w)pi; (1) + 2o (W) (w, ©) + tra(w, Oy (w, ©)].

(6.3)

Lemma 6.1 Assume that (w,p) is the solution of the Navier-Stokes equations (3.7) asso-
ciated with © € H(D) which defines a mapping (w(©),p(0)) :

0 € C?(D) = (w(0),p(0)) € H(Q) x L*(D).

Then the strain rate tensor e;;(w) of the velocity w defined by (3.2) possesses a Géteauz deriva-
tive D—D@eij(w)r] at any point © € C?(D) along every direction n € W(D) := Hi(D) N H*(D),
and

D o g
Do Cis (w)n = eij(W)n + ey (w)n + € (W) (6.4)
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where
. D on 9%n
w = %wv = FIY Mo = Gy
1
eéﬁ(w) = gﬂ(w) +( gg(w) + gg(w))@a + 57"210”(6@)\@,,5 +952O9a0),
1
e23(w) = 5r*w” (50205 + 65100), (6.5)
Ao 2N Ao 1 o
6304( ) wBa( ) ( (U)) +w3a (w))@07 €3a (w) 267" w 504)\7
e3s(w) = P33(w), €39 (w) =0,

where ¥, P>, P are defined by (3.22).

Proof By similar manner in the proof of Theorem 5.2 and using (3.20)—(3.22),

D 66” aeij _ (9
D@ el]( )77 aw wn a@ 77 - el]( ) a(__) "77

Oe;s de;;
90 ]77 Pi;(w)ny + 1/’1)} () (OxyO 0057 ON)1y + 6@j B
where
oe* 1 oes el
ap L o 3a¢,, _ - _.2 0O 33, _
90 n= 27" w7 05 (Oadpy + O pdary )y, 90 n 257’ W Nao, 90 n=0.

From this it is easy to obtain (6.4) and (6.5) . The proof is completed.

Lemma 6.2 The dissipative functions ®(w) defined by (4.1) is Gateaux differentiable at
© € C?(D) along any direction n € W. The Gateauz derivative is a polynomial of degree 5 :

D (w)
Do

n = (@, w)n + &*(w, O)n\ + 27 (w, O)nre, (6.6)
where

(W, w) = 24 e, (@) eg (w)
= dpleqs()eas(w) + 933933633( w)ess(w)
+2(6720,05 + 6°P g33) ez, (W) e3s (w)
+ 720405 (e33(W)eas(w) + eas(w)ess (@)
— 2e710p(eap(W)esa(w) + e3a(@)eap(w))
— 267 10,9 (e33()e3a (v) + €30 (W)ess(v))],
M w, ©) = 24" ey (w)e) (w) + ngkl newr(w)es; (w)
= 4pl(eap(w) + £720,04e33(w) — 267165630((11)))63,3(10)
+ (2(r€) "2(1204,05 + adap)ess(w) — 26 Ogeqs(w)
—2e71'0,9%es3(w))ed, (w)
+ (9% g% ess(w) + € 20aOpeas(w) — 267 09" esa (w))eqs (w)]
+ 2ufdr~*eaO esz(w)ess(w) + 467 2(0495x + Ordas)esa(w)ess(w)  (6.7)
+ 4872901633(10)60‘)\ (w) — 4™ eza(w)ear(w)
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— 47372 (ab o + 2r204,0) )ess(w)esq (w)],
PN (w, ©) :2Aijkle?‘-”( Yew (w)
= dpfeap(w)enf(w) + g*°g* ez (w)ess (w)
+2( 20,05 + 67 g% esq (w)e3d (w)
720,05 (ess(w)ea(w) + eap(w)ess (w))
—2e710p(eap(w)ers (w) + eza(w)erh(w))
— 2671049 (e33(w)e3q (w) + esa(w)ess (w))]
= 2w’ {5_1<88u§ +r gw/\) +7r (gq;} 5,\;/68123)91/ —5_17“29,\@1/6;?
+ 2ur?w’w’O,y,

where ef‘] (w), ef‘j"(w) are defined by (5.12).
Proof At first,

Dq)(w, @) ii Dekl(w) 'DAijkl
—g - 24 Jklwneij (w) + 6 neg(w)eq; (w). (6.8)
Due to (5.11) and (5.12), we assert that
Do (w,O - =N DAk
DOWO) [ exa@)n -+ edi(w)n + e (whnao) + s neraa)]eis ()
= &, w, O)n + & w, O)nr + @7 (w, O)nxs- (6.9)

