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1 Introduction

The notion of relative rearrangement introduced by J. Mossino and R. Temam turns out to

be an important tool for studying problems involving monotone rearrangement. Here, again,

we shall use it to show the Lipschitz property of some maps. The first one is based on the

following lemma proved in [23, 19].

Lemma 1.1 Let Ω be a bounded open set of RN , u ∈ L1(Ω), v ∈ L∞(Ω). Then, for a.e.

s ∈ Ω∗ =]0, |Ω|[,

(u+ v)∗(s)− u∗(s) =

∫ 1

0

v∗(u+tv)(s)dt.

Here, v∗(u+tv) is the relative rearrangement of v with respect to u+ tv, and u∗ (resp. (u+ v)∗)

is the decreasing rearrangement of u (resp. u+ v).

From which, we shall derive that

∥ |u∗ − v∗|∗∥p∗(·) ≤ cL∥u− v∥p(·), ∀u ∈ Lp(·)(Ω), ∀ v ∈ Lp(·)(Ω).

See below for the definitions of Lp(·)(Ω), u∗ (resp v∗ and p∗). We recall that, such inequality is

not true if we replace the increasing rearrangement of p, p∗(·) by its decreasing rearrangement

p∗(·). The counterexample is given in [9].

The second application of the relative rearrangement concerns the pointwise estimates in

PDE. We recall that the recent development of the study on variable exponent is partly due
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to the fact that it has a connection with some model in fluids mechanics (see [2]) where the

operator given by

â(x,∇u) = (1 + |∇u|2)
p(x)−2

2 ∇u

is considered. Many results (see [4, 5, 7, 9, 11–13, 16]) have been given for the Lebesgue space

with variable exponent define by

Lp(·)(Ω) =
{
u : Ω → R, Φp(u) =

∫
Ω

|u(x)|p(x)dx < +∞
}
,

where p : Ω → [1,+∞[ is a bounded measurable function.

The space Lp(·)(Ω) is endowed with the modular norm:

∥u∥p(·) = inf
{
λ > 0 : Φp

(u
λ

)
≤ 1

}
.

We shall summarize the properties that we shall use in the next section.

We shall consider two types of model of the form

−div
(
â(x,∇u)

)
= −div (F ). (1.1)

The first one shall be considered under the following growth condition on â:

[â(x, ξ)− â(x, ξ′)] · [ξ − ξ′] ≥ α0(1 + |ξ|+ |ξ′|)p(x)−2|ξ − ξ′|2

for a.e. x ∈ Ω, ∀ ξ, ξ′ ∈ RN if p(x) ≥ 2, some α0 > 0. In that case the function

u ∈ W
1,p(·)
0 (Ω), F = (f1, · · · , fn), fi ∈ Lq(·)(Ω),

1

p(x)
+

1

q(x)
= 1, a.e.

The second model concerns the equation of the form

â(x,∇u) =
(
a1

(
x,

∂u

∂x1

)
; · · · ; aN

(
x,

∂u

∂xN

))
.

Each ai has its one growth as for instance, ∀ t ∈ R, ∀σ ∈ R,

(ai(x, t)− ai(x, σ))(t− σ) ≥ α0(1 + |t|+ |σ|)pi(x)−2|t− σ|2

for a.e. x ∈ Ω, for some α0 > 0, p(x) ≥ 2.

We shall consider the solution u ∈ W 1,p1(·),··· ,pN (·)(Ω) ∩W 1,1
0 (Ω), and F is in an adequate

space.

We shall prove some pointwise inequalities related to the difference of two solutions u1, u2

of (1.1) say, if w = |u1 − u2|, then we shall show for instance

−dw∗

ds
(s) ≤ cN (α0)s

1
N −1([|δF |2]∗w(s))

1
2 for a.e. s, δF = F1 − F2,

from which we shall derive the Lipschitz property for equation (1.1).
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2 Notation and Preliminary Results

For our purpose, we consider (for simplicity) Ω an open bounded set and p : Ω → [1,+∞[

a measurable function. We shall denote by u∗ (resp. u∗) the decreasing (resp. increasing)

rearrangement of a measurable function u : Ω → R that is the generalized inverse of the

distribution function given by

t → |{u > t}| = measure {u ∈ Ω : u(x) > t} (u∗(s) = −(−u)∗(s), ∀ s ∈ ]0, |Ω|[ = Ω∗).

As usual, we set |E| the Lebesgue measure of a measurable set E, and χE its characteristic

function.

The scalar product of two vectors X, Y in RN shall be denoted by (X,Y ) or X · Y and the

associated norm |X| =
√
X ·X.

Setting

Φp(u) =

∫
Ω

|u(x)|p(x)dx ≤ +∞,

we consider the norm

∥u∥p(·) = inf
{
λ > 0 : Φp

(u
λ

)
≤ 1

}
(2.1)

and

Lp(·)(Ω) = {u : Ω → R measurable such that |u|p(·) < +∞}.

The space (Lp(·)(Ω); | · |p(·)) is a Banach function space and an equivalent norm for u is the

following Amemiya norm:

∥ |u|∥p(·) = inf
λ>0

λ
(
1 + Φp

(u
λ

))
. (2.2)

More precisely, one has

∥u∥p(·) ≤ ∥ |u|∥p(·) ≤ 2∥u∥p(·). (2.3)

We set

L1
+(Ω) = {v ∈ L1(Ω) : v ≥ 0} and L

p(·)
+ (Ω) = Lp(·)(Ω) ∩ L1

+(Ω).

