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Abstract The main objective of this article is to study both dynamic and structural
transitions of the Taylor-Couette flow, by using the dynamic transition theory and geo-
metric theory of incompressible flows developed recently by the authors. In particular,
it is shown that as the Taylor number crosses the critical number, the system undergoes
either a continuous or a jump dynamic transition, dictated by the sign of a computable,
nondimensional parameter R. In addition, it is also shown that the new transition states
have the Taylor vortex type of flow structure, which is structurally stable.
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1 Introduction

The study of hydrodynamic instability caused by the centrifugal forces originated from the
famous experiments conducted by [13] in 1923, in which he observed and studied the stability
of an incompressible viscous fluid between two rotating coaxial cylinders. In his experiments,
Taylor investigated the case where the gap between the two cylinders is small in comparison
with the mean radius, and the two cylinders rotate in the same direction. He found that when
the Taylor number T is smaller than a critical value Tc > 0, called the critical Taylor number,
the basic flow, called the Couette flow, is stable, and when the Taylor number crosses the critical
value, the Couette flow breaks out into a radially symmetric cellular pattern as in Figure 1.

There have been extensive studies for the Taylor problem from both the mathematical and
physical point of view; see among many others, [1, 2, 15, 16]. Over the years, the Taylor problem,
together with the Rayleigh-Bénard convection problem, has become one of the paradigms for
studying nonequilibrium phase transitions and pattern formation in nonlinear sciences.

The main objective of this article is to address the dynamic transition of the Taylor-Couette
flow, and study the formation and stability in its structure of the Taylor vortices. The main
technical tools are the dynamical transition theory and the geometric theory for incompressible
flows, both developed recently by the authors (see [6, 11] and the references therein).

Manuscript received May 12, 2010. Published online October 22, 2010.
∗Department of Mathematics, Sichuan University, Chengdu 610064, China.

∗∗Department of Mathematics, Indiana University, Bloomington, IN 47405, USA.
E-mail: showang@indiana.edu

∗∗∗Project supported by the National Science Foundation, the Office of Naval Research and the National
Natural Science Foundation of China.



954 T. Ma and S. Wang

�

�

Figure 1 Couette flow and Taylor vortices

The main philosophy of the dynamic transition theory is to search for the full set of transition
states, giving a complete characterization on stability and transition. The set of transition states
is represented by a local attractor. Following this philosophy, the dynamic transition theory is
developed to identify the transition states and to classify them both dynamically and physically.
One important ingredient of this theory is the introduction of a dynamic classification scheme
of phase transitions. With this classification scheme, phase transitions are classified into three
types: continuous (Type-I), jump (Type-II) and mixed (Type-III). The dynamic transition
theory is recently developed by the authors to identify the transition states and to classify them
both dynamically and physically (see above references for details). The theory is motivated by
phase transition problems in nonlinear sciences. Namely, the mathematical theory is developed
under close links to the physics, and in return the theory is applied to the physical problems,
although more applications are yet to be explored. With this theory, many long standing phase
transition problems are either solved or become more accessible, providing new insights to both
theoretical and experimental studies for the underlying physical problems.

For simplicity, we focus in this article on the z-periodic boundary condition, which is an
approximate description for the case where the ratio L

r2−r1
between the height L and the gap

r2 − r1 is sufficiently large. We remark that similar results hold true as well for other type of
boundary conditions, as well as for three dimensional perturbations (in the narrow-gap case);
we refer the interested readers to [11] for further details.

The main results obtained are as follows.
First, we show that the system always undergoes a dynamic transition as the Taylor number

T crosses the critical Taylor number Tc. The types of the transition can be either continuous
(Type-I) or jump (Type-II), and are dictated precisely by the sign of a nondimensional param-
eter R, given completely by the first eigenvectors, the ratio of the angular velocity of the outer
and inner cylinders µ, and the ratio of the radii of the inner and outer cylinders η.

Second, when R < 0, the transition is continuous, and the critical exponent of the phase
transition, i.e., the exponent in the expression of bifurcated solutions, is β = 1

2 . Moreover,
there is only one critical Taylor number Tc such that the secondary flow tends to the basic flow
(Couette flow) as T → Tc.

Also, for the narrow-gap case, the parameter R defined by (3.23) is negative: R < 0,
provided the two coaxial cylinders rotating in the same direction, including the case where the
outer cylinder does not rotate.

Third, when R > 0, the transition is a jump transition, leading to more drastic changes, co-
existence of metastable states, and potentially more chaotic/turbulent behavior. In particular,
there are two critical Taylor numbers Tc and T

∗ with T ∗ < Tc. When T ∗ < T < Tc, the system
has two metastable states Σ0, the trivial Couette flow and ΣT , a local attractor away from the
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Couette flow. When T > Tc, the solution always moves away from the basic Couette flow to a
more chaotic/turbulent regime, represented by the local attractor ΣT .

Fourth, the theoretic analysis carried out in this article shows that a street of vortices appear
in the secondary flow for the narrow-gap case with µ → 1. Thus the theoretic results are in
agreement with the Taylor experiments.

The article is organized as follows. The partial differential equation model and the set-up are
given in Section 2, and the main dynamic transition theorems are given in Section 3. Explicit
expressions of the parameter R for determining the types of transitions are further discussed in
Section 4. The formation and structural stability of the Taylor vortices are addressed further
in Section 5, and the main theorems are proved in Section 6.

2 The Taylor Problem

2.1 Couette flow and Taylor vortices

Consider an incompressible viscous fluid between two coaxial cylinders. Let r1 and r2
(r2 > r1) be the radii of the two cylinders, Ω1 and Ω2 the angular velocities of the inner and
the outer cylinders respectively, and

µ =
Ω2

Ω1
, η =

r1
r2
. (2.1)

The nondimensional Taylor number is defined by

T =
4h4Ω2

1

ν2
, (2.2)

where ν > 0 is the kinematic viscosity, and h is the vertical length scale.
There exists a basic steady state flow, called the Couette flow. In the cylindrical polar

coordinate (r, θ, z), the Couette flow is defined by

(ur, uθ, uz, p) =
(
0, V (r), 0, ρ

∫
1

r
V 2(r)dr

)
,

V (r) = ar +
b

r
,

(2.3)

where (ur, uθ, uz) is the velocity field, p is the pressure, and a, b are constants. It follows from
the boundary conditions that

V (r1) = Ω1r1, V (r2) = Ω2r2,

and the constants a and b in (2.3) are given by

a = −Ω1η
2
1− µ

η2

1− η2
, b = Ω1

r21(1− µ)

1− η2
,

where µ and η are given by (2.1).
Based on the Rayleigh criterion, when µ > η2, the Couette flow is always stable at a

distribution of angular velocities

Ω(r) = a+
b

r2
for r1 < r < r2.

