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1 Introduction

The microcirculation, which is comprised of the microvessels of diameter smaller than 100

µm, is essential to the human body, since it is the location where exchange of mass and energy

takes place. At the microcirculatory level, the particulate nature of the blood becomes signifi-

cant. The rheological property of the red blood cells (RBCs) is a key factor of the blood flow

characteristics in microvessels due to their large volume fraction (40-45%), so called hematocrit

(Hct), in the whole blood. In a microvessel, RBCs tend to move to the center of the vessel so

that there is a cell-free layer near the vessel wall. The non-uniform distribution of hematocrit

within the cross-section of the vessel is the physical reason of Fahraeus-Lindqvist effect (see

[16]) which is characterized by a decrease in the apparent blood viscosity in such microvessels.

Nowadays, in silico mathematical modeling and numerical study of RBC rheology have

attracted growing interest (see, e.g., [8, 34]), since it is difficult to deal with in vivo and in

vitro experiments on studying microcirculation and RBC rheology due to the size limitation.

For example, in [15], an immersed boundary method was used to simulate 3D capsule and

RBCs in shear flow with both neo-Hookean and Skalak models for membrane deformation. It

was found that the bending resistance must be included in order to simulate complex shape
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of RBCs when they deform in shear flow. In [4], an immersed boundary method and a neo-

Hookean model with and without bending resistance were used to simulate the interaction of

two deformable cells in a shear flow in two dimensions. It was found that aggregates made of

deformable cells are easily breakable by a shear flow, while those made of less deformable cells

are not. In [27, 28], an immersed finite element method was presented for the simulation of

RBCs in three dimensions while the RBC membrane employing a Mooney-Rivlin model. The

microscopic mechanism of RBC aggregation has been linked to the macroscopic blood viscosity

via direct numerical simulation and the relation between the effective viscosity of blood flow

and the diameters of capillaries has been obtained. In [36], a semi-implicit particle method

combined with a spring model was used to simulate a single file of RBCs between two parallel

plates for various Hct in two dimensions. The parachute shape of RBCs in capillaries and flow

resistance were investigated with different Hct. In [9], an immersed boundary method based on

the lattice-Boltzmann method has been developed with Skalak model for the RBC membrane.

Their simulations capture RBC induced lateral platelet motion and the consequent development

of a platelet concentration profile that includes an enhanced concentration within a few microns

of the channel walls. In [13], a discrete model for the RBC membrane has been constructed

by taking into account of the volume constraint of the RBC, the local area constraint on each

triangle element from the mesh for the RBC membrane, the total area constraint of the RBC

surface, the stretching force between nodes on each edge of the surface triangle element, and

the preferred angle between triangle elements shared a common edge (the bending resistance).

These constraints give different forces acting on the nodes on the RBC surface. A lattice-

Boltzmann method was combined with this discrete model to simulate 200 densely packed

RBCs in three dimensional flow.

Among the methodologies and models for simulating the motion of the RBCs in flows,

we want to combine the immersed boundary method with spring models since one of our main

goals is to simulate the mixture of deformable and rigid particles in microvessels. For simulating

rigid particles freely moving in Newtonian fluid in three dimensions, we developed very efficient

methodologies, called distributed Lagrange multiplier/fictitious domain (DLM/FD) methods

(see, e.g., [20, 21, 29, 30]). The DLM/FD methods are closely related to the immersed boundary

methods, since they both use uniform grids on simple shape computational domain and the

Lagrange multipliers play similar role as the force acting on the elastic membrane immersed

in fluid for the immersed boundary methods. For modeling the RBC membrane, the general

organization of the RBC membrane is well characterized. It is shown that the human RBC is

a inflated closed membrane filled with a viscous fluid, called cytoplasm. The RBC membrane

has a phospholipid bilayer with the attached glycocalyx at the plasmatic face of the bilayer and

a network of spectrins, called the cytoskeleton, fastened to the bilayer at its cytoplasmic face

(see [18, 22]). The cytoskeleton is an elastic network of spectrin which has triangular structure