We recall also that if v ∈ L1(Ω), u ∈ L1(Ω) then lim
λ↘0

(u+λv)∗−u∗
λ exists in a weak sense. This

limit is called the relative rearrangement of v with respect to u : v∗u.

More precisely, we have (see [6, 15, 19, 21, 22])

Theorem 2.1 Let Ω be a bounded measurable set in RN , u, v be two functions in L1(Ω)

and ω : Ω∗ → R be defined by

ω(s) =

∫
{u>u∗(s)}

v(x)dx+

∫ s−|u>u∗(s)|

0

(v|{u=u∗(s)})∗(σ)dσ,

where v|{u=u∗(s)} is the restriction of v to {u = u∗(s)}. Then one has (u+λv)∗−u∗
λ ⇀

λ→0

dω
ds

weakly in Lp(Ω∗) if v ∈ Lp(Ω), p is a constant with 1 ≤ p < +∞ and in L∞(Ω∗)-weak-star if

p = +∞.

Moreover, |dωds |Lp(Ω∗) ≤ |v|Lp(Ω) and
∫
Ω∗

dω
ds ds =

∫
Ω
v(x)dx.
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See [1, 8, 9] for other aspects and properties.

Definition 2.1 Under the same notations as Theorem 2.1 the relative rearrangement of v

with respect to u is dω
ds and is denoted by v∗u. In particular, one has

if v1 ≤ v2 then v1∗u ≤ v2∗u, vi ∈ L1(Ω).

Set Ω(u) = {x ∈ Ω : |{u = u(x)}| = 0}. Then for a.e. s ∈ Ω∗,

[
(
v1v2χΩ(u)

)
∗u(s)]

2 ≤
(
v21χΩ(u)

)
∗u(s)

(
v22χΩ(u)

)
∗u(s), if vi ∈ L2(Ω), i = 1, 2.

One property that we shall use for the relative rearrangement is

Proposition 2.1 Let v ≥ 0, u be two functions in L1(Ω). Then

(v∗u)∗∗ ≤ v∗∗.

Here

v∗∗(s) =
1

s

∫ s

0

v∗(σ)dσ, s ∈ Ω∗.

There is a link between the derivative of u∗ and relative rearrangement of the gradient of u

as it was proved in [17–19, 21, 22]. We will use only the following results.

Theorem 2.2 (PSR Inequality: Poincaré-Sobolev Inequality for the Relative Rearrange-

ment)

(a) Let u ∈ W 1,1
0 (Ω), u ≥ 0. Then u∗ ∈ W 1,1

loc (]0, |Ω|[ ),

−u′
∗(s) ≤

s
1
N −1

Nα
1
N

N

|∇u|∗u(s) a.e. in Ω∗

and

−u′
∗∗(s) ≤

s
1
N −1

Nα
1
N

N

(|∇u|∗u)∗∗(s) a.e. in Ω∗,

where αN is the measure of the unit ball in RN .

(b) Let u ∈ W 1,1(Ω). Then u∗ ∈ W 1,1
loc (]0, |Ω|[ ),

−u′
∗(s) ≤

min(s, |Ω| − s)
1
N −1

Q(Ω)
|∇u|∗u(s) a.e. in Ω∗,

provided that Ω is a Lipschitz connected open set of RN . Here, Q(Ω) is a positive constant

depending only on Ω.

The following results are proved in [9].

Theorem 2.3 Let u : Ω → R+ and p : Ω → [1,+∞[ be two measurable functions. Then

1

2(1 + |Ω|)
∥u∗∥p∗(·) ≤ ∥u∥p(·) ≤ 2(1 + |Ω|)∥u∗∥p∗(·),

where u∗ (resp. p∗) is the decreasing rearrangement of u (resp. p) and p∗ the increasing

rearrangement of p.
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Theorem 2.4 Let p : Ω → [1,+∞[ be a bounded measurable function. Assume that the

increasing rearrangement of p, p∗ satisfies: 1 < p∗(0) and that in a neighborhood of the origin

0, we have |p∗(s) − p∗(t)| ≤ A
|Ln |s−t∥ for some A > 0. Thus, for all v ≥ 0 and u in L1(Ω), if

v ∈ Lp(·)(Ω), then (v∗u)∗∗ ∈ Lp∗(·)(Ω∗) and (v∗u)∗ ∈ Lp∗(·)(Ω∗).

Moreover, there exist two constants c1 > 0, c2 > 0 such that

∥(v∗u)∗∥p∗(·) ≤ ∥(v∗u)∗∗∥p∗(·) ≤ c1∥v∗∥p∗(·) ≤ c2∥v∥p(·).

Lemma 2.1 Under the same assumptions of Theorem 3.1, one has for all λ > 0,∫
{u∗>λ}

(u∗

λ

)p∗(s)

(s)ds ≤
∫
{u>λ}

(u
λ

)p(x)

(x)dx ≤
∫
{u∗>λ}

(u∗

λ

)p∗(s)

(s)ds.

Finally, we have the following theorem (see [19]).