However, when µ < η2, the situation is different. As in the Taylor experiments, consider the
case where the gap r2 − r1 is much smaller than the mean radius r0 = 1

2 (r1 + r2), namely,

r2 − r1 ≪ r1 + r2
2

,
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and the two cylinders rotate in the same direction. If the Taylor number T in (2.2) satisfies
T < Tc, then the Couette flow (2.3) is stable, and if Tc < T < Tc + ε for some ε > 0, a street
of vortices along the z-axis, called the Taylor vortices, emerge abruptly from the basic flow, as
shown in Figure 1, and the corresponding flow pattern is radically symmetric and structurally
stable.

When the gap r2 − r1 is not small than r0 = 1
2 (r1 + r2), or when the cylinders rotate in the

opposite directions, the phenomena one observes are much more complex (see [1] for details).
Hence, in this section we always assume the condition

η2 > µ ≥ 0. (2.4)

2.2 Governing equations

The hydrodynamic equations governing an incompressible viscous fluid between two coaxial
cylinders are the Navier-Stokes equations. In the cylindrical polar coordinates (r, θ, z), they are
given by

∂ur
∂t

+ (u · ∇)ur −
u2θ
r

= ν
(
∆ur −

2

r2
∂uθ
∂θ

− ur
r2

)
− 1

ρ

∂p

∂r
,

∂uθ
∂t

+ (u · ∇)uθ +
uruθ
r

= ν
(
∆uθ +

2

r2
∂ur
∂θ

− uθ
r2

)
− 1

rρ

∂p

∂θ
,

∂uz
∂t

+ (u · ∇)uz = ν∆uz −
1

ρ

∂p

∂z
,

∂(rur)

∂r
+
∂uθ
∂θ

+
∂(ruz)

∂z
= 0,

(2.5)

where ν is the kinematic viscosity, ρ is the density, u = (ur, uθ, uz) is the velocity field, p is the
pressure function, and

u · ∇ = ur
∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
,

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
.

Then it is easy to see that the Couette flow (2.3) is a steady state solution of (2.5). In order
to investigate its stability and transitions, we need to consider the perturbed state of (2.3):

ur, uθ + V (r), uz, p+ ρ

∫
1

r
v2(r)dr.

The perturbed equations read

∂ur
∂t

+ (u · ∇)ur −
u2θ
r

= ν
(
∆ur −

2

r2
∂uθ
∂θ

− ur
r2

)
− 1

ρ

∂p

∂r
+

2V (r)

r
uθ −

V (r)

r

∂ur
∂θ

,

∂uθ
∂t

+ (u · ∇)uθ +
uθur
r

= ν
(
∆uθ +

2

r2
∂ur
∂θ

− uθ
r2

)
− 1

rρ

∂p

∂θ
−

(
V ′ +

V

r

)
ur −

V

r

∂uθ
∂θ

,

∂uz
∂t

+ (u · ∇)uz = ν∆uz −
1

ρ

∂p

∂z
− V

r

∂uz
∂θ

,

∂(ruz)

∂z
+
∂(rur)

∂r
+
∂uθ
∂θ

= 0.

(2.6)



Dynamic Transition and Pattern Formation in Taylor Problem 957

To derive the nondimensional form of equations (2.6), we let

(x, t) =
(
hx′,

h2t′

ν

)
, x = (r, rθ, z),

(u, p) =
(νu′
h
,
ρν2p′

h2

)
, u = (ur, uθ, uz).

Omitting the primes, we obtain the nondimensional form of (2.6) as follows:

∂ur
∂t

= ∆ur −
2

r2
∂uθ
∂θ

− ur
r2

− (u · ∇)ur +
u2θ
r

− ∂p

∂r

−
√
T
(η2 − µ

1− η2
− 1− µ

1− η2
r21
r2

)(
uθ −

1

2

∂ur
∂θ

)
,

∂uθ
∂t

= ∆uθ +
2

r2
∂ur
∂θ

− uθ
r2

− (u · ∇)uθ −
uθur
r

− 1

r

∂p

∂θ

+
√
T
η2 − µ

1− η2
ur +

√
T

2

(η2 − µ

1− η2
− 1− µ

1− η2
r21
r2

)∂uθ
∂θ

,

∂uz
∂t

= ∆uz − (u · ∇)uz −
∂p

∂z
+

√
T

2

(η2 − µ

1− η2
− 1− µ

1− η2
r21
r2

)∂uz
∂θ

,

∂(ruz)

∂z
+
∂(rur)

∂r
+
∂uθ
∂θ

= 0,

(2.7)

where T is the Taylor number as defined in (2.2).
The nondimensional domain for (2.7) is

Ω = (l1, l2)× (0, 2π)× (0, L),

where li =
ri
h (i = 1, 2), and L is the height of the fluid between the two cylinders. The initial

value condition for (2.7) is given by

u(r, θ, z, 0) = u0(r, θ, z). (2.8)

There are different physically sound boundary conditions. In the θ-direction, it is periodic

u(r, θ + 2kπ, z) = u(r, θ, z), ∀k ∈ Z. (2.9)

In the radical direction, there is the rigid boundary condition

u = (uz, ur, uθ) = 0, at r = l1, l2. (2.10)

At the top and bottom in the z-direction (z = 0, L), either the free boundary condition or the
rigid boundary condition or the periodic boundary condition can be used:

Dirichlet Boundary Condition

u = (ur, uθ, uz) = 0, at z = 0, L; (2.11)

Free-Slip Boundary Condition

uz = 0,
∂ur
∂z

=
∂uθ
∂z

= 0, at z = 0, L; (2.12)

Free-Rigid Boundary Condition

uz = 0,
∂ur
∂z

=
∂uθ
∂z

= 0, at z = L,

u = (uz, ur, uθ) = 0, at z = 0;
(2.13)

Periodic Boundary Condition

u(r, θ, z + 2kL) = u(r, θz), ∀k ∈ Z. (2.14)
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3 Dynamic Transitions

3.1 Functional setting

We now study the Taylor problem (2.7) with the z-periodic boundary condition (2.14) and
with axisymmetric perturbations. Assuming that the equations (2.7) are independent of θ, and
taking the length scale h = r2 in the nondimensional form, we obtain

∂uz
∂t

= ∆uz −
∂p

∂z
− (ũ · ∇)uz,

∂ur
∂t

=
(
∆− 1

r2

)
ur + λ

( 1

r2
− κ

)
uθ −

∂p

∂r
+
u2θ
r

− (ũ · ∇)ur,

∂uθ
∂t

=
(
∆− 1

r2

)
uθ + λκur −

uruθ
r

− (ũ · ∇)uθ,

∂(ruz)

∂z
+
∂(rur)

∂r
= 0,

(3.1)

where λ =
√
T , T is the Taylor number, and

T =
4r42Ω

2
1(1− µ)2η4

ν2(1− η2)2
, η2 =

r21
r22
,

κ =
1− µ

η2

1− µ
, ∆ =

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
,

(ũ · ∇) = ur
∂

∂r
+ uz

∂

∂z
.