(and most of these triangles form hexagons) in the network (e.g., see [37]). This particular

geometry, as well as the intrinsic elastic properties of the spectrin, allows the RBC to be highly

deformable and elastic. Due to its special structure, the RBC membrane has strong resistance

changes in area/volume and shear deformation (see [22]). Therefore, it is of significance to take

into consideration the structure of the RBC membrane skeleton in the study of RBC rheology.
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Several spring models (see [12–14, 22, 23, 35, 36]) were developed to illustrate the structure of

the RBC membrane skeleton and to describe the deformability of the RBCs. In this paper, the

mechanical properties of the RBC membrane is predicted by a elastic spring model recently

proposed in [36]. We developed an immersed method combined with such elastic spring model

in [38]. The fluid motion is computed using an operator splitting technique and finite element

method with a fixed regular triangular mesh so faster solvers can be used for solving the fluid

flow. In [38], the elastic spring model is validated by comparing with previous experimental

data (see [19]), theoretical Keller and Skalak model (see [24]), and simulations (see [5, 26]) for

the inclination angles and tank-treading frequencies of single RBC in shear flows.

In this paper, we test the capability of the immersed boundary method developed in [38] by

applying it to simulate the motion of many RBCs in Poiseuille flow and validate it by comparing

the size of the cell-free layer next to the walls with experimental and computational results.

Then we combine the methodology with a distributed Lagrange multiplier/fictitious domain

method to simulate the interaction of cells and neutrally buoyant particles in a microchannel

(see, e.g., [17, 25], for cardiovarscular and oncological applications). The computational results

show that the neutrally buoyant disks behave similar to the almost circular cells when inter-

acting with other cells. The structure of this paper is as follows: We discuss the elastic spring

model and numerical methods in Section 2. In Section 3, we first study the lateral migration of

many cells in Poiseuille flow and validate our method by comparing the size of the cell-free layer

next to the walls. Then the numerical results of the interaction of cells and neutrally buoyant

particles in a microchannel are shown. The conclusions are summarized in Section 4.

2 Models and Methods

2.1 Fictitious domain formulation

Let Ω be a bounded rectangular domain filled with blood plasma which is incompressible,

Newtonian, and contains RBCs and neutrally buoyant particles with the viscosity of the cy-

toplasm same as that of the blood plasma (see Figure 1). We suppose, for simplicity, that Ω

contains a moving neutrally buoyant rigid particle B centered at G = {G1, G2}t; the flow is

modeled by the Navier-Stokes equations and the motion of the particle B is described by the

Euler-Newton’s equations. We define

W0,p =

{
v
∣∣∣ v ∈ (H1(Ω))2, v = 0 on the top and bottom of Ω and

v is periodic in the x1 direction

}
,

L2
0 =

{
q | q ∈ L2(Ω),

∫
Ω

qdx = 0
}
,

Λ0(t) = {µ | µ ∈ (H1(B(t)))2, ⟨µ, ei⟩B(t) = 0, i = 1, 2, ⟨µ,−→Gx⊥⟩B(t) = 0}

with e1 = {1, 0}t, e2 = {0, 1}t,
−→
Gx⊥ = {−(x2 −G2), x1 −G1}t and ⟨ · , · ⟩B(t) an inner product

on Λ0(t) which can be the standard inner product on (H1(B(t)))2 (see, e.g., [21], for further

information on the choice of ⟨ · , · ⟩B(t)). Then as in [29], the fictitious domain formulation with

distributed Lagrange multipliers for flow around a freely moving neutrally buoyant particle is
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Ω

Figure 1 An example of computational domain with one rigid particle

as follows:

For a.e. t > 0, find u(t) ∈ W0,p, p(t) ∈ L2
0, VG(t) ∈ R2, G(t) ∈ R2,

ω(t) ∈ R, λ(t) ∈ Λ0(t) such that
ρ

∫
Ω

[∂u
∂t

+ (u ·∇)u
]
· vdx+ 2µ

∫
Ω

D(u) : D(v)dx−
∫
Ω

p∇ · vdx

−⟨λ,v⟩B(t) = ρ

∫
Ω

g · vdx+

∫
Ω

f · vdx, ∀v ∈ W0,p,
(2.1)