Theorem 2.5 Let u ∈ W 1,1(Ω) with Ω being an open bounded connected Lipschitz set

if γ0u ̸≡ 0 (the trace of u on the boundary) and Ω is an arbitrary open set otherwise. We

assume that the measure {x ∈ Ω : ∇u(x) = 0} = 0. Then for any sequence un converging

to u ∈ W 1,1(Ω) with γ0un = 0 if γ0u = 0, and for any b ∈ Lp(Ω), 1 ≤ p < +∞, we have

b∗un −−−−−→
n→+∞

b∗u strongly in Lp(Ω∗).

3 Main Results

3.1 On the Lipschitz property of the mappings u ∈ Lp(·)(Ω) → u∗ ∈ Lp∗(·)(Ω∗)
and v ∈ Lp(·)(Ω) → (v∗u)∗ ∈ Lp∗(·)(Ω∗)

Theorem 3.1 Let p : Ω → [1,+∞[ be a measurable bounded function such that the increas-

ing rearrangement p∗ of p satisfies p∗(0) > 1 and |p∗(t)− p∗(σ)| |Ln |t− σ|| ≤ A near zero for

some constant A > 0. Then there exists a constant cL > 0 such that

∥[(u+ v)∗ − u∗]∗∗∥p∗(·) ≤ cL∥v∥p(·),

∀u ∈ L1(Ω), ∀ v ∈ L
p(·)
+ (Ω), where we denote by g∗∗(s) =

1
s

∫ s

0
g∗(σ)ds for g ∈ L1(Ω).

Corollary 3.1 Under the same assumptions as for Theorem 3.1, one has

∥ |u∗ − v∗|∗∥p∗(·) ≤ ∥ |u∗ − v∗|∗∗∥p∗(·) ≤ cL∥u− v∥p(·),

where cL is the same constant as in Theorem 3.1, whenever u and v are in Lp(·)(Ω).

Proof of Theorem 3.1 We first assume that u ∈ W 1
0 (Ω)∩C∞(Ω) with measure {x ∈ Ω :

∇u(x) = 0} = 0 and v ∈ C1
0 ( Ω), v ≥ 0.

Thus u+ tv satisfies conditions of Theorem 2.5 for all t and thus the map

[0, 1] → L1(Ω∗)
t 7→ v∗(u+tv)

is uniformly continuous.

For σ ∈ Ω∗, we set g(σ) =
∫ 1

0
v∗(u+tv)(σ)dt. We know from Lemma 1.1 that

(u+ v)∗(σ)− u∗(σ) = g(σ), ∀σ ∈ Ω∗. (3.1)
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Therefore, one has

1

s

∫ s

0

[(u+ v)∗(σ)− u∗(σ)]∗ds = g∗∗(s). (3.2)

Let us consider m ∈ N− {0} and ti =
i
m , i = 0, · · · ,m. We set

gm(σ) =
1

m

m−1∑
i=0

v∗(u+tiv)(σ). (3.3)

Lemma 3.1 One has a constant cL > 0 such that

∥gm∗∗∥p∗(·) ≤ cL∥v∥p(·), ∀m.

Proof By convexity property of the mapping h → h∗∗(s), we have

gm∗∗(s) ≤
1

m

m−1∑
i=0

(v∗(u+tiv))∗∗(s), (3.4)

therefore,

∥gm∗∗∥p∗(·) ≤
1

m

m−1∑
i=0

∥(v∗(u+tiv))∗∗∥p∗(·). (3.5)

Using Theorem 2.4 of the preliminary result section

∥(v∗(u+tiv))∗∗∥p∗(·) ≤ cL∥v∥p(·). (3.6)

From relations (3.5) and (3.6), we get the result.

Lemma 3.2 The sequence gm converges strongly to g in L1(Ω∗).

In particular, for all s > 0, we have

gm∗∗(s) → g∗∗(s) as m → +∞.

Proof Since the mapping t ∈ [0, 1] → v∗(u+tv) ∈ L1(Ω∗) is uniformly continuous, letting

ε > 0, there exists δ > 0: if m ≥ 1
δ , then∫

Ω∗

|v∗(u+tv) − v∗(u+tiv)|(σ)dσ ≤ ε (3.7)

for |t− ti| ≤ 1
m .

Therefore∫
Ω∗

|gm(σ)− g(σ)|dσ ≤
m−1∑
i=0

∫ ti+1

ti

∫
Ω∗

|v∗(u+tv) − v∗(u+tiv)|(σ)dσ ≤ ε. (3.8)

This shows the first statement, while for the second one, the result follows from the first

statement and the fact that, ∀ s > 0,

|gm∗∗(s)− g∗∗(s)| ≤
1

s

∫
Ω∗

|gm(σ)− g(σ)|dσ. (3.9)
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End of the proof of Theorem 3.1 One has, from the Fatou’s property applied to the

Banach function norm on Lp∗(·)(Ω∗), that

∥g∗∗∥p∗(·) ≤ lim inf
m→+∞

∥gm∗∗∥p∗(·). (3.10)

We conclude with relation (2.2) and Lemma 3.1 to derive

∥[(u+ v)∗ − u∗]∗∗∥p∗(·) ≤ cL∥v∥p(·). (3.11)

Let u ∈ L1(Ω). Then there exists a sequence un ∈ W 1,1
0 (Ω) ∩ C∞(Ω) with measure {x ∈ Ω :

∇un(x) = 0} = 0 such that

un(x) → u(x) a.e. and strongly in L1(Ω).