The nondimensional domain is M = (η, 1)× (0, L), and the boundary conditions take (2.10)
and (2.14), i.e.,

u = (uz, ur, uθ) = 0, at r = η, 1,
u is periodic with period L in the z-direction.

(3.2)

The initial value condition is

u = u0(r, z), at t = 0. (3.3)

For the Taylor problem (3.1)–(3.3), we set

H =
{
u = (ũ, uθ) ∈ L2(M)3

∣∣∣ div(rũ) = 0, ur = 0 at r = η, 1, and
u is L-periodic in the z-direction

}
,

H1 = {u ∈ H2(M)3 ∩H | u satisfies (3.2)},

and the inner product of H is defined by

(u, v)H =

∫
M

u · vrdzdr.

Let the linear operator Lλ = −A + λB : H1 → H and nonlinear operator G : H1 → H be
defined by

Au = −P
(
∆uz,

(
∆− 1

r2

)
ur,

(
∆− 1

r2

)
uθ

)
,

Bu = P
(
0,
( 1

r2
− κ

)
uθ, κur

)
,

G(u) = −P
(
(ũ · ∇)uz, (ũ · ∇)ur −

u2θ
r
, (ũ · ∇)uθ +

uθur
r

)
,

(3.4)
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where P : L2(M)3 → H is the Leray projection. Thus the Taylor problem (3.1)–(3.3) is
rewritten in the abstract form

du

dt
= Lλu+G(u),

u(0) = u0.
(3.5)

For simplicity, let G : H1 → H be the corresponding bilinear operator defined by

G(u, v) = −P
(
(ũ · ∇)vz, (ũ · ∇)ur −

uθvθ
r

, (ũ · ∇)vθ +
uθvr
r

)
.

Then it is easy to see that

(G(u, v), w)H = −(G(u,w), v)H . (3.6)

3.2 Eigenvalue problem

To study the phase transition of the Taylor problem (3.1)–(3.3), it is necessary to consider
the eigenvalue problem of its linearized equation. The associated eigenvalue equation of (3.5)
is as follows:

Lλu = −Au+ λBu = β(λ)u, (3.7)

and the conjugate equation of (3.7) is given by

L∗
λu

∗ = −A∗u∗ + λB∗u∗ = β(λ)u∗. (3.8)

The equations corresponding to (3.7) are as follows

∆uz −
∂p

∂z
= β(λ)uz,(

∆− 1

r2

)
ur + λ

( 1

r2
− κ

)
uθ −

∂p

∂r
= β(λ)ur,(

∆− 1

r2

)
uθ + λκur = β(λ)uθ,

div(rũ) = 0.

(3.9)

The equations corresponding to (3.8) are given by

∆u∗z −
∂p∗

∂z
= β(λ)u∗z,(

∆− 1

r2

)
u∗r + λκu∗θ −

∂p∗

∂r
= β(λ)u∗r ,(

∆− 1

r2

)
u∗θ + λ

( 1

r2
− κ

)
u∗r = β(λ)u∗θ,

div(rũ∗) = 0.

(3.10)

Both (3.9) and (3.10) are supplemented with the boundary condition (3.2).
We start with the principle of exchange of stability (PES). It is known that for each given

period L, there is a λ∗0 = λ0(L) such that the eigenvalues βj(λ) (j = 1, 2, · · · ) of (3.9) with (3.2)
near λ = λ∗0 satisfy that β1(λ), · · · , βm(λ) (m ≥ 1) are real, and

βi(λ)

{
< 0, if λ < λ∗0,
= 0, if λ = λ∗0

for 1 ≤ i ≤ m,

Reβj(λ
∗
0) < 0 for j ≥ m+ 1.

(3.11)
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In addition, there is a period L′ > 0 such that

λ0 = λ0(L
′) = min

L>0
λ0(L). (3.12)

Thanks to [16, 15], for µ = Ω1

Ω2
≥ 0 the multiplicity m = 2 in (3.11) at λ0 = λ0(L

′) (see also
[3, 14]).

In this section, we always take L′ as the period given by (3.12), and define the following
number as the critical Taylor number:

Tc = λ20(L
′).

For simplicity, omitting the prime, we denote L′ by L.
By (3.11) and (3.12), to verify the PES, it suffices to prove that for λ > λ0,

βi(λ) > 0, ∀1 ≤ i ≤ m. (3.13)

To this end, we need to derive the eigenvectors of (3.9) and (3.10) at βi(λ0) = 0 (i = 1, 2).
It is readily to check that the eigenvectors of (3.9) with (3.2) corresponding to βi(λ0) = 0

(i = 1, 2) are given by

ψ1 = (ψz, ψr, ψθ) = (− sin az D∗h(r), a cos az h(r), cos az φ(r)), (3.14)

ψ̃1 = (ψ̃z, ψ̃r, ψ̃θ) = (cos az D∗h(r), a sin az h(r), sin az φ(r)), (3.15)

where (h(r), φ(r)) satisfies

(DD∗ − a2)2h = a2λ0

( 1

r2
− κ

)
φ,

(DD∗ − a2)φ = −λ0κh,

(h,Dh, φ) = 0, at r = η, 1

(3.16)

and

D =
d

dr
, D∗ =

d

dr
+

1

r
, a =

2π

L
.

The dual eigenvectors of (3.10) with (3.2) read

ψ∗
1 = (ψ∗

z , ψ
∗
r , ψ

∗
θ) = (− sin az D∗h

∗(r), a cos az h∗(r), cos az φ∗(r)), (3.17)

ψ̃∗
1 = (ψ̃∗

z , ψ̃
∗
r , ψ̃

∗
θ) = (cos az D∗h

∗(r), a sin az h∗(r), sin az φ∗(r)), (3.18)

where (h∗, φ∗) satisfies

(DD∗ − a2)2h∗ = λ0κφ
∗,

(DD∗ − a2)φ∗ = −a2λ0
( 1

r2
− κ

)
h∗,

(h∗, Dh∗, φ∗) = 0, at r = η, 1.