Thanks to (2.5) and (3.24), simple calculations show that
Dggkl ner(w)ei;(w) = 2ufdr—*e~*aOes3(w)ess(w)
+4e7%(0adpa +®/\6a/3)63a( Jesp(w)
+ 46?0 qes3(w)ean(w) — de ™ ega (w)eqn (w)
— 47372 (abay + 2170, @,\)633( )esa (W), (6.10)
24 ey (w)eij(w) = dp[(eap(w) + e 2O Opess(w) — 26~ 1O peza(w))enz(w)
+ (2(r€) "2(1?0405 + adup)esp(w) — 26 O geqs(w)
—26710a g% ez3(w))es, (w) + (979 €33 (w)
+£720,05e05(w) — 26710, g% €30 (w)) ey (w)]. (6.11)

In particular,

PN (w, ©) =2Aijkle?‘»”( Yeg (w)
—4M[€aﬁ( Jeah(w) + g% g% ez (w)eas (w)
+2(s720405 +879%)eza(w)ezd (w)
+e 720405 (33 (w)enf (w) + eap(w)ess (w))
— 26710 (cap(w)es] (w) + eza(w)eds(w))
— 2671049 (e33(w)es (w) + ez (w)ess (w))).
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By virtue of (6.5), e35 (w) = 0, we obtain
(I>’\U(w, ©) = 4u[(eap(w) + 672904@5633(10) — 2571@563(1(?1}))62%(’[0)
+ (2(re) 2120405 + adap)esp(w) — 26 Ogeas(w) — 2671?30 hez3(w))erd (w))
= 4pt{(cas(w) + e 720uOpess(w) - 25—1@ﬁega(w))%r2wff(5w@5 +65204)
+ (2(re) "2(1204,05 + adup)ezp(w) — 26 O geqs(w)
—2e7 1933033 (w))%srzw"ém\}
= 4ﬂ%r2w0[(2572@)\|V@|2 —2¢%30, )esz(w) + 26712500 (a — 72| VO )esq (w)]
= 4u%r2w"[72(r5)*2@A633(w) +2e71r2eg) (w))]
= e 2w [—Oyes3(w) + gesy(w))].
Taking (3.20)—(3.23) into account yields

PN (w, ©) = 4pe 2w [—Oyress(w) + cezn (w)]

ow* o Ow? ow” ow? 8w”
_ o 1Y% 2% _
= 2 [ o¢ T or o) T (8;M T Jou QT
+ 2ur?w’w’O,. (6.12)

Summing up (6.7) is derived. The proof is completed.

Theorem 6.1 Assume that © € C%(D,R) is an injective mapping. Then the objec-
D
t functional J defined by (6.1) has a Gdteaur derivative gradgJ = bJ

6 in every direction
n€ W := H*(D)N HY(D) that is determined by

(grade (7(©)), 1) = / /D [ (uw; @) + 8 (w, O + B (w, O)1ja,

+ 2ur* W70y, mao Jerdztda?, (6.13)
where
~ 1 1
0 (w; @) :/ 0 (w; w)d¢, DNw,O) = / M w, ©)dE,
-1 1
1 3 3
~ ow ow
(D)\g @ _ ) ol|l.—1 2 2 5 y— @U
(w8) = [ 2ur]e ( )+ (55— o) o
-1,2
—&" ‘0 @ d¢,
1 ' % }
W“B:/ wwPde,
-1
and where W = —” is the Gateaux derivative of the velocity w of the fluid at the point ©, and

0, DN are deﬁned by (6.5).
Proof Indeed, taking into account of (6.5) and (6.6), and /g = er we assert that

L Do(w,0)

terado (@) = [ [ ZEEneragas



910 K. T. Li, J. Su and A. X. Huang
1

— [ [ 2u2°@ win+ 0w, ) + 0 (. Omaslredede.  (6.15)
DJ-1

By using (6.6) and (6.7) it is easy to obtain (6.13). The proof is completed.
Taking integration by part of (6.13) and considering homogenous boundary conditions for

n € W(D), this implies

(grade (J(©)),n) = /D E[Ore 2urP WV 0,)) + 1@ (w, ©)) — Ox (rd* (w, ©)) + rd°(w, @)|ndz.