There exists also a sequence of vn ∈ C∞
c (Ω) such that vn → v in Lp(·)(Ω) strongly. Those

convergences imply that

(un + vn)∗ − un∗ → (u+ v)∗ − u∗ strongly in L1(Ω∗).

Therefore, for all s > 0,

[(un + vn)∗ − un∗]∗∗(s) → [(u+ v)∗ − u∗]∗∗(s). (3.12)

Since

∥[(un + vn)∗ − un∗]∗∗∥p∗(·) ≤ cL∥vn∥p(·), (3.13)

one derives

∥[(u+ v)∗ − u∗]∗∗∥p∗(·) ≤ cL∥v∥p(·). (3.14)

Proof of Corollary 3.1 We replace v by v − u and notice that for all s ∈ Ω∗,

|u∗ − v∗|∗(s) ≤ |u∗ − v∗|∗∗(s),

thus we derive the result if u and v are in L
p(·)
+ (Ω).

Otherwise, we shall consider Tk(σ) = min
(
|σ|, k

)
sign (σ), σ ∈ R and uk (resp. vk) defined

by uk = Tk(u) + k ≥ 0 (resp. vk = Tk(v) + k). Therefore

∥ |Tk(u∗)− Tk(v∗)|∗∗∥p∗(·) ≤ cL∥Tk(u)− Tk(v)∥p(·), letting k → +∞,

we have the result.

Corollary 3.2 Under the same assumptions as for Theorem 3.1, one has for all v1, v2 and

u in Lp(·)(Ω),

∥ |v1∗u − v2∗u|∗∥p∗(·) ≤ ∥ |v1∗u − v2∗u|∗∗∥p∗(·) ≤ cL∥v1 − v2∥p(·).

In particular, v1∗u ∈ Lp∗(·) if v1 and u are in Lp(·)(Ω).
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Proof From Corollary 3.1 of Theorem 3.1, we know that for all λ > 0,∥∥∥ ∣∣∣ (u+ λv1)∗ − (u+ λv2)∗
λ

∣∣∣
∗∗

∥∥∥
p∗(·)

≤ cL∥v1 − v2∥p(·). (3.15)

Let us set gλ(s) =
(u+λv1)∗−(u+λv2)∗

λ (s). We know that gλ converges weakly to v1∗u − v2∗u in

L1(Ω∗) (see Theorem 2.1). Let us choose λ =̇ 1
m , m ≥ 1. Then, from the Mazur’s lemma, there

exist (αjn)j≥n, and
mn∑
j=n

αjn = 1, αjn ≥ 0, hn=̇
mn∑
j=n

αjng 1
j
converges strongly to v1∗u − v2∗u in

L1(Ω∗).

Thus |hn|∗ → |v1∗u − v2∗u|∗ strongly in L1(Ω∗) as n → ∞ and

|h|∗∗(s) −−−−−→
n→+∞

|v1∗u − v2∗u|∗∗(s) for all s > 0. (3.16)

But, we have also

|hn|∗∗(s) ≤
mn∑
j=n

αjn|g 1
j
|∗∗(s), ∀ s ∈ Ω∗. (3.17)

From the relations (3.15) and (3.17), we derive

∥ |hn|∗∗∥p∗(·) ≤
mn∑
j=n

αjn∥ |g 1
j
|∗∗∥p∗(·) ≤ cL∥v1 − v2∥p(·). (3.18)

From relation (3.16) and Fatou’s lemma, we have

∥ |v1∗u − v2∗u|∗∗∥p∗(·) ≤ cL∥v1 − v2∥p(·). (3.19)

We always have

∥ |v1∗u − v2∗u|∗∥p∗(·) ≤ ∥ |v1∗u − v2∗u|∗∗∥p∗(·). (3.20)

So, from (3.19) and (3.20), we get the result.

3.2 Pointwise estimates for quasilinear equation with variable exponents

The purpose of this section is not to give existence result but only to prove some qualitative

properties of the quasilinear equations,

−div (â(x,∇u)) + b(x,∇u) = −div (
−→
F ),

when u is a Sobolev spaces with variable exponents. We shall distinguish two types of operators,

the first one will contain the Acerbi-Mingione equation.

3.2.1 Acerbi-Mingione type operators

Let p ∈ L∞(Ω), p : Ω →]1,+∞[. We shall consider a mapping â : Ω× RN → RN , where Ω

is an open bounded set of RN , satisfying at least the following condition:

(C1) There exist two constants α0 > 0, a0 > 0 such that for a.e. x ∈ Ω, for all ξ ∈
RN , ξ′ ∈ RN ,

(â(x, ξ)− â(x, ξ′), ξ − ξ′) ≥ α0|ξ − ξ′|2(a0 + |ξ|+ |ξ′|)p(x)−2.
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Since for all δ > 0, we have

|ξ − ξ′|δ ≤ (|ξ|+ |ξ′|)δ ≤ (a0 + |ξ|+ |ξ′|)δ,

we deduce as in [14] the following proposition.