(3.19)

The following lemma shows that the PES is valid for the Taylor problem (3.1)–(3.3) with
µ ≥ 0.

Lemma 3.1 If µ ≥ 0, then the first eigenvalues βi(λ) (1 ≤ i ≤ m) of (3.9) are real with
multiplicity m = 2 near λ = λ0 =

√
Tc, and the first eigenvectors at λ = λ0 are given by (3.14)

and (3.15). Moreover, the eigenvalues βj(λ) (j = 1, 2, · · · ) satisfy conditions (5.4) and (5.5) at
λ = λ0, i.e., the PES holds true at the critical Taylor number Tc.
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Proof We only need to prove (3.13). By [9, Theorem 2.1], it suffices to verify that

(Bψ1, ψ
∗
1)H ̸= 0, (Bψ̃1, ψ̃

∗
1)H ̸= 0. (3.20)

We infer from (3.4), (3.14), (3.15), (3.17) and (3.18) that

(Bψ1, ψ
∗
1)H = (Bψ̃1, ψ̃

∗
1)H

=

∫ L

0

∫ 1

η

r
[( 1

r2
− κ

)
ψθψ

∗
r + κψrψ

∗
θ

]
dzdr

=
La

2

∫ 1

η

r
[( 1

r2
− κ

)
hφ∗ + κφh∗

]
dr. (3.21)

Since µ ≥ 0, by (2.4), we have 0 < κ < 1 and 1
r2 − κ > 0 for η < r < 1. On the other hand, we

know that the first eigenvectors (h(r), φ(r)) of (3.16) and (h∗(r), φ∗(r)) of (3.19) at λ = λ0 are
positive (see [15, 3, 14]):

h(r) > 0, φ(r) > 0, h∗(r) > 0, φ∗(r) > 0, ∀η < r < 1. (3.22)

Thus (3.20) follows from (3.21) and (3.22). The proof is completed.

3.3 Phase transition theorems

Here we always assume that the first eigenvalue of (3.9) with (3.2) is real with multiplicity
m = 2, i.e., the first eigenvalue λ0 of (3.16) is simple, and the PES holds true. By Lemma 3.1,
this assumption is valid for all µ ≥ 0 and 0 < η < 1.

Let ψ1 and ψ∗
1 be given by (3.14) and (3.17). We define a number R by

R =
1

(ψ1, ψ∗
1)H

[(G(Φ, ψ1), ψ
∗
1)H + (G(ψ1,Φ), ψ

∗
1)H ], (3.23)

where Φ ∈ H1 is defined by

(A− λ0B)Φ = G(ψ1, ψ1). (3.24)

Here operators A,B and G are as in (3.4). The solution Φ of (3.24) exists because G(ψ,ψ1) is

orthogonal with ψ∗
1 and ψ̃∗

1 in H.
The following results characterize the dynamical properties of phase transitions for the

Taylor problem with the z-periodic boundary condition.

Theorem 3.1 If the number R < 0 in (3.23), then the Taylor problem (3.1)–(3.3) has
a Tyep-I (continuous) transition at the critical Taylor number T = Tc or λ = λ0, and the
following assertions holds true:

(1) When the Taylor number T ≤ Tc or λ ≤ λ0, the steady state u = 0 is locally asymptoti-
cally stable;

(2) The problem bifurcates from (u, λ) = (0, λ0) (or from (u, T ) = (0, Tc)) to an attractor
Aλ homeomorphic to a circle S1 on λ0 < λ, which consists of steady states of this problem;

(3) Any u ∈ Aλ can be expressed as

u =
∣∣∣β1(λ)
R

∣∣∣ 1
2

v + o(|β1|
1
2 ),

v = xψ1 + yψ̃1,

x2 + y2 = 1,
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where ψ1, ψ̃1 are given in (3.14) and (3.17);

(4) There is an open set U ⊂ H with 0 ∈ U such that Aλ attracts U \ Γ, where Γ is the
stable manifold of u = 0 with codimension two in H;

(5) When 1 − µ > 0 is small, for any u0 ∈ U \ (Γ ∪ H̃), there exists a time t0 ≥ 0 such
that for any t > t0, the vector field ũ(t, u0) = (uz, ur) is topologically equivalent to one of the
patterns shown in Figure 2, where u = (ũ(t, u0), uθ(t, u0)) is the solution of (3.1)–(3.3), and

H̃ =
{
u = (uz, ur, uθ) ∈ H

∣∣∣ ∫ L

0

∫ 1

η

ruzdrdz = 0
}
;

(6) When 1− µ > 0 is small, for any u0 ∈ (U ∩ H̃) \ Γ, there exists a time t0 ≥ 0 such that
for any t > t0, ũ(t, u0) = (uz, ur) is topologically equivalent to the structure as shown in Figure
3.

Figure 2 Taylor vortices with a cross-channel flow

Figure 3 Taylor vortices without a cross-channel flow
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Theorem 3.2 For the case where R > 0, the transition of the Taylor problem (3.1)–(3.3)
at T = Tc is of Type-II. Moreover, the Taylor problem has a singularity separation at T ∗ < Tc
(λ∗ < λ0). More precisely, we have the following assertions:

(1) There exists a number λ∗ (0 < λ∗ < λ0) such that the problem generate a circle Σ∗ = S1

at λ = λ∗ consisting of singular points, and bifurcates from (Σ∗, λ∗) on λ∗ < λ to at least two
branches of circles Σλ

1 and Σλ
2 , each consisting of steady states satisfying

lim
λ→λ0

Σ1
λ = {0},

dist(Σλ
2 , 0) = min

u∈Σλ
2

∥u∥H > 0, at λ = λ0

(see Figure 4).

(2) For each λ∗ < λ < λ0, the space H can be decomposed into two open sets Uλ
1 and

Uλ
2 : H = U

λ

1 +U
λ

2 with Uλ
1 ∩Uλ

2 = ∅, Σλ
1 ⊂ ∂Uλ

1 ∩ ∂Uλ
2 such that the problem has two disjoint

attractors Aλ
1 and Aλ

2 :

Aλ
1 = {0} ⊂ Uλ

1 , Σλ
2 ⊂ Aλ

2 ⊂ Uλ
2 ,

and Aλ
i attracts Uλ

i (i = 1, 2).

(3) For λ0 ≤ λ, the problem has an attractor Aλ satisfying

lim
λ→λ0

Aλ
2 = Aλ0 , dist(Aλ, 0) > 0, ∀λ ≥ λ0,

and Aλ attracts H \ Γλ, where Γλ is the stable manifold of u = 0 with codimension mλ ≥ 2 in
H.