From the above discussion we obtain directly the following result.

Theorem 6.2 The FEuler-Lagrange equation for the extremum © of J is given by:

e) 92 ~

3 vo Ao

o0z 0x° (QMT w 6‘1”89&\) + 0xrr0x° (ro™(w, ©))

- %(r@(w, 0)) + ®°(w, @)r =0, (6.16)
00

0|, = 6, 87‘7 — o,

and the variational formulation associated with (6.16) reads
) 2 Jdq
Find ©® € V(D) = {q ‘ g€ H*(D), q|, = o, —‘ = @*} such that
on v
/ {ur W2, + 2 (w,0))nr, + @ (w, O)ny + B°(w, @)y }erdz, (6.17)
D

Vn € HE(D).

7 The Controllability

In this section, we discuss the existence of solutions of the optimal control problem (4.1)
and (4.2) for the incompressible case. As well-known, the object functional

7(©) = 5 [ AM(©)es;(w(@)ew(w(€))Videds = sa(w(©).w(e)) ()

depends upon the existence of a solution w to the Navier-Stokes equations. Since the solution
w of the Navier-Stokes equations and A%*! are functions of ©, .J itself is a function of © and
the general minimum problem is

Find the surface S of the blade such that

oy
J(3) = inf J(5), (7.2)
]:: {C S HQ(D)7 C = 907 C = 6*7 on aD? ||<||2,D S K‘O}-

However, .J can be read as a function of w : J(0) = J(w(©)). As well-known, if there exists
a Gateaux derivative 92 of J(©) with respect to © at ©, then the minimum point © of (4.2)
must satisfy

gradgJ(©) =0, (7.3)
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and from this, if © is smooth enough and it must satisfy Euler-Lagrange equations.

At first, it is well-known that the following theorem, which is a theorem analogous to the
Generalized Weierstrass Theorem (see [7, 19]) in the calculus of variation, gives a sufficient
condition for the existence.

Theorem 7.1 Let X be a reflexive Banach space, and U a bounded and weakly closed subset
of X. If the functional J is weakly lower semi-continuous on U, then J is bounded from below
and J achieves its infimum on U.

We consider the functional defined in a closed set of the Sobolev space
V(Q) :={u|ue H"”(Q),ulr, = 0,00 =Ty UT';, meas(Ty) # 0}.

Lemma 7.1 ]
T(w) = aw,v)

is weakly lower semi-continuous with respect to w in H"(Q).

Proof Indeed, assume

wy, — wo (weakly), in H*(D).

Owing to
0 < a(wg — wo, w, — wo) = alwk, wi) — 2(wg, wo) + a(wo, wo)
= a(wg, wg) > 2a(wk, wo) — alwg, wo),
we have 1 !
klim inf J(wg) > a(wg, wp) — ia(wo,wo) = ia(wo,wo) = J(wo).
—o0

By virtue of Lemma 7.1, we directly obtain the following result.

Lemma 7.2 If the solution w(©) of the Navier-Stokes equations satisfies:
Assumption P: ©, — 0y (weakly) = w, = w(0©,) = wy = w(O) (weakly),
then the functional J(©) defined by (7.1) is weakly lower semi-continuous with respect to ©.

Finally, we have the next theorem.

Theorem 7.2  Assume that (w,p) is a solution of the Navier-Stokes equations with mized
boundary conditions such that

2

it { /_ 11 wlwlde, /_ 11 wPude, /11 [(g%j) (%ﬂj) + (agf ) Jae} >0 ra

Then at least there exists a two dimensional surface S defined by a smooth mapping
©:D — F={¢e€H*D),|[Cll2,0 < ko, Clop = O, duClop = O.},
such that J(©) achieves its minimum at {©},

O F. J(0)= inf J(0). (7.5)
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Furthermore, © also is a stationary point:

(eradJ(©),n) — / eradg @ (w, ©)dV = 0.
Q

Proof Indeed, according to Theorem 7.1 it is enough to prove that
(1) The manifold F(D) is sequentially weakly closed, i.e.,

VCie F(D), 1> 1and G — ¢, in HX(D) = ¢ € F(D).