Proposition 3.1 If â satisfies condition (C1), then, for all δ ≥ 0,

(â(x, ξ)− â(x, ξ′), ξ − ξ′) ≥ α0|ξ − ξ′|2+δ(a0 + |ξ|+ |ξ′|)p(x)−2−δ.

Following the proof of [14], we have the results below.

Proposition 3.2 Let us consider â(x, ξ) = (1 + |ξ|2)
p(x)−2

2 ξ, ξ ∈ RN , x ∈ Ω. Then, â

satisfies condition (C1). Moreover, one can choose a0 = 2 if essinf
Ω

p(x) ≥ 2, otherwise a0 = 1.

Theorem 3.2 Let p ∈ L∞(Ω), p : Ω → [2,+∞[, F1, F2 be two functions such that Fi ∈
Lq(·)(Ω)N , 1

q(x) +
1

p(x) = 1 a.e. Consider u1 and u2 two elements in W
1,p(·)
0 (Ω) = W 1,1

0 (Ω) ∩
W 1,p(·)(Ω) satisfying, ∀φ ∈ W

1,p(·)
0 (Ω),∫
Ω

â(x,∇ui) · ∇φdx =

∫
Ω

Fi · ∇φdx.

Let w = |u1 − u2|, δF = F1 − F2. Then, there exists a constant cN (α0, a0, p) > 0 such that

−dw∗

ds
(s) ≤ cN (α0, a0, p)s

1
N −1[|δF |2]

1
2
∗w(s),

provided that |δF | ∈ L2(Ω). Here cN (α0, a0, p) = 1

α0Nα
1
N
N

∣∣∣ 1

a
p(x)−2
0

∣∣∣
∞
.

Proof We set δâ(x) = â(x,∇u1) − â(x,∇u2) and u12 = u1 − u2. For a fixed s ∈ Ω∗, we

consider the test function, φs(x) =
(
w(x)− w∗(s)

)
+
sign (u12(x)), x ∈ Ω. Then we have as in

[18, 19]

[δâ · ∇u12]∗w(s) = [δF · ∇u12]∗w(s). (3.21)

Let

h(x) = a0 + |∇u1(x)|+ |∇u2(x)|. (3.22)

Then, from Proposition 3.1, we have almost everywhere in Ω,

(δâ · ∇u12)(x) ≥ α0|∇w(x)|2hp(x)−2. (3.23)

From relations (3.21) and (3.23), one has, using again the relative rearrangement properties,

α0[|∇w|2hp(x)−2]∗w(s) ≤ [|δF | |∇w|]∗w(s) (3.24)

and

[|δF | |∇w|]∗w(s) ≤ [|δF |2]
1
2
∗w(s)[|∇w|2]

1
2
∗w. (3.25)

Since h ≥ a0, we derive from (3.24) and (3.25) that

α0[|∇w|2hp(x)−2]∗w(s) ≤
∣∣∣ 1

a
p(·)−2
0

∣∣∣ 1
2

∞
[|∇w|2hp(x)−2]

1
2
∗w(s)[|δF |2∗w]

1
2 . (3.26)
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We deduce

[|∇w|2hp(x)−2]∗w(s) ≤ c(α0, a0, p)
2(|δF |2)∗w(s) with c(α0, a0, p) =

1

α0

∣∣∣ 1

a
p(·)−2
0

∣∣∣ 1
2

∞
. (3.27)

From the PSR (Poincaré-Sobolev inequality for the relative rearrangement) (see Theorem 2.2)

one has

−dw∗

ds
(s) ≤ s

1
N −1

Nα
1
N

N

· |∇w|∗w ≤ s
1
N −1

Nα
1
N

N

· [|∇w|2]
1
2
∗w(s)

≤ s
1
N −1

Nα
1
N

N

∣∣∣ 1

a
p(·)−2
0

∣∣∣ 1
2

∞
[hp(·)−2|∇w|2]

1
2
∗w. (3.28)

By (3.27), we deduce

−dw∗

ds
(s) ≤ s

1
N −1

Nα
1
N

N

∣∣∣ 1

a
p(·)−2
0

∣∣∣ 1
2

∞
· c(α0, a0, p)(|δF |2)

1
2
∗w(s). (3.29)

Setting cN (α0, a0, p) = c(α0,a0,p)

Nα
1
N
N

| 1

a
p(·)−2
0

|
1
2∞, we derive from (3.29) the pointwise estimate of

Theorem 3.2.

Corollary 3.3 Under the same conditions as for Theorem 3.2, if r : Ω → [2,+∞[ is a

bounded measurable function, then we have, for all s ∈ Ω∗,

w∗(s) ≤ cN (α0, a0, p)b(s)∥f∗∥r∗(·)

with f(t) = (|δF |2∗w)
1
2 (t) and b1(s) = ∥

(
χ[s,|Ω|](t) · t

1
N −1

)
∗∥ r∗(·), r∗(s) =

r∗(s)
r∗(s)−1 .

Proof We integrate the relation (3.29) from s to |Ω|,

w∗(s) ≤ cN (α0, a0, p)

∫ |Ω|

0

χ[s,|Ω|](t)t
1
N −1f(t)dt. (3.30)

By the Hardy-Littlewood inequality, we have

w∗(s) ≤ cN (α0, a0, p)

∫
Ω∗

(χ[s,|Ω|](t)t
1
N −1)∗(t)f∗(t)dt.