λ

Σ

λλ

Σ
λ

Σ
λ

Figure 4 Singularity separation of circles consisting of steady states at λ = λ∗

4 Explicit Expression of the Parameter R

4.1 General case

The parameter R defined by (3.23) and (3.24) can be explicitly expressed in the following
integral formula:

R = − 1

(ψ1, ψ∗
1)H

[π
2

∫ 1

η

rhφ∗ dϕ0
dr

dr

+

∫ L

0

∫ 1

η

r
(
(ϕ̃ · ∇)ψzψ

∗
z + (ψ̃ · ∇)ϕzψ

∗
z + (ϕ̃ · ∇)ψrψ

∗
r

+ (ψ̃ · ∇)ϕrψ
∗
r + (ϕ̃ · ∇)ψθψ

∗
θ + (ψ̃ · ∇)ϕθψ

∗
θ

+
ϕθψrψ

∗
θ

r
+
ψθϕrψ

∗
θ

r
− 2

ψθϕθψ
∗
r

r

)
drdz

]
,
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where ψ̃ = (ψz, ψr), ψ1 = (ψz, ψr, ψθ), ψ
∗
1 = (ψ∗

z , ψ
∗
r , ψ

∗
θ) are given by (3.14) and (3.17),

(ψ1, ψ
∗
1)H =

∫ L

0

∫ 1

η

r(ψzψ
∗
z + ψrψ

∗
r + ψθψ

∗
θ)drdz,

and ϕ0, ϕ = (ϕz, ϕr, ϕθ) satisfyDD∗ϕ0 = a
(
φD∗h+ hDφ+

1

r
φh

)
,

ϕ0|r=η,1 = 0,

−∆ϕz +
∂p

∂z
= −1

2
sin 2azH1(r),

−
(
∆− 1

r2

)
ϕr − λ0

( 1

r2
− κ

)
ϕθ +

∂p

∂r
= −1

2
cos 2azH2(r),

−
(
∆− 1

r2

)
ϕθ − λ0κϕr = −1

2
cos 2azH3(r),

div(rϕ̃) = 0, ϕ̃ = (ϕz, ϕr),
ϕ|r=η,1 = 0.

Here Hi(r) (i = 1, 2, 3) are as in (6.9).

4.2 Narrow-gap case

We consider here the case where the gap r2 − r1 is small compared to the mean radius
r0 = r1+r2

2 with µ ≥ 0 and with axi-symmetric perturbations. This case is the situation
investigated in [13].

We take the length scale h = r2 − r1. Then the narrow gap condition is given by

1 = r2 − r1 ≪ r1 + r2
2

. (4.1)

Under the assumption (4.1), we can neglect the terms containing r−n (n ≥ 1) in (2.7). In
addition, by (4.1) we have

−
√
T
(η2 − µ

1− η2
− 1− µ

1− η2
r21
r2

)
=

√
T
(
1− 1− µ

1− η2
r2 − r21
r2

)
≃

√
T (1− (1− µ)(r − r1)).

Let

α =
η2 − µ

1− η2
. (4.2)

Replacing uθ by
√
αuθ, and assuming that the perturbations are axi-symmetric and are inde-

pendent of θ, we obtain from (2.7)

∂uz
∂t

+ (ũ · ∇)uz = ∆uz −
∂p

∂z
,

∂ur
∂t

+ (ũ · ∇)ur = ∆ur −
∂p

∂r
+

√
αT (1− (1− µ)(r − r1))uθ,

∂uθ
∂t

+ (ũ · ∇)uθ = ∆uθ +
√
αTur,

∂ur
∂r

+
∂uz
∂z

= 0,

(4.3)
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where

∆ =
∂2

∂r2
+

∂2

∂z2
, (ũ · ∇) = ur

∂

∂r
+ uz

∂

∂z
.

In this case, the spatial domain is M = (r1, r1 + 1) × (0, L). For convenience, we consider
here the Dirichlet boundary condition

u|∂M = 0. (4.4)

The initial value condition is axisymmetric, and given by

u = u0(r, z), at t = 0. (4.5)

The linearized equations of (4.3) read

−∆uz +
∂p

∂z
= 0,

−∆ur +
∂p

∂r
= λuθ − λ(1− µ)(r − r1)uθ,

−∆uθ = λur,

∂ur
∂r

+
∂uz
∂z

= 0,

(4.6)

where λ =
√
αT , T is the Taylor number given by (2.2).

Let λ1 > 0 be the first eigenvalue of (4.6) with (4.4). We call

Tc =
λ21
α

(4.7)

the critical Taylor number, where α is given by (4.2).
As µ→ 1, equations (4.6) are reduced to the following symmetric linear equations:

−∆uz +
∂p

∂z
= 0,

−∆ur +
∂p

∂r
= λuθ,

−∆uθ = λur,

∂uz
∂z

+
∂ur
∂r

= 0.

(4.8)

Let the first eigenvalue λ0 > 0 of (4.8) with (4.4) have multiplicity m ≥ 1, the corresponding
eigenfunctions be vi (i = 1, · · · ,m), and the corresponding eigenspace be

E0 = span{vi | 1 ≤ i ≤ m}.

We remark here that under conditions (2.4) and (4.1), the condition µ → 1 can be equiva-
lently replaced by

r1 =
2 + δ

1− µ
(4.9)

for some δ > 0. In this case, the parameter α in (4.2) is

α =
η2 − µ

1− η2
≃ δ

2
.
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When the conditions (4.1) and (4.9) hold true, µ → 1 and r1 → ∞. In this case, the equa-
tions (3.1) are replaced by (4.3), and the linearized equations of (4.3) reduce to the symmetric
linear system (4.8). For the approximate problem (4.8) with (3.2), we use R0 to denote the
number R defined by (3.23) and (3.24):

R0 =
1

∥ψ1∥2
[(G(Φ, ψ1), ψ1) + (G(ψ1,Φ), ψ1)H ].

Here ψ1 is given by (3.14) with (h, φ) satisfying

(D2 − a2)2h = λ0φ,

(D2 − a2)φ = −λ0h,
h = Dh = 0, φ = 0, at r = 1, η,

and Φ is defined by

(A− λ0B0)Φ = G(ψ1, ψ1),

B0Φ = P (0,Φθ,Φr).
(4.10)

By (3.6), we have

(G(Φ, ψ1), ψ1)H = 0,

(G(ψ1,Φ), ψ1)H = −(G(ψ1, ψ1),Φ)H .

Hence, we infer from (4.10) that

R0 = − 1

∥ψ1∥2
(G(ψ1, ψ1),Φ) = − 1

∥ψ1∥2
((A− λ0B0)Φ,Φ).