∫
Ω

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω), (2.2)

⟨µ,u(t)⟩B(t) = 0, ∀µ ∈ Λ0(t), (2.3)

dG

dt
= VG, (2.4)

VG(0) = V0
G, ω(0) = ω0, G(0) = G0 = {G0

1, G
0
2}t, (2.5)

u(x, 0) = u0(x) =

{
u0(x), ∀x ∈ Ω\B(0),

V0
G + ω0{−(x2 −G0

2), x1 −G0
1}t, ∀x ∈ B(0),

(2.6)

where u and p denote velocity and pressure, respectively, ρ is the fluid density, and µ is the fluid

viscosity. We also assume that the flow is periodic in the x1 direction with period L, L being the

common length of the channel Ω. In the above (2.1)–(2.6), we have that D(v) = 1
2 (∇v+∇vt),

λ is a Lagrange multiplier, g is gravity, f is a body force which is the sum of fp and fB , where

fp is the pressure gradient pointing in the x1 direction and fB accounts for the force acting

on the fluid/cell interface (please see the following sections), VG is the translation velocity of

the particle B, and ω is the angular velocity of the particle B. We suppose that the no-slip

condition holds on ∂B. We also use, if necessary, the notation ϕ(t) for the function x → ϕ(x, t).

Remark 2.1 In (2.3), the rigid body motion in the region occupied by the particle is

enforced via Lagrange multipliers λ. As discussed in [29], we solve the following equations to

obtain the translation velocity VG(t) and the angular velocity ω(t){
⟨ei,u(t)−VG(t)− ω(t)

−→
Gx⊥⟩B(t) = 0 for i = 1, 2,

⟨
−→
Gx⊥,u(t)−VG(t)− ω(t)

−→
Gx⊥⟩B(t) = 0.

(2.7)

Remark 2.2 In (2.1), 2
∫
Ω
D(u) : D(v)dx can be replaced by

∫
Ω
∇u : ∇vdx, since u is

divergence free and in W0,p. Also the gravity g in (2.1) can be absorbed into the pressure term.

2.2 Elastic spring model for the RBC membrane

A two-dimensional elastic spring model used in [36] is considered in this paper to describe the

deformable behavior of the RBCs. Based on this model, the RBC membrane can be viewed as
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Figure 2 The elastic spring model of the RBC membrane

membrane particles connecting with the neighboring membrane particles by springs, as shown

in Figure 2. Elastic energy stores in the spring due to the change of the length l of the spring

with respected to its reference length l0 and the change in angle θ between two neighboring

springs. The total elastic energy of the RBC membrane, E = El + Eb, is the sum of the total

elastic energy for stretch/compression and the total energy for bending which, in particular,

are

El =
kl
2

N∑
i=1

( li − l0
l0

)2

(2.8)

and

Eb =
kb
2

N∑
i=1

tan2
(θi
2

)
. (2.9)

In equations (2.8) and (2.9), N is the total number of the spring elements, and kl and kb are

spring constants for changes in length and bending angle, respectively.

Remark 2.3 In the process of creating the initial shape of RBCs described in [36], the RBC

is assumed to be a circle of radius R0 = 2.8 µm initially. The circle is discretized into N = 76

membrane particles so that 76 springs are formed by connecting the neighboring particles. The

shape change is stimulated by reducing the total area of the circle through a penalty function

Γs =
ks
2

(s− se
se

)2

, (2.10)

where s and se are the time dependent area of the RBC and the equilibrium area of the RBC,

respectively, and the total energy is modified as E+Γs. Based on the principle of virtual work,

the force acting on the ith membrane particle now is

Fi = −∂(E + Γs)