(ii) The functional J is sequentially weakly lower semi-continuous over the manifold W(D),
i.e.,

G €W(D), 1> 1and ¢ — (€ F(D)in H*(D)= J(n) < lim inf J(m).

(iii) The functional J is bounded from below, i.e., there exist constants C; and Cs such
that

Cy >0, J(C) ZCngHZD‘i’CQ, V(¢ e F. (7.6)

In fact, the Hilbert space H?(D) is a reflexive Banach Space. Furthermore,

(i) Let ¢; € F(D) (I > 1) be such that ¢; — ¢ in H?(D). We have to prove that ¢ € F(D).

Since the trace operator trl and tr-2 from H?(D) into L?(D) are continuous with respect to
the strong topologies of both spaces, it remains so with respect to the weak topologies of both
spaces. Hence (;|lap — (|op and 8,(lap — 9nC|op into L2(D) and thus ¢|op = Op, Inllop =
O, since tr(; = O, tr,(; = O,, for all [ > 1. Moreover, the weakly convergence sequence in
H?(D) is a bounded sequence in H?(D), hence ||(|l2.p < ko and ¢ € F(D).

(ii) According to Lemma 7.1 and Lemma 7.2, it is enough to prove that the solution
(w(O),p(©)) of the rotating Navier-Stokes equations (3.15) is weakly continuous with respect
to ©. That means that for any weakly continuous sequence ©F (k = 1,2,---) in W, the
corresponding sequence of the solutions (w(©%),p(6F)) is weakly continuous. By virtue of
Theorem 4.1, (4.6) shows that there exists a subsequence of (w(©%)) (for simplicity, we still
denote it (w(©F))), which is weakly convergent, i.e., there exists a w, € V(D) such that

w(OF) = w,, in V(D).

(iii) It remains to prove that the functional J is coercive on the manifold F, i.e., (7.6) holds.
By proceeding as for the proof of (3.35) it is easy to derive that

1
J(0) = /Q @ (w, w)redéda > /Q |5 1w, ©) 2 = [l (w)]|? | redéda. (7.7)
By virtue of (3.20), (3.23) and using the Young’s inequality, we have

[ (w, 0) = [¥*Ox + ¥ OxO, + e*(w, ©)|?
= [le* (w, ©)|I” + [[¥*(w)Ox + 1 (w) OO, ||
+2(e"(w), Y (w)Ox + Y7 (w)O10,). (7.8)
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On the other hand, from (3.29) and (3.23), we get

* * * — * * 1 — * *
le*(w)[|* = e} g(w)ess(w) + (re) 2es, (w)ezq (w) + 5(re) tess(w)ess(w)
1
= —r*wrw705(0,05)0,(0,05) + Zﬂwkw“@m@gﬁ
= 2w (2r* (0200050 VO[> + ©300,50005) + ©100,4)

1 1
=t z‘;(w}‘Ga)\)g + ng(w’\QQGM) + 4r w7 O30 Opa (7.9)

)\wU@)\a Osa

1
T’Q(wu@%l + w22®§2 + (wu + w22)932) + 51"21012(@11 + @22)@12,

where a5 and a are defined by (2.3). Taking (3.22) and (3.23) into account, simple calculations
show that

|4 (w)Ox + 1 (0)920, ||
= (VN (w), %7 ()OAO, + (Y7 (w), Y™ (1)) Or040,0,, + 2((¥* (w), " (w))©10, O,

(¥ (w), 17 ())OrO,
7l 5y 0w? OB ow? dw? 1, ow* dwe ow* 1 ow? 2 w2
=15 ”(a 8x0‘56+8x)‘8x‘7) T(@aso‘ g T axrf(ag )

+ (88% < 207)s,,) +€—2(i)ﬁ?8§)}@@

_ 1 2[ zgz’j g;l)a _'_%(352 +§ 2) hv@'z 1 2 4(2&@>\) +5—2<3@U§‘9)\>2
+ iﬁ(gja @A) (%@a) + %rr‘gjg (68% + 2w )GAGU
1 [2 5 Ow? w3 <8w 2 1 28w <8w 2 2