We see that A− λ0B0 is symmetric and semi-positive definite, and

G(ψ1, ψ1)⊥Ker(A− λ0B0), Φ⊥Ker(A− λ0B0).

Therefore, it follows that

R0 = − 1

∥ψ1∥2
((A− λ0B0)

1
2Φ, (A− λ0B0)

1
2Φ)H < 0.

On the other hand, it is known that the number R(µ) in (3.23) is continuous on µ, and

R(µ) → R0, as µ→ 1.

Hence, we derive the following conclusion.

Theorem 4.1 For the Taylor problem (3.1)–(3.3), there exist µ0 < 1 and 0 < η0 < 1 such
that for any µ0 < µ < 1 and η0 < η < 1 with µ < η2, the parameter R = R(µ, η) defined by
(3.23) is negative, i.e.,

R(µ, η) < 0, ∀µ0 < µ < 1, η0 < η < 1.

Consequently, the conclusions in Theorem 3.1 hold true.
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5 Formation and Stability of the Taylor Vortices

Assertions (5) and (6) in Theorem 3.1 provide an asymptotic structure of the solutions in
the physical space when the gap r2 − r1 is small, as observed in the experiments. However, for
general parameters η and µ we can not give the precisely theoretic results, and only present
some qualitative description. Here we consider two general cases as follows.

Case: µ ≥ 0. Following [16, 15], for the eigenvector (h, φ) of (3.16) the function h can be
taken as positive and has a unique maximum point in the interval (η, 1). Therefore, for the

eigenvectors defined by (3.14) and (3.15), the vector fields (ψz, ψr) and (ψ̃z, ψ̃r) are divergence-
free and have the topological structure as shown in Figure 3. Hence, to obtain Assertions (5)
and (6) in Theorem 3.1 for any µ ≥ 0, it suffices to prove that

h′′(r) ̸= 0, at r = r0, 1, η, (5.1)

where r0 ∈ (η, 1) is the maximum point of h. We conjecture that the property (5.1) for the
eigenvector (h, φ) of (3.16) is valid for all 0 ≤ µ < 1 and 0 < η < 1.

Case: µ < 0. In this case, the situation is different. Numerical results show that the vector
field (ψz, ψr) in (3.14) has k ≥ 2 vortices in the radial direction, called the Taylor vortices,
which has the topological structure as shown in Figure 5 (see [1]). This type of structure is
structurally unstable. However, as discussed in [4], under a perturbation either in space H or
in

H̃ =
{
(uz, ur, uθ) ∈ H

∣∣∣ ∫ L

0

∫ 1

η

ruzdzdr = 0
}
,

there are only finite types of stable structures. In particular, if the vector field (ψz, ψr) in (3.14)
is D-regular, i.e., h(r) satisfies (5.1), then there is only one class of stable structures regardless

of the orientation. For example, when u0 ∈ H \(Γ∪H̃), the asymptotic structure of the solution

u(t, u0) of (3.1)–(3.3) is as shown in Figure 6, and when u0 ∈ H̃ \ Γ, the asymptotic structure
of the solution u(t, u0) is as shown in Figure 7. It is clear that the class of structures illustrated
by Figure 6 is different from that illustrated by Figure 7. The first one has a cross the channel
traveling flow in the z-direction and the second one does not have such a cross the channel flow.

Figure 5 (ψz, ψr) has k vortices in r-direction

Figure 6 The stable structure with a perturbation in space H \ (Γ ∪ H̃)

Figure 7 The stable structure with a perturbation in space H̃ \ Γ
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6 Proof of Main Theorems

6.1 Proof of Theorem 3.1

We shall prove this theorem in the following several steps.

Step 1 We claim that the problem (3.1)–(3.3) bifurcates from (u, λ) = (0, λ0) to a circle
S1 which consists of stead states.

It is easy to see that the problem (3.1) with (3.2) is invariant for the transition in the
z-direction

u(z, r, t) → u(z + z0, r, t) for z0 ∈ R1.

Therefore, if u0 is a steady state solution of (3.1) with (3.2), then for any z0 ∈ R1 the function
u0(z + z0, r) is also a steady state solution. We can see that the set

Σ = {u0(z + z0, r) | z0 ∈ R1}

is homeomorphic to a circle S1 in H1 for any u0 ∈ H1. Hence, the singular points of (3.1) with
(3.2) appear as a circle.

It is known in [16, 15] that there exist singular points bifurcated from (u, λ) = (0, λ0). Thus
this claim is proved.

Step 2 (Reduction to the Center Manifold) We shall use the construction of center manifold
functions to derive the reduced equations of (3.5) given by

dx

dt
= β1(λ)x+

(G(u), ψ∗
1λ)H

(ψ1λ, ψ∗
1λ)H

,

dy

dt
= β1(λ)y +

(G(u), ψ̃∗
1λ)H

(ψ̃1λ, ψ̃∗
1λ)H

,

(6.1)

where ψ1λ and ψ̃1λ are the eigenvectors of (3.9) corresponding to β1(λ) near λ = λ0 with

lim
λ→λ0

ψ1λ = ψ1, ψ1 as in (3.14),

lim
λ→λ0

λ̃1λ = ψ̃1, ψ̃1 as in (3.15),
(6.2)

and ψ∗
1λ and ψ̃∗

1λ are the dual eigenvectors of ψ1λ and ψ̃1λ satisfying

lim
λ→λ0

ψ∗
1λ = ψ∗

1 , ψ∗
1 as in (3.17),

lim
λ→λ0

ψ̃∗
1λ = ψ̃∗

1 , ψ̃1 as in (3.18).
(6.3)

Let Ψ : E0 → E⊥
0 be the center manifold function of (3.5) at λ = λ0, where

E0 = span{ψ1, ψ̃1},

E⊥
0 = {u ∈ H | (u, ψ∗

1)H = 0, (u, ψ̃∗
1)H = 0}.

Let u0 = xψ1 + yψ̃1 ∈ E0. Then it is easy to check that G(u0) ∈ E⊥
0 . Hence, by the center

manifold approximation formula in [12, 11], we find that

Ψ = ϕ(x, y) + o(|x|2 + |y|2) +O(β1(λ)(|x|2 + |y|2)),
−Lλϕ = G(ψ1, ψ1)x

2 +G(ψ̃1, ψ̃1)y
2 + (G(ψ1, ψ̃1) +G(ψ̃1, ψ1))xy.