∂ri
, (2.11)

where ri is the position of the ith membrane particle. When the area is reduced, each RBC

membrane particle moves on the basis of the following equation of motion:

mr̈i + γṙi = Fi (2.12)
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Here, ˙( ) denotes the time derivative; m and γ represent the membrane particle mass and

the membrane viscosity of the RBC. The position ri of the ith membrane particle is solved

by discretizing (2.12) via a second order finite difference method. The total energy stored in

the membrane decreases as the time elapses. The final shape of the RBC is obtained as the

total elastic energy is minimized (see [38]). The area of the final shape has less than 0.001%

difference from the given equilibrium area se and the length of the perimeter of the final shape

has less than 0.005% difference from the circumference of the initial circle. The reduced area

of an RBC in this paper is defined by s∗ = se
πR2

0
.

2.3 Immersed boundary method

The immersed boundary method developed by Peskin (see, e.g., [31–33]) is employed in this

study because of its distinguish features in dealing with the problem of fluid flow interacting

with a flexible fluid/structure interface. Over the years, it has demonstrated its capability

in study of computational fluid dynamics including blood flow. Based on the method, the

boundary of the deformable structure is discretized spatially into a set of boundary nodes. The

force located at the immersed boundary node X = (X1, X2) affects the nearby fluid mesh nodes

x = (x1, x2) through a 2D discrete δ-function Dh(X− x):

fB(x) =
∑

FiDh(Xi − x) for |X− x| ≤ 2h, (2.13)

where h is the uniform finite element mesh size and

Dh(X− x) = δh(X1 − x1)δh(X2 − x2) (2.14)

with the 1D discrete δ-functions being

δh(z) =


1

8h

(
3− 2|z|

h
+

√
1 +

4|z|
h

− 4
( |z|
h

)2 )
, |z| ≤ h,

1

8h

(
5− 2|z|

h
−
√
−7 +

12|z|
h

− 4
( |z|
h

)2 )
, h ≤ |z| ≤ 2h,

0, otherwise.

(2.15)

The movement of the immersed boundary node X is also affected by the surrounding fluid

and therefore is enforced by summing the velocities at the nearby fluid mesh nodes x weighted

by the same discrete δ-function:

U(X) =
∑

h2u(x)Dh(X− x) for |X− x| ≤ 2h. (2.16)

After each time step, the position of the immersed boundary node is updated by

Xt+∆t = Xt +∆tU(Xt). (2.17)

2.4 Space approximation and time discretization

Concerning the finite element based space approximation of {u, p} in problem (2.1)–(2.6),

we have used the P1-iso-P2 and P1 finite element approximation (e.g., see [20, Chapter 5]).

Suppose that a rectangular computational domain Ω ⊂ R2 is chosen with length L, h is a space
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discretization step, Th is a finite element triangulation of Ω for velocity, and T2h is a twice

coarser triangulation for pressure (see Figure 3). Let P1 be the space of polynomials in two

variables of degree ≤ 1, we introduce the finite dimensional spaces:

W0h =

{
vh

∣∣∣ vh ∈ C0(Ω)2,vh|T ∈ P1 × P1, ∀T ∈ Th,vh = 0 on the top and bottom

of Ω and is periodic in the x1 direction with period L

}
,

L2
h =

{
qh

∣∣∣ qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ T2h, qh is periodic in the x1

direction with period L

}
.

Figure 3 Schematic representation of a FEM triangulation and its subtriangulation

A finite dimensional space approximating Λ0(t) is defined as follows: let {xi}Ni=1 be a set of

points covering B(t). We define then

Λh(t) =
{
µh

∣∣∣ µh =
N∑
i=1

µiδ(x− xi), µi ∈ R2, ∀ i = 1, · · · , N
}
, (2.18)

where δ( · ) is the Dirac measure at x = 0. Then, instead of the scalar product of (H1(B(t)))2,

we shall use ⟨ · , · ⟩Bh(t) defined by

⟨µh,vh⟩Bh(t) =

N∑
i=1

µi · vh(xi), ∀µh ∈ Λh(t), vh ∈ W0,h. (2.19)

Then we approximate Λ0(t) by

Λ0,h(t) = {µh | µh ∈ Λh(t), ⟨µh, ei⟩Bh(t) = 0, i = 1, 2, ⟨µh,
−→
Gx⊥⟩Bh(t) = 0}. (2.20)

A typical choice of points for defining Λh(t) is to take the grid points of the velocity mesh

internal to the region B(t) and whose distance to the boundary of B(t) is greater than, e.g. h
2 ,

and to complete with selected points from the boundary of B(t).