By the Hölder inequality, we deduce

w∗(s) ≤ cN (α0, a0)b1(s)∥f∗∥r∗(·).

Remark 3.1 ∀σ ∈ Ω∗, ∀ s ∈ Ω∗, (χ[s,Ω|](t)t
1
N −1)∗(σ) = (σ + s)

1
N −1χ[0,|Ω|−s](σ).

Corollary 3.4 Under the same assumption as for Theorem 3.2, if δF ∈ Lr∗(·)(Ω)N , r∗(0) >

2 bounded, then we have

w∗(s) ≤ c̃N (α0, a0)b1(s)∥δF∥r∗(·),

provided that r∗ satisfies |r∗(t)− r∗(σ)| |Ln (t− σ)| ≤ A near zero.
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Proof One has (see Proposition 2.1)

(
(
|δF |2

)
∗w)∗(t) ≤ (|δF |2)∗∗(t) for all t ∈ Ω∗.

Then

∥f∗∥r∗(·) ≤ c∥ |δF |2∗∗∥ r∗(·)
2

.

By [13], the Hardy inequality is true so that

∥ |δF |2∗∗∥ r∗(·)
2

≤ c∥ |δF |2∗∥ r∗(·)
2

≤ c∥ |δF |∗∥r∗(·) ≤ c∥δF∥r∗(·) (by Theorem 2.3).

Similar result as Corollary 3.4 can be found in [3] if r is a constant function.

Corollary 3.5 Under the same assumptions as for Corollary 3.4 of Theorem 3.2, let ρ be a

Banach function norm rearrangement invariant and ∥w∥L(Ω,ρ) = ρ(|w|∗). If ρ(b) < +∞, then∥∥u1 − u2

∥∥
L(Ω,ρ)

= ρ(|u1 − u2|∗) ≤ c̃N (α0, a0)ρ(b)∥F1 − F2∥r∗(·).

3.2.2 Pointwise inequality for anisotropic variable exponent equations

We want to derive similar results as for Theorem 3.2 but for operator of the type

â(x, ξ) =
(
a1(x, ξ1), · · · , aN (x, ξN )

)
for ξ = (ξ1, · · · , ξN ) ∈ RN , x ∈ Ω and each ai satisfying condition (C1), say

(C2) There exist α0i > 1, a0i > 0 such that(
ai(x, t)− ai(x, σ)

)
(t− σ) ≥ α0i

(
a0i + |t|+ |σ|

)pi(x)−2|t− σ|2

for a.e. x ∈ Ω, ∀ (t, σ) ∈ R× R.
Here, pi : Ω →]1,+∞[ is a bounded measurable function.

We start with the cases when essinf
Ω

pi(x) ≥ 2 for all i ∈ {1, · · · , N}. For this, we shall

consider the following Sobolev space, for −→p = (p1, · · · , pN ),

V−→p = W
1,p1(·),··· ,pN (·)
0 (Ω) :

{
v ∈ W 1,1

0 (Ω) :

∫
Ω

∣∣∣ ∂v
∂xi

(x)
∣∣∣pi(x)

dx < +∞ for i = 1, · · · , N
}
.

If necessary, we can endow this space with Banach function norm

∥v∥V−→p = |v|L1(Ω) +

N∑
i=1

∥∥∥ ∂v

∂xi

∥∥∥
pi(·)

or the equivalent norm
N∑
i=1

∥∥∥ ∂v

∂xi

∥∥∥
pi(·)

.

We denote by qi(x) =
pi(x)

pi(x)−1 the conjugate of p(x).

Theorem 3.3 Let F1 and F2 be in
N∏
i=1

Lqi(·)(Ω) such that δF = F1 − F2 satisfies |δF | ∈

L2(Ω). Let u1 and u2 be two elements of V−→p satisfying∫
Ω

â(x,∇uj) · ∇φdx =

∫
Ω

Fj · ∇φdx, j = 1, 2
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for all φ ∈ V−→p . We asume that pi(x) ≥ 2 a.e., i = 1, · · · , N .

Then there exists a constant cN (â) > 0 depending only on N and α0i, a0i, pi for almost

every s ∈ Ω∗,

−dw∗

ds
(s) ≤ cN (â)s

1
N −1[

(
|δF |2

)
∗w(s)]

1
2 with w = |u1 − u2|.

One can choose cN (â) = 1

Nα
1
N
N α0a0

, α0 = min
1≤i≤N

α01, a0 = min
1≤i≤N

[
essinf

Ω
a
p(x)−2
0i

]
.

Proof The idea is similar to Theorem 3.2. We shall introduce

δâ = â(x,∇u1)− â(x,∇u2),

δF = F1 − F2, w = |u1 − u2|, u12 = u1 − u2.

We choose for s (fixed) ∈ Ω∗ as a test function

φs(x) = (w(x)− w∗(s))+ sign (u12(x)).

Then [
δâ · ∇u12

]
∗w(s) = [δF · ∇u12]∗w(s). (3.31)

We shall consider α0 = min
1≤i≤N

α0i and a0 = min
1≤i≤N

[
essinf

Ω
a
pi(x)−2
0i

]
and we define the function,

k : Ω → R measurable,

k(x) =


N∑
i=1

α0i

(
a0i + |∂iu1|+ |∂iu2|

)pi(x)−2|∂iw|2

|∇w|2
(x), if ∇w(x) ̸= 0,

α0a0, if ∇w(x) = 0.