1 e e T2lae T ) ]|V9| o€

Y

)9,\907

( )1/’W( ))GAGUGDG/L

(¥
o o A
37 ((Gw0) (Faw0r) + o (5 + ) onee)
1 5 .2 ouw*
Ty (e ¢
A o A
- [57*((50) (Gwor) + 250 (557 ) s0r)
+ i52r2<3g§
(¥ (w), ¥ (w))©r0,0,,
1 4[2311)/\ owd 2 ,0uwd 72311)/\(8103
4°

9z 0z T o T Toe \ae

2
@A) }|ve)|2 + r2ww?| VO

2
G),\> } |VO|? + r?ww? Vet

+ %wQ)}G),\|V®|2
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n F T48w/\ ow? 1 28w ow”
2" Dz oan T 1% ag pr

|ere.6..

Hence, using (2“5 + dan”)
19 (w )@ww“( >@A@ H2

e o

B ()b
Bt 02 2
+ [%sr‘*g:j g;”u 15 Wagfé g“’u]eke,t@

g

_l_

+

Furthermore,

2(e" (w), Y (w)Ox + Y7 (w)©O,)
= 2(e"(w), P (w)Ox) + 2(e *( ) A (w )(%9 )

3

:; 0¥ Oa 22 ¢ gwa a 004, ) VO + 212 (‘Z—@Hegw JEIER
+?;::@)\+(7+ —w ) 76/\6 ]
To sum up,

1
4w, ©)° = i e} + w0, + (w'l +u)6k,)
+

2 [or 2 0w’ Ow? ,(%yﬁ) [ivep + 1w e),

oz Jz™ 1913

K. T. Li, J. Su and A. X. Huang

1 1 0 0 4 1
T(w,®) == 5" r? 12(@11+@22)@12+ 2[ il (l " 2) §w2w2§m}@x@a

Oz ag r

1, r.0wow® 2 2811} 2 9
+ZET [ aJﬂaa?—i-fw 8:c>‘ (7+Tw )}@AW@\

1 ,owrow® 1 _ 25‘w ow”
+ {5” oz ozr 1° " 0¢ ox u]@ﬁ#@”
+ Lewe [2 (E%Jraw Or + 20’0 )\V@|2

g" W e [T F e T gga AT Y P

ow ow?

+ 2 (a 6@”5@ ﬂ)eg@a

Ouw? ow® 2 1 0w

axa@,\-f—(aig—F* )@a+5 785 @)\@}

Since w is bounded in H*(Q), by Theorem 5.3 and © € F, we claim that
ITllo.2 + lle(w) 5.0 < C,
where C is a constant. Therefore, from (9.7), (9.10) and (9.11),

1
J(O) = /QCIJ(w,w)rsdfdx > / {Z,urz {(w“@fl + w226§2 + (w11 + w22)®%2)

Q

(7.10)

(7.11)



Boundary Shape Control of the Navier-Stokes Equations and Applications 915
N (2 o Ow? w? N 1 (8w3 N w?
P D 4
Ox® 0z 2\ O& T
1
> /D Z’”z [5<(W”@§1 +W*2e3, + (W + w?*)ei,)

< 11 (22 O L0 N agver)|rds -

)" )IVOE] + uT(w,0) - ulloluw) | ferdeds

Dz oz 2\ O¢ r
1 3 93 3 2
B_ 2 . 11 15722 ow” dw ow w”\? 2
> = — —
> Seroul%f{W W ,/_1(%& o +( et r) )dg}ueuw c
> C1|0l3p +Cay VO € F, (7.12)

where

1
W = / wwdg,

-1

7.13
o= Hergige (it [ (R0 (O ) Yag), o

Thanks to the first equation (5.1), we have

a 3
b (0 ).
and therefore,
ey = Lo fwn w2000 () (a0
D _1 L0z Oz Oz 0zB

(7.6) is valid. The proof is completed.