Then we apply the Lie’s scheme (see [7, 20]) to equations (2.1)–(2.6) with the backward Euler

method in time for some subproblems and obtain the following fractional step subproblems

(some of the subscripts h have been dropped):

u0 = u0 is given. For n ≥ 0, un being known, we compute the approximate solution via the

following fractional steps:

(1) Solve 
ρ

∫
Ω

un+ 1
6 − un

△t
· vdx−

∫
Ω

pn+
1
6 (∇ · v)dx = 0, ∀v ∈ W0h,∫

Ω

q∇ · un+ 1
6 dx = 0, ∀q ∈ L2

h,

un+ 1
6 ∈ W0h, pn+

1
6 ∈ L2

h.

(2.21)
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(2) Update the position of the membrane by (2.16) and (2.17) and then compute the force

fB on the fluid/cell interface by (2.11) and (2.13).

(3) Solve
∫
Ω

∂u(t)

∂t
· vdx+

∫
Ω

(un+ 1
6 ·∇)u(t) · vdx = 0, on (tn, tn+1), ∀v ∈ W0h,

u(tn) = un+ 1
6 ,

u(t) ∈ W0h, on (tn, tn+1),

(2.22)

and set un+ 2
6 = u(tn+1).

(4) Next, compute un+ 3
6 via the solution ofρ

∫
Ω

un+ 3
6 − un+ 2

6

△t
· vdx+ µ

∫
Ω

∇un+ 3
6 : ∇vdx = 0,

∀v ∈ W0,h, un+ 3
6 ∈ W0,h.

(2.23)

(5) Now predict the position and the translation velocity of the center of mass of the particles

as follows:

Take V
n+ 4

6 ,0

G = Vn
G and Gn+ 4

6 ,0 = Gn. Then predict the new position of the particle via

the following subcycling and predicting-correcting technique:

For k = 1, · · · , N, compute

V̂
n+ 4

6 ,k

G = V
n+ 4

6 ,k−1

G + Fr(Gn+ 4
6 ,k−1)

△t

2N
, (2.24)

Ĝn+ 4
6 ,k = Gn+ 4

6 ,k−1 + (V̂
n+ 4

6 ,k

G +V
n+ 4

6 ,k−1

G )
△t

4N
, (2.25)

V
n+ 4

6 ,k

G = V
n+ 4

6 ,k−1

G + (Fr(Ĝn+ 4
6 ,k) + Fr(Gn+ 4

6 ,k−1))
△t

4N
, (2.26)

Gn+ 4
6 ,k = Gn+ 4

6 ,k−1 + (V
n+ 4

6 ,k

G +V
n+ 4

6 ,k−1

G )
△t

4N
, (2.27)

enddo;

and let V
n+ 4

6

G = V
n+ 4

6 ,N

G , Gn+ 4
6 = Gn+ 4

6 ,N . (2.28)

(6) Now, compute un+ 5
6 , λn+ 5

6 , V
n+ 5

6

G and ωn+ 5
6 via the solution of

ρ

∫
Ω

un+ 5
6 − un+ 3

6

△t
· vdx = ⟨λ,v⟩

B
n+4

6
h

, ∀v ∈ W0,h,

⟨µ,un+ 5
6 ⟩

B
n+4

6
h

= 0, ∀µ ∈ Λ
n+ 4

6

0,h , un+ 5
6 ∈ W0,h, λn+ 5

6 ∈ Λ
n+ 4

6

0,h ,
(2.29)

and solve for V
n+ 5

6

G and ωn+ 5
6 from

⟨ei,un+ 5
6 −V

n+ 5
6

G − ωn+ 5
6

−−−−→
Gn+ 4

6x
⊥
⟩
B

n+4
6

h

= 0 for i = 1, 2,

⟨
−−−−→
Gn+ 4

6x
⊥
,un+ 5

6 −V
n+ 5

6

G − ωn+ 5
6

−−−−→
Gn+ 4

6x
⊥
⟩
B

n+4
6

h

= 0.