(6.4)
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On the center manifold, u = u0 + Φ(u0). Therefore, from (6.1)–(6.4), we obtain the reduced
equations of (3.5) to the center manifold as follows:

dx

dt
= β1(λ)x+

x

ρ
(G(ϕ, ψ1) +G(ψ1, ϕ), ψ

∗
1)H +

y

ρ
(G(ϕ, ψ̃1)

+G(ψ̃1, ϕ), ψ
∗
1)H + o(|x|3 + |y|3) + ε1(λ)O(|x|3 + |y|3),

dy

dt
= β1(λ)y +

x

ρ
(G(ϕ, ψ1) +G(ψ1, ϕ), ψ̃

∗
1)H +

y

ρ
(G(ϕ, ψ̃1)

+G(ψ̃1, ϕ), ψ̃
∗
1)H + o(|x|3 + |y|3) + ε2(λ)O(|x|3 + |y|3),

(6.5)

where ρ = (ψ1, ψ
∗
1)H = (ψ̃1, ψ̃

∗
1)H , and

lim
λ→λ0

εi(λ) = 0, i = 1, 2.

Furthermore, direct calculation shows that

G(ψ1, ψ1) = Pψ0 + Pψ2, G(ψ̃1, ψ̃1) = Pψ0 − Pψ2,

G(ψ1, ψ̃1) = Pψ̃0 + Pψ̃2, G(ψ̃1, ψ1) = −Pψ̃0 + Pψ̃2,

where P : L2(M)3 → H is the Leray projection, and

ψ0 = −


0,

1

2

(
a2hD∗h+ a2hDh− 1

r
φ2

)
,

a

2

(
φD∗h+ hDφ+

1

r
hφ

)
,

ψ2 = −



a

2
sin 2az((D∗h)

2 − hDD∗h),

1

2
cos 2az

(
a2hDh− a2hD∗h− 1

r
φ2

)
,

a

2
cos 2az

(
hDφ− φD∗h+

1

r
φh

)
,

ψ̃0 = −


a

2
((D∗h)

2 + hDD∗h),

0,
0,

ψ̃2 = −


−a
2
cos 2az((D∗h)

2 − hDD∗h),

1

2
sin 2az

(
a2hDh− a2hD∗h− 1

r
φ2

)
,

a

2
sin 2az

(
hDφ− φD∗h+

1

r
φh

)
.

Thus, (6.4) is rewritten as

(A− λ0B)ϕ = (x2 + y2)Pψ0 + (x2 − y2)Pψ2 + 2xyP ψ̃2. (6.6)

Let

ϕ = −[(x2 + y2)ϕ0 + (x2 − y2)ϕ2 + 2xyϕ̃2], (6.7)
ϕ0 = (0, 0, φ0),

ϕ2 =
(
− 1

2
sin 2azφz, cos 2azφr, cos 2azφθ

)
,

ϕ̃2 =
(1
2
cos 2azϕ̃z, sin 2azϕ̃r, sin 2azϕ̃θ

)
.

(6.8)
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Then we deduce from (6.6) and (6.7) that

φz = φ̃z, φr = φ̃r, φθ = φ̃θ,

and (φz, φr, φθ) satisfies

(DD∗ − 4a2)φr + 4a2λ0

( 1

r2
− κ

)
φθ = 4a2H2 + 2aDH1,

(DD∗ − 4a2)φθ + λ0κφr = H3,

φz =
1

2a
D∗φr,

φz = 0, φθ = 0, φr = Dφr = 0, at r = η, 1,

where H1, H2 and H3 are given by

H1 = a((D∗h)
2 − hDD∗h),

H2 = a2hDh− a2hD∗h− 1

r
φ2,

H3 = a
(
hDφ− φD∗h+

1

r
φh

)
.

(6.9)

Based on (6.8), we find

(G(ψ̃1, ϕi) +G(ϕi, ψ̃1), ψ
∗
1)H = 0 for i = 0, 2,

(G(ψ1, ϕi) +G(ϕi, ψ1), ψ̃
∗
1)H = 0 for i = 0, 2,

(G(ψ̃1, ϕ̃2) +G(ϕ̃2, ψ̃1), ψ̃
∗
1)H = 0,

(G(ψ1, ϕ̃2) +G(ϕ̃2, ψ1), ψ
∗
1)H = 0.

Then, putting (6.7) into (6.5), we deduce that

dx

dt
= β1x− 1

ρ
x(x2 + y2)(G(ϕ0, ψ1) +G(ψ1, ϕ0), ψ

∗
1)H

−1

ρ
x(x2 − y2)(G(ϕ2, ψ1) +G(ψ1, ϕ2), ψ

∗
1)H

−2

ρ
xy2(G(ϕ̃2, ψ̃1) +G(ψ̃1, ϕ̃2), ψ

∗
1)H

+o(|x|3 + |y|3) + ε1(λ)O(|x|3 + |y|3),
dy

dt
= β1y −

1

ρ
y(x2 + y2)(G(ϕ0, ψ̃1) +G(ψ̃1, ϕ0), ψ̃

∗
1)H

−1

ρ
y(x2 − y2)(G(ϕ2, ψ̃1) +G(ψ̃1, ϕ2), ψ̃

∗
1)H

−2

ρ
yx2(G(ϕ̃2, ψ1) +G(ψ1, ϕ̃2), ψ̃

∗
1)H

+o(|x|2 + |y|2) + ε2(λ)O(|x|3 + |y|3).

(6.10)

Direct computation yields

(G(ϕ2, ψ1) +G(ψ1, ϕ2), ψ
∗
1)H = (G(ϕ̃2, ψ̃1) +G(ψ̃1, ϕ̃2), ψ

∗
1)H

= (G(ϕ2, ψ̃1) +G(ψ̃1, ϕ2), ψ̃
∗
1)H

= (G(ϕ̃2, ψ1) +G(ψ1, ϕ̃2), ψ̃
∗
1)H .
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Hence, (6.10) can be rewritten as

dx

dt
= β1x+Rx(x2 + y2) + o(|x|3 + |y|3) + ε1(λ)O(|x|3 + |y|3),

dy

dt
= β1y +Ry(x2 + y2) + o(|x|3 + |y|3) + ε2(λ)O(|x|3 + |y|3),

(6.11)

where

R = −1

ρ
(G(ϕ0 + ϕ2, ψ1) +G(ψ1, ϕ2 + ϕ2), ψ

∗
1)H . (6.12)

On the other hand, we infer from (6.6) and (6.8) that

(A− λ0B)ϕi = Pψi for i = 0, 2,

Hence, we find

Φ = −(ϕ0 + ϕ2),

(A− λ0B)Φ = G(ψ1, ψ1) = Pψ0 + Pψ2.

Thus the number (6.12) is the same as that in (3.23).