8 Second Model

Let us consider second minimization function, the power done by the impeller, or the left
force of the aircraft, for example, the airfoil:
I(¥) = / o(w,p) - n-egrwds, (8.1)

S_US,

where n is the unite normal vector to the surface &, w the angular velocity of the impeller,

dS = v/a is the element on the surface 3,
o(w,p) = (=p + Adivw)gi; + 2pei;(w)

the stress tensor (A = 0 corresponds the impressible fluid), and (e,, eq, k) are the bases vectors
of rotating cylindrical coordinate system. Our purpose is that find a surface & of the blade
such that

1(8) = inf 1(S), (8.2)

where F denotes a set of the smooth surface spanning on a given Jordan’s curve C € E3.
Under the new coordinate system, (8.1) can be rewritten as

I(3) = /D{((*P + Adivw)gi; + 2pei;(w))n' (es) rwy/ale— 41
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= (=p + Adiv w)gi; + 2pei; (w))n' (eq) rw/ale——1 }da, (8.3)

where n and ey can be found
; S 1+ 17203
n=nle;, n®=-r—, nd=(re) 'l —>2
eg=che;, €5 =0, ei=(re)"L.

In view of (2.5), (3.20), (3.21) and (3.22), we have

. . 1— T2@2
gijn'(eg) = (1e) " (gazn® + gazn®) = 717
1 ow? w3 1 wb ow?
eza(W) = (aag ¢ +er @aa—g) + *(@6 o +€W)
1 o
+ (587" Ons + rsdgg@a)w ,
3 «
es3(W) = T2€286% + rew? + z—:rz@aaa%, (8.5)

eij(w))n'(ep) = ﬁ[ﬁ@aega(w) + (1 +7203)es3(w)]

ow? 1 ow®
_ 1 2 2y dw” 202 _ o2
- raf[ r6<1+ 202 @1)) 5e + 5701470~ O1) T
owP ow3 99 1 4 -
r@ (8xa +e 3:1:"‘) —1—5((1 —r°07)02, — 5" G)a@w)w ]
Therefore, the integrand in (8.3) can be expressed by
Ap(w,p,0) : = ((=p + Adiv w)gy; + 2pes;(w))n' (eg)’ rwy/a
1—r?07 1 71 5 o Ow?
= [ (—p+di o —— 1

{ NG (—p + divw) + u( \/5{2 ( + 7“(@ G))) o

1 9 g on QWY ow’ - ow?

+570a(1+77(03 - 01) 5 27«@ (5or +5502)

1
202 L3 -
—1—5((1 r°07)d20 5" @a@ag)w ])}rw\/&. (8.6)
Taking the boundary conditions into account yields that
ow’  owd
W|§::|:1 :0, ( +€7)’ :0,
ox« 0x®/ le=+1 (8.7)
ow® '

divw =

3

In particular, if the fluid is incompressible then

divw =

Ow™ L ow? ow® w? _o,
Hw® 61: . 8(5810 )T‘ . (8.8)

O0x® le=+1
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Substituting (8.7) into (8.6) leads to

Ap(w,p,0)= [(1-1263)( ~p+ AL‘?’) n((1+ 2203 —03) 22
) s 1 af 9

+e7 10, (1 +12(03 — @2))

ow?
73

)] rw for the compressible flow,

23 (8.9)
Ap(w,p.0)= [ — (1= r2€)p+ e~ 01+ 17(03 - 1) - |
for the incompressible flow.
Hence, we conclude that
13) = [ [Ap(w.p.6)le-1 — Ap(w.p. O)]e——}rod. (810)
D

Theorem 8.1 Assume that © € C%*(D,R) is an injective mapping. Then the objec-
t functional I defined by (8.1) has a Gdteaux derivative gradgl = % in every direction
n€ W := H*(D)N HY(D) that is determined by

(gradg (I // [(E*(w,p, O)na + Eo(w, p,O))[e=1
— (E%(w,p, ©)na + Eo(w,p, ©))|e=—1n]wrdz, (8.11)
where
a 2 2 w’
E (W,p) =2r p@161a —+1r (/L@QéQa — (2)\ + M)@léla)Tg
—1(0,.2 2/02 2 ow’
+ ue (27" @B(Ggéga — 616104) + (1 +7r (@2 — @1))(5049)875,
. (8.12)
_ 202 15 o 02 Lw3
Eo(w,p,0) = (A1 =120%) + 1+ 51%(63 - 09))) 5
+e10,(1417(03 - @2)) o€ + (r*07 - 1)p,

D
and where 0 = % is the Gateauz derivative of the velocity (w) of the fluid at the point O,

and p = g—g is the Gateaux derivative of the pressure at the point ©.