(2.30)



A DLM/FD/IB Method 983

(7) Finally, take Vn+1,0
G = V

n+ 5
6

G and Gn+1,0 = Gn+ 4
6 . Then predict the final position and

translation velocity as follows:

For k = 1, · · · , N, compute

V̂n+1,k
G = Vn+1,k−1

G + Fr(Gn+1,k−1)
△t

2N
, (2.31)

Ĝn+1,k = Gn+1,k−1 + (V̂n+1,k
G +Vn+1,k−1

G )
△t

4N
, (2.32)

Vn+1,k
G = Vn+1,k−1

G + (Fr(Ĝn+1,k) + Fr(Gn+1,k−1))
△t

4N
, (2.33)

Gn+1,k = Gn+1,k−1 + (Vn+1,k
G +Vn+1,k−1

G )
△t

4N
, (2.34)

enddo;

and let Vn+1
G = Vn+1,N

G , Gn+1 = Gn+1,N ;

and set un+1 = un+ 5
6 , ωn+1 = ωn+ 5

6 .

In the above algorithm (2.21)–(2.34), we have that tn+s = (n+ s)△t, Λn+s
0,h = Λ0,h(t

n+s), Bn+s
h

is the region occupied by the particle centered at Gn+s, and Fr is a short range repulsion force

which prevents the particle/particle and particle/wall penetration (see, e.g., [21]).

The degenerated quasi-Stokes problem (2.21) is solved by a preconditioned conjugate gra-

dient method (see, e.g., [20]), in which discrete elliptic problems from the preconditioning are

solved by a matrix-free fast solver from FISHPAK by Adams et al. in [1]. The advection

problem (2.22) for the velocity field is solved by a wave-like equation method as in [10] and

[11]. Problem (2.23) is a classical discrete elliptic problem which can be solved by the same

matrix-free fast solver. To enforce the rigid body motion inside the region occupied by the

neutrally buoyant particles, we have applied the conjugate gradient method discussed in [29] to

solve problem (2.29).

Remark 2.4 When simulating the case involving both cells and neutrally buoyant particles,

we do need a repulsive force to prevent the overlapping between cell and particle. The repulsive

force is obtained from the following Morse potential (see, e.g., [2]) ϕ(s) = kr(1 − e−(s−s0))2

where the parameter s is the shortest distance between the membrane particle and the surface

of the solid particle and s0 is the range of the repulsive force (when the distance s is greater

than s0, there is no repulsive force). The parameter kr is a constance for the strength of the

potential. At step (2) in the above algorithm (2.21)–(2.34), we then also compute fr = −∂ϕ(s)
∂s

for each membrane particle which is close to a solid particle.

Remark 2.5 In algorithm (2.21)–(2.34), we can only use steps 1 to 4 for simulating the

motion of cells in Poiseuille flow when there are no neutrally buoyant particles. Also when

simulating the motion of neutrally buoyant disks in Poiseuille flow without any cells, we just

skip step (2) in algorithm (2.21)–(2.34) and then obtain the one in [29].

3 Numerical Results and Discussions

In [38], we have validated the immersed boundary method with the elastic spring model by
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comparing the numerical results with previous experimental data (see [19]), theoretical Keller

and Skalak model (see [24]), and simulations (see [5, 26]) for the inclination angles and tank-

treading frequencies of single RBC in shear flow. In this paper, the lateral migration properties

of many cells in Poiseuille flows have been investigated. We have validated it by comparing

the size of the cell-free layer next to the walls with the ones obtained in [6, 9]. Then we have

combined the methodology with a distributed Lagrange multiplier/fictitious domain method to

simulate the interaction of cells and neutrally buoyant particles in a microchannel (see, e.g.,

[17, 25], for cardiovarscular and oncological applications). The computational results show that

the neutrally buoyant disks behave similar to the almost circular cells when interacting with

other cells.