Here ∂iuj =
∂uj

∂xi
, ∂iw = ∂w

∂xi
.

Then, k(x) ≥ α0a0 > 0 for a.e. x, and for a.e. x ∈ Ω,

[â(x,∇u1)− â(x,∇u2)] · ∇u12 ≥ k(x)|∇w(x)|2. (3.32)

From relations (3.31) and (3.32), one has

[k|∇w|2]∗w(s) ≤ |δF · ∇u12]∗w(s) ≤ [
(
|δF |2

)
∗w(s)]

1
2 [
(
|∇w|2

)
∗w(s)]

1
2

≤ 1

(α0a0)
1
2

[
(
|δF |2

)
∗w(s)]

1
2 [
(
k|∇w|2

)
∗w(s)]

1
2 . (3.33)

Therefore, we have, for a.e. s ∈ Ω∗,

[k|∇w|2]∗w(s) ≤
1

(α0a0)
(|δF |2)∗w(s). (3.34)

Next, we use the PSR inequality

−dw∗

ds
(s) ≤ s

1
N −1

Nα
1
N

N

· |∇w|∗w(s) ≤
s

1
N −1

Nα
1
N

N

[
(
|∇w|2

)
∗w(s)]

1
2

≤ s
1
N −1

Nα
1
N

N

1
√
α0a0

[
(
k|∇u|2

)
∗w(s)]

1
2 . (3.35)
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Combining relations (3.34) and (3.35), we obtain, for a.e. s ∈ Ω∗,

−dw∗

ds
(s) ≤ s

1
N −1

Nα
1
N

N

1

(α0a0)
[
(
|δF |2

)
∗w(s)]

1
2 . (3.36)

We then obtain the same corollaries as in Theorem 3.2. In particular, we have

Corollary 3.6 Assume that |δF | ∈ Lr(·)(Ω) for some bounded measurable function with

r∗ > 2 such that r∗ satisfies near zero, |r∗(t) − r∗(σ)| |Ln |t − σ|| ≤ A for some constant A.

Then, there exists a constant cΩ > 0 depending only on Ω, â,−→p , r, such that for a.e. s ∈ Ω∗,

w∗(s) ≤ cΩ · b1(s)∥ |F1 − F2| ∥r(·),

where b1 is as in Corollary 3.3 of Theorem 3.2.

3.2.3 Operator Acerbi-Mingione with a perturbation term

We can generalize the above results by adding a nonlinear term. We shall illustrate this

through an example.

(B1) Let b : Ω× RN → R a nonlinear function satisfying the following growth.

There exist constants β0 ≥ 0, b0 ≥ 0 such that for all ξ ∈ RN , ξ′ ∈ RN , for a.e., x ∈ Ω,

|b(x, ξ)− b(x, ξ′)| ≤ β0(b0 + |ξ|+ |ξ′|)p(x)−2|ξ − ξ′|.

Theorem 3.4 Let b (resp. â) be a nonlinear function satisfying (B1) (resp. (C1)). We

assume that b0≤a0 and p(x)≥2 a.e. x∈Ω. Let F1, F2 be two elements of Lq(·)(Ω)N, 1
q(x)+

1
p(x) =

1 a.e. Let u1, u2 be two functions in W
1,p(·)
0 (Ω) satisfying ∀φ ∈ W

1,p(·)
0 (Ω), j = 1, 2,∫

Ω

â(x,∇uj) · ∇φdx+

∫
Ω

b(x,∇uj)φdx =

∫
Ω

Fj · ∇φdx. (3.37)

Then, there exist two constants c1 > 0, c2 > 0 depending on the data â, b,Ω, N, p such that for

a.e. s ∈ Ω∗,∫
w>w∗(s)

(
a0 + |∇u1|+ |∇u2|

)p(x)−2|∇w|2(x)dx ≤ c1

∫ s

0

ec2
∫ τ
s

a12(t)dt
(
|δF |2

)
∗w(τ)dτ,

where w = |u1 − u2|, δF = F1 − F2, provided that |δF | ∈ L2(Ω), and

a12(t) = c2t
2
N −2

∫
w>w∗(t)

(a0 + |∇u1|+ |∇u2|)p(x)−2dx

belongs to L1(0, |Ω|).
One can choose c2 = 2

α2
0a0m

, c1 =
2β2

0

a0m(N(α
1
N
N ))2

, a0m = essinf
Ω

a
p(x)−2
0 .

Proof The idea is similar to the above proofs of Theorem 3.2 and Theorem 3.3 and uses

the properties of monotone rearrangement and relative rearrangement as in [17, 19].