Proof Indeed, taking into account of (8.10), and /g = €7, we assert that

’DA DA
(gradg (I / p(w p, DAp(w,p,©) n— M‘ 77} wrdz,
=1 DO =1 (8.13)
DAD( W, D, 6) _ 3AD(W,]),@) + aAD(Wapa 6){17 + aAD(vaa 6)/\ .
pe 00 dw g ap

By virtue of (8.9), it yields

aAD (W7 b, 6)
=E° B
50 " (wW,p,0)n

814D (Wap7 @) ~

&3
S wn = [)\(1 - 1"2@2)86—6 + u(l + 71" 202 - @2))

ow
23
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_ o’

+ e t0,(1 + 1202 — 02)) ag]
0Ap(w,p,0)
EE-— 2

8]? = (1 - TQG%)]/)\TL

where

3

ow ow?
E%(w,p,0) = [27» (p )\a—f)@ Jo + pr2(Oadan —elala)a—"z

ow?
e (22 05(O2020 — ©1610) + (1 +12(65 — ©3))das) .

3 (8.14)

Substituting above equalities into (8.13) leads to (8.11) and (8.12). The proof is completed.

Taking integration by part of (6.13) and considering homogenous boundary conditions for
n € W(D), this implies that

(grado(1(0)).1) = [ {(~0uE"(w.p.©) + rEW(R.5.0)le-
D
— [0 E%(W,p,0) + rEy(W, D, ©)]|¢=—1 }wndz. (8.15)
Owing to (8.14) we assert that

OaE“(W,p,0) = Ao‘ﬁ(w,p7 0)O4p + II(w,p, 0),

ow? ow!
22 1.3
A% (w,p,0) =2us"'r (2@2 o€ + 0, 85)
ow! ow?
12 1.3
A (w,p,0) =2us"'r (@2 o€ -0, 55)
ow? ow’ ow' (8.16)
11 o, 1 41
A (w,p, ©) =13 (2p 2\ +p) a¢ 2ue”"Og G 4dpe™ 0, 85)
JOp ow3 . ow”
I(w,p,0) = r? (2T@1ﬁ+3®2 0¢ >+6u5 740205 —— o€
e (1 + 3r2(02 — @2))8W
23
Let us introduce the notation
[A]” = Alg=1 — Ale=—1.
Then (8.15) becomes
(grade (1(©)),n) = / ([A%P]7Oap + M)~ + r[Eo(W, P, ©)] Jwnda. (8.17)
D
We get
Ow? ow!
22 - _ -1,3
1) [A2(w,p,0)]" = 2usLr (2@2[85} @1[65] )
ow'! ow?
12 - _ -1.3 _ -
(@) [P wp o) =2 (02 | oG] ).
ow3
11 -3
(3) 14" w.p. 0] =r* (2~ A4 )| G|
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~ees[ ] e[ ] ), (8.18)
(4)  [Mw,p,0))" = (26, [%}‘ 430, [fgf}—)

2020, [ ]+ e a0 - o) [5E]
(5)  [Bo(w,p,0)" = (A1 —26%) + (14 3203 - 0))) [%@;}

ow”

+e710,((1+1%(03 — ©3)) [aT]_ + (03 — 1)[p

If the flow is incompressible, then

63 63_
67125:11: ’ {8712} =0

From the above discussion we obtain directly the following theorem.

Theorem 8.2 The Euler-Lagrange equation for the extremum © of I is given by

(A% (W, p,©)]”Oap + [T(w,p, ©)]” +r[Eo(W, 5, 0)]~ =0,
(8.19)
Ol = O,
and the variational formulation associated with (6.16) reads
Find © € V(D) = {q ’ g€ HX(D), ql, = O, @‘ = @*} such that
only (8.20)

/D{//D[[Ea(w,p,@)r%+[Eo(w,p,@)]fn]}wrdxzo, Vne HZ(D),

where
o L _ owy - owy -
[B°(w,p,0)]" == [2r2(Ip] —A[a—g] )elaawr?(@zaza—elam>[8—€}
ow’q-
+usfl(2r2@ﬁ(@25m—@151a)+(1+r2(@§—®§))5w>[a—€} BCER
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