The initial shapes of cells used in the flow simulations in this paper are obtained via the

procedure described in [38] and Remark 2.3. We have chosen the same values of parameters for

modelling cells used in [36] as follows: The bending constant in (2.9) is kb = 5×10−10 N · m, the

spring constant in (2.8) is kl = 5×10−8 N · m, and the penalty coefficient in (2.10) is ks = 10−5

N · m. The cells are suspended in blood plasma which has a density ρ = 1.00 g/cm3 and a

dynamical viscosity µ = 0.012 g/(cm · s). The viscosity ratio which describes the viscosity

contrast of the fluid inside and outside the RBC membrane is fixed at 1.0. The computational

domain is a two dimensional horizontal channel. In the simulation, a constant pressure gradient

is prescribed as a body force. In addition, periodic conditions are imposed at the left and right

boundary of the domain. The Reynolds number is defined by Re = ρUH/µ where U is the

averaged velocity in the channel and H is the height of the channel.

3.1 Migration of many cells in Poiseuille flow

To apply the methodology to many cell cases, we have first considered the cases of 50 and

100 RBCs of reduced area s∗ = 0.7 in a Poiseuille flow. The fluid domain is 100 µm × 50

µm. Hence, the hematocrit of the 50 cell case (resp., 100 cell case) is Hct = 17.24% (resp.,

Hct = 34.48%). The pressure gradient is set as constant for this study so that the averaged

velocity U of the Poiseuille flow without cells is 6.666 cm/sec. The initial velocity is zero

everywhere. The grid resolution for the computational domain is 32 grid points per 10 µm.

The time step is 0.00001 ms. The positions and shapes of cells at different times are shown

in Figures 4 and 5. We have observed that the cells move toward the center of the channel,

an effect attributed to their deformability. Similar two-dimensional results have been observed

numerically in [3, 9]. There are cell-free layers next to the walls as shown in Figures 4 and 5.

In [6], the cell-free layer has been estimated to be roughly 100/Hct in cylindrical tubes with

diameters between 40 and 83 µm. In [9], the numerical results of the size of the cell-free layer are

in agreement with the above estimation reported in [6]. Thus for Hct = 17.24%, the estimation

of the cell-free layer is about 5.8 µm (and 2.9 µm for the Hct = 34.48% case). Our results

show the averaged size of cell-free layer is about 6.24 µm (resp., 2.94 µm) for the Hct = 17.24%

case (resp., the Hct = 34.48% case), which are in agreement with the estimation in [6]. The

Reynolds number based the averaged velocity and the channel height for the 50 cell case (resp.,

100 cell case) is about Re = 2.346 (resp., Re = 1.677).

Then we consider the cases where the averaged velocity is reduced to U = 3.333 cm/sec and
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all other parameters are kept the same. The positions and shapes of cells are shown in Figure

6. The computational results show the averaged size of cell-free layer is about 5.92 µm (resp.,

2.97 µm) for the Hct = 17.24% case (resp., the Hct = 34.48% case), which are in agreement

with the estimation in [6]. The Reynolds number based the averaged velocity and the channel

height for the 50 cell case (resp., 100 cell case) is about Re = 1.17 (resp., Re = 0.867).