Let us set δâ = â(x,∇u1)− â(x,∇u2), u12 = u1−u2, δb = b(x,∇u1)− b(x,∇u2). We recall

that w∗ ∈ W 1,1
loc (Ω∗) and for s ∈ Ω∗, the function φ(x) = (w(x)− w∗(s))+ sign (u12(x)).
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Then, one has

[δâ · ∇u12]∗w(s)− w′
∗(s)

∫
w>w∗(s)

δb sign (u12)dx = [δF · ∇u12]∗w(s). (3.38)

We set k0(x) =
(
a0 + |∇u1(x)|+ |∇u2(x)|

)p(x)−2
. By the growth conditions (C1) and (B1) on

â and b, we have

α0(k0|∇w|2)∗w(s) ≤ |w′
∗(s)|

(
β0

∫
w>w∗(s)

k0|∇w|dx
)
+ [(|δF |2)∗w(s)]

1
2 [(|∇w|2)∗w(s)]

1
2 . (3.39)

From the PSR inequality (see Theorem 2.2), we have

|w′
∗(s)| = −w′

∗(s) ≤
s

1
N −1

Nα
1
N

N

[
(
|∇w|2

)
∗w(s)]

1
2 (3.40)

and

[
(
|∇w|2

)
∗w(s)]

1
2 ≤ 1

√
a0m

[
(
k0|∇w|2

)
∗w(s)]

1
2 (3.41)

with a0m = essinf
Ω

a
p(x)−2
0 . Therefore, we obtain from (3.39) to (3.41) that

α0[
(
k0|∇w|2

)
∗w(s)]

1
2 ≤ s

1
N −1

Nα
1
N

N

β0√
a0m

∫
w>w∗(s)

k0|∇w|dx+
1

√
a0m

[
(
|δF |2

)
∗w(s)]

1
2 . (3.42)

By the Cauchy-Schwarz’s inequality, we have∫
w>w∗(s)

k0|∇w|dx ≤
(∫

w>w∗(s)

k0|∇w|2dx
) 1

2
(∫

w>w∗(s)

k0dx
) 1

2

. (3.43)

Let us set y(s) =
∫
w>w∗(s)

k0|∇w|2dx. Then by the definition of relative rearrangement, we

have

y′(s) = (k0|∇w|2)∗w(s) for a.e. s ∈ Ω∗.

Therefore, relations (3.42) and (3.43) infer

y′(s) ≤ c2s
2
N −2y(s)

∫
w>w∗(s)

k0dx+ c1(|δF |2)∗w(s) (3.44)

with c2 = 2
α2

0a0m
, c1 =

2β2
0

a0m(Nα
1
N
N )2

.

From the above Gronwall inequality, we deduce

y(s) ≤ c1

∫ s

0

ec2
∫ τ
σ

a12(t)dt
(
|δF |2

)
∗w(τ)dτ, (3.45)

provided that a12(t) ≡ c2t
2
N −2

∫
w>w∗(t)

k0dx is in L1(Ω∗).

Remark 3.2 The condition that a12 ∈ L1(Ω∗) depends on p may be detail according to

each situation.
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For example, if p(x) = p =constant and c2 ̸= 0 then if 2 ≤ p < 2N
N−2 if N ≥ 3 or p < +∞

for N = 2, we have
∫
Ω∗

a12(t)dt < +∞.

Corollary 3.7 Under the same assumptions as for Theorem 3.4, if c2a12 ∈ L1(Ω∗), then∫
Ω

|∇(u1 − u2)|p(x)dx ≤ c1e
c2

∫
Ω∗

a12(t)dt∥F1 − F2∥2L2(Ω)N

with c1 and c2 given as in the proof of Theorem 3.4.

Proof One has

|∇(u1 − u2)|p(x)(x) ≤ k0(x)|∇w|2(x) for a.e. x, (3.46)

since

y(|Ω|) =
∫
Ω

k0(x)|∇(u1 − u2)|2dx,

and from Theorem 3.4 that∫
Ω

k0(x)|∇(u1 − u2)|2(x)dx = y(|Ω|) ≤ c1e
c2

∫
Ω∗

a12(t)dt∥F1 − F2∥2L2(Ω)N . (3.47)

From relations (3.46) and (3.47) we derive the result.

Corollary 3.8 Under the same assumption as for Theorem 3.4, we have for all s > 0,

w∗(s) ≤
1

Nα
1
N

N a0m

( N

N − 2

) 1
2

(s
2
N −1 − |Ω| 2

N −1)
1
2

(∫
Ω

k0|∇w|2dx
) 1

2

, if N ≥ 3

and

w∗(s) ≤
1

Nα
1
N

N a0m

[
Ln

( |Ω|
s

)] 1
2
(∫

Ω

k0|∇w|2dx
) 1

2

, if N = 2

with k0(x) = (a0 + |∇u1(x)|+ |∇u2(x)|)p(x)−2, a0m = essinf
Ω

a
p(x)−2
0 , w = |u1 − u2|.

Proof From the PSR inequality (Theorem 2.2), we derive as before

−w′
∗(s) ≤

s
1
N −1

Nα
1
N

N

1

a0m
[k0|∇w|2]

1
2
∗w(s). (3.48)

Integrating this last relation and applying the Cauchy-Schwarz’s inequality, one has

w∗(s) ≤
1

Nα
1
N

N a0m

(∫ |Ω|

s

t
2
N −2dt

) 1
2
(∫

Ω

k0|∇w|2dx
) 1

2

. (3.49)

From the above, we have the result.

Remark 3.3 From the proof of Corollary 3.7, we have an estimate of

y(|Ω|) =
∫
Ω

k0|∇w|2dx ≤ c1e
c2

∫
Ω∗

a12(t)dt∥F1 − F2∥2L2(Ω)N .

More results and cases shall be given in [20].
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