Step 3 Proof of Assertions (1)–(4). When R < 0, (x, y) = 0 is locally asymptotically
stable for (6.11) at λ = λ0. Therefore, u = 0 is a locally asymptotically stable singular point of
(3.5). By the attractor bifurcation theorem (see [5, Theorem 6.1, p. 153]), the problem (3.1)–
(3.3) bifurcates from (u, λ) = (0, λ0) to an attractor Aλ which attracts an open set U \ Γ, and
Assertions (1), (3) and (4) hold true.

In addition, the nonlinear terms in (6.11) satisfy the coercive condition in the S1-attractor
bifurcation theorem (see [5, Theorem 5.10]) and the conclusion in Step 1, and Assertion (2)
follows.

Step 4 Attraction in Cr-norm. It is known that for any initial value u0 ∈ H there is a
time t0 > 0, such that the solution u(t, u0) of (3.1)–(3.3) is analytic for t > t0, and uniformly
bounded in Cr-norm for any r ≥ 1 (see [7, Theorem 1]). Hence, by Assertion (4), for any
u0 ∈ U \ Γ, we have

lim
t→∞

min
v0∈Aλ

∥u(t, u0)− v0∥Cr = 0. (6.13)

Step 5 Structure of solutions in Aλ. By Assertion (3), for any steady state solution
u0 = (uz, ur, uθ) ∈ Aλ, the vector field ũ = (uz, ur) of u0 can be expressed as

uz = γ cos a(z + z0)D∗h(r) + w1(z, r, β1),

ur = aγ sin a(z + z0)h(r) + w2(z, r, β1)
(6.14)

for some z0 ∈ R1, where

γ =
∣∣∣β1(λ)
R

∣∣∣ 1
2

, wi = o(|β1|
1
2 ) for i = 1, 2.

As in the proof of Theorem 4.1 in [8], we deduce that the vector field (6.14) is D-regular for
all 0 < λ− λ0 < ε for some ε > 0. Moreover, the first order vector field in (6.14)

(vz, vr) = (γ cos a(z + z0)D∗h(r), aγ sin a(z + z0)h(r)) (6.15)
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has the topological structure as shown in Figure 3.
Furthermore, it is easy to check that the space

H̃ =
{
u = (uz, ur, uθ) ∈ H

∣∣∣ ∫
M

ruzdrdz = 0
}

is invariant for the operator Lλ+G defined by (3.4). To see this, since u is z-periodic and u = 0
at r = 1, η, we have∫ L

0

∫ 1

η

r(ũ · ∇)uzdrdz =

∫ L

0

∫ 1

η

rur
∂uz
∂r

drdz = −
∫ L

0

∫ 1

η

∂(rur)

∂r
uzdrdz =

∫ L

0

∫ 1

η

r
∂uz
∂z

uzdrdz

= 0, ∀u ∈ H,∫ L

0

∫ 1

η

r∆uzdrdz = 0, ∀u ∈ H̃.

Thus, we see that H̃ is invariant for Lλ +G.
Therefore, for the vector field (6.13), we have∫

M

ruzdrdz = 0.

By the connection lemma and the orbit-breaking method in [6], it implies that the vector field
(6.14) is topologically equivalent to its first order field (6.15) for 0 < λ− λ0 < ε.

Step 6 Proof of Assertions (5) and (6). For any initial value u0 ∈ U \ (Γ ∪ H̃), we have

u0 =

∞∑
k=1

αkek + w0, (6.16)

where w0 ∈ H̃, and for any k = 1, 2, · · · ,

ek = (ẽk(r), 0, 0),

∫ 1

η

ẽk(r)dr ̸= 0,

and ẽk(r) satisfies that

D∗Dẽk = −ρkẽk, ẽk|r=η,1 = 0, 0 < ρ1 < ρ2 < · · · .

Make the decomposition

H1 = E ⊕ H̃1, H̃1 = H1 ∩ H̃,

H = E ⊕ H̃,

E = span{e1, e2, · · · }.

Then equation (3.5) can be decomposed into

de

dt
= Lλe, e ∈ E,

dw

dt
= Lλw +G(w), w ∈ H̃1,

(e(0), w(0)) =
(∑

k

αkek, w0

)
.

(6.17)
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It is obvious that
Lλek = −ρkek.

Hence, for the initial value (6.16), the solution u(t, u0) of (6.17) can be expressed as

u(t, u0) =
∑
k

αke
−ρktek + w(t, u0),∫ 1

η

ek(r)dr ̸= 0.
(6.18)

By (6.13), we have
lim
t→∞

∥w(t, u0)− v0∥Cr = 0, v0 ∈ Aλ,

which implies by Step 5 that w(t, u0) is topologically equivalent to (6.15) for t > 0 sufficiently
large, i.e., w(t, u0) has the topological structure as shown in Figure 3.

By the structural stability theorem, Theorem 2.2.9 and Lemmas 2.3.1 and 2.3.3 (connection
lemmas) in [6], we infer from (6.18) that the vector field in (6.18) is topologically equivalent to
either the structure as shown in Figure 2(a) or the structure as shown in 2(b), dictated by the
sign of αk0 in (6.16) with k0 = min{k | αk ̸= 0}. Thus, Assertion (5) is proved.

Assertion (6) can be derived by the invariance of H̃ under the operator Lλ + G and the

structural stability theorem with perturbation in H̃, in the same fashion as in the proof of
Theorem 2.2.9 in [6] by using the connection lemma.

The proof of Theorem 3.1 is completed.

6.2 Proof of Theorem 3.2

When R > 0, by [10, Theorem A.2], we infer from the reduced equation (6.11) that the
transition of (3.1)–(3.3) is of Type-II. In the following, we shall use the saddle-node bifurcation
theorem (see [10, Theorem A.7]), to prove this theorem. Let

H∗ = {(uz, ur, uθ) ∈ H | uz(−z, r) = −uz(z, r)},
H∗

1 = H1 ∩H∗.

It is easy to see that the space H∗ is invariant under the action of the operator Lλ + G
defined by (3.4):

Lλ +G : H∗
1 → H∗, (6.19)

and the first eigenvalue β1(λ) of Lλ : H∗
1 → H∗ at λ = λ0 (T = Tc) is simple, with the first

eigenvector ψ1 given by (3.14). Hence, the number R in (6.12) is valid for the mapping (6.18),
i.e.,

G(xψ1 +Φ(x), ψ∗
1) = Rx3 + o(|x|3).

Thus, it is readily to check that all conditions in [10, Theorem A.7] are fulfilled by the operator
(6.19). By Step 1 in the proof of Theorem 3.1, each singular point of (6.19) generates a
singularity circle for Lλ +G in H. Therefore, Theorem 3.2 follows from [10, Theorem A.7].

The proof of Theorem 3.2 is completed.
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