In Figures 4 to 6, the orientation of cells has shown some symmetry with respect to the

center line of the channel. Since the two channel walls are at rest, the cell located between the

center line and a wall is in a kind of “nonlinear shear” flow. Hence, the motion and inclination

angles of those cells are similar to the behavior of cell migrating in a “linear shear” flow between

two parallel plates, which is that the cell migrates to the center line with an inclination angle

related to the reduced area of the cell.
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Figure 4 The shape and the position of 50 cells for U = 6.666 cm/sec at t = 0, 50, 100 and 150 ms
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Figure 5 The shape and the position of 100 cells for U = 6.666 cm/sec at t = 0, 100, 150 and 200 ms
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Figure 6 The shape and the position of 50 cells at t = 250 ms (left) and those of
100 cells (right) at t = 200 ms for U = 3.333 cm/sec

3.2 Interaction of two kinds of cells in Poiseuille flow

In this section, we have simulated the interaction of cells of two reduced areas, s∗ = 0.7

and 1, in Poiseuille flow. The cell of s∗ = 1 is treated as a solid particle in the simulation by

adjusting its bending parameter to 1000 times of the kb given at the beginning of Section 3.

We consider the cases of forty eight cells of reduced areas s∗ = 0.7 and two cells of reduced

areas s∗ = 1 with the averaged velocity U = 3.333 cm/sec. All other parameters are kept the

same. The hematocrit of fifty cells is Hct = 17.536%, so the estimation of the cell-free layer is

about 5.7 µm. We consider two cases which have different initial position of the circular cells.

The positions and shapes of cells at different times are shown in Figures 7 and 8. The histories

of the height of two cells of s∗ = 1 are shown in Figure 9. Two cells of s∗ = 1, which have

almost circular shape, move to the region next to the walls and stay there, which is what we

expect for such type of cells since the cell of s∗ = 1 has less deformability and the lowest rate of

migration toward the center line of the channel. Once they are in the region next to the walls,

the other cells keep them in the same region. Our results show the averaged sizes of cell-free

layer associated to the cells of s∗ = 0.7 are about 5.84 µm and 6.13 µm, respectively. The

Reynolds numbers based the averaged velocity and the channel height are about Re = 1.11 and

1.08, respectively.

µ

µ

− −

µ

µ

− −

µ

µ

− −

µ

µ

− −

Figure 7 The shape and the position of cells for the case I at t=0, 50, 100 and 200 ms
(from left to right and from top to bottom)
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Figure 8 The shape and the position of cells for the case II at t=0, 50, 100 and 150 ms
(from left to right and from top to bottom)

µ µ

Figure 9 The histories of the height of two cells of s∗ = 1: the case I (left) and the case II (right)

3.3 Interaction of cells and neutrally buoyant disks in Poiseuille flow

Figure 10 The shape and the position of cells and the position of two neutrally buoyant disks

at t=0, 50, 100 and 152 ms (from left to right and from top to bottom)
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µ

Figure 11 The histories of the height of two neutrally buoyant disks

In this section, we simulate the interaction of forty eight cells of reduced area s∗ = 0.7 and

two neutrally buoyant disks of radius 2.8 µm in Poiseuille flow. We keep all other parameters

the same as those in Section 3.2. The parameter kr for the repulsive force is kr = 1 × 10−9

N · m. The range of the repulsive force is two times of the meshsize for the velocity field.

The positions and shapes of cells and disks at different times are shown in Figure 10. The

histories of the height of two neutrally buoyant disks are shown in Figure 11. The two neutrally

buoyant disks behaves similar to those two almost circular cells discussed in Section 3.2. The

interaction with cells keeps them in the region next to the walls. We will report further study

of the interaction of cells and particles in the near future.

4 Conclusions

In summary, a numerical model is tested in this paper for simulating the motion of many

RBCs in Poiseuille flows. For many cell cases, our results show that the size of the cell-free

layer is in agreement with the estimation in [6] for the different values of Hct and the averaged

velocities. Also the circular cells like to move the region next to the wall which is similar to the

behavior of white blood cells in microvessels. For the interaction of cells and neutrally buoyant

disks, the computational results show that the neutrally buoyant disks behave similar to the

almost circular cells when interacting with other cells. The numerical results in this paper

are quantitatively/qualitatively similar to experimental observations and other investigators’

findings thus show the potential of this numerical algorithm for future studies of blood flow in

microcirculation and microchannels.
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