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1 Introduction and Main Results

Let X be an infinite-dimensional separable Hilbert space with inner product ( · , · ), and
norm ‖ · ‖. Let Y ⊂ X be a Banach space with norm ‖ · ‖Y , and the embedding Y ↪→ X is
compact. Let A : Y → X be continuous, self-adjoint, i.e., (Ax, y) = (x,Ay) for any x, y ∈ Y

with the inner product of X , Im(A) is a closed subspace of X and Im(A)⊕ ker(A) = X . In this
paper, by an index theory of the following linear operator equation

Ax+Bx = 0, (1.1)

we consider the existence and multiplicity of solutions of the following nonlinear operator equa-
tion:

Ax+ Φ′(x) = 0, (1.2)

where B ∈ Ls(X) (the set of bounded self-adjoint operator), and Φ : X → R is differentiable.
In 1980, Amann and Zehnder [1] discussed equation (1.2) under the assumption that A :

dom(A) ⊆ X → X is a unbounded self-adjoint operator. By the saddle point reduction meth-
ods, they obtained some existence results for nontrivial solutions. They also discussed semilinear
elliptic boundary value problems, periodic solutions of semilinear wave equations, and periodic
solutions of Hamiltonian systems as special cases of the abstract equation. In 1981, Chang
[3] extended their results by a simpler and unified approach. Especially, Chang obtained an
existence result yielding three distinct solutions. Chang [4] also discussed equation (1.2) by
assuming that A ∈ Ls(X) has a finite Morse index and Φ′ is compact. This framework can
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be used to discuss elliptic partial differential equations. In 1990, Ekeland [8] discussed (1.2)
by the dual variational methods and convex analysis theory. He assumed that A : X → X∗

is closed and self-adjoint. As applications, he mainly focussed on second order and first order
Hamiltonian systems satisfying various boundary conditions.

As far as authors know, an index theory for convex linear Hamiltonian systems was estab-
lished first by Ekeland [9] in 1984. By the works of Conley, Zehnder and Long [5, 20, 21, 22], an
index theory for symplectic paths was introduced. These index theories have important appli-
cations (see e.g., [7, 10, 11, 16, 23]). In [26, 24], Long and Zhu defined spectral flows for paths of
linear operators and relative Morse index, and redefined Maslov index for symplectic paths. In
the study of the L-solutions (the solutions starting and ending at the same Lagrangian subspace
L) of Hamiltonian systems, the first author of this paper introduced in [15] an index theory for
symplectic paths using the algebraic methods and given some applications in [14, 15]. And this
index was generalized by the authors of this paper and Lin in [17]. As in paper [6], we intro-
duce the index (iA(B), νA(B)) for equation (1.1). With this index, we receive the existence and
multiplicity of solutions for (1.2). As applications, we consider the existence and multiplicity
of solutions for first order Hamiltonian systems and second order Hamiltonian systems. First
we give a brief introduction to the index theory, for some details, we refer to [6].

Definition 1.1 (see [6, Definition 3.1.1]) For any B ∈ Ls(X), we define

νA(B) = dimker(A+B).

It was proved in [6] that the nullity νA(B) is finite.

Definition 1.2 (see [6, 14]) For any B1, B2 ∈ Ls(X) with B1 < B2, we define

IA(B1, B2) =
∑

λ∈[0,1)

νA((1 − λ)B1 + λB2);

and for any B1, B2 ∈ Ls(X), we define

IA(B1, B2) = IA(B1,K · Id) − IA(B2,K · Id),

where Id : X → X is the identity map and K · Id > B1,K · Id > B2 for some real number
K > 0.

Let 0 ∈ Ls(X) be the zero operator. We give the following definition for related index.

Definition 1.3 For any B ∈ Ls(X), we define

iA(B) = IA(0, B).

We call iA(B) index of B related to A. If A = −J d
dt , B = B(t) is a symmetric continuous

matrix function and Y = WL = {z = (x, y)T ∈ W 1,2([0, 1],R2n) | z(0), z(1) ∈ L}, X =
L2([0, 1],R2n), in [14] it was proved that IA(0, B) is the index iL(B) up to a constant when
considering the L-boundary value problems for some Lagrangian subspace L ⊂ R

2n.
By [6, Proposition 3.1.5], we have the following result.

Proposition 1.1 The following statements hold:
(1) For any B1, B2 ∈ Ls(X), IA(B1, B2) and iA(B) are well-defined and finite;
(2) For any B1, B2, B3 ∈ Ls(X), IA(B1, B2) + IA(B2, B3) = IA(B1, B3);
(3) For any B1, B2 ∈ Ls(X), IA(B1, B2) = iA(B2) − iA(B1);
(4) For any B1, B2 ∈ Ls(X) with B1 < B2, νA(B1) + iA(B1) ≤ iA(B2).
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Next for any given B̂ ∈ Ls(X), with νA(B̂) = 0, the operator Λ := (A + B̂) : Y → X is
invertible and the inverse Λ−1 : X → X is compact. For any B ∈ Ls(X) with B − B̂ ≥ ε · Id
for some constant ε > 0, we define a bilinear form:

φA,B|B̂(x, y) = (Λ−1x, y) + ((B − B̂)−1x, y), ∀x, y ∈ X. (1.3)

We have

X = E+
A (B | B̂) ⊕ E0

A(B | B̂) ⊕ E−
A (B | B̂), (1.4)

such that φA,B|B̂ is positive definite, null and negative definite on E+
A (B | B̂), E0

A(B | B̂) and

E−
A (B | B̂) respectively. Moreover, E0

A(B | B̂) and E−
A (B | B̂) are finitely dimensional.

Definition 1.4 (see [6, Definition 3.2.3]) For any B ∈ Ls(X) with B− B̂ ≥ ε · Id for some
constant ε > 0, we define

iA(B | B̂) = dimE−
A (B | B̂), νA(B | B̂) = dimE0

A(B | B̂).

This relative index is a kind of Morse index. It plays an important role in the relationship
between Morse Theory and the index (iA(B), νA(B)).

Theorem 1.1 (see [6, Theorem 3.2.4]) We have the following statements:
(1) For any B > B̂, we have

νA(B | B̂) = νA(B).

(2) Assume B2 > B1 > B̂. Then

iA(B2|B̂) ≥ iA(B1 | B̂) + νA(B1 | B̂).

(3) Assume B2, B1 > B̂. Then

iA(B2|B̂) − iA(B1 | B̂) = IA(B1, B2) = iA(B2) − iA(B1).

Now we use the index (iA(B), νA(B)) to reach our main results.

Theorem 1.2 Assume that Φ ∈ C2(X,R) satisfies
(P) There exists C > 0 and M ∈ R such that

‖Φ′(z)‖ < C‖z‖, Φ′′(z) ≥M · Id, ∀z ∈ X.

(P0) Φ′(θ) = θ, Φ′′(θ) = B0 ∈ Ls(X) and νA(B0) = 0.
(P∞) There exist a B∞ ∈ Ls(X) with νA(B∞) = 0 and K > 0, such that

Φ′′(z) ≥ B∞, ‖z‖ ≥ K. (1.5)

(Pt) iA(B∞) > iA(B0) + 1.
Then (1.2) has at least one nontrivial solution.

Remark 1.1 In the condition (P∞), the requirement νA(B∞) = 0 is not essential since if
νA(B∞) �= 0, we can perturb the operator B∞ slightly to the operator B̃∞ such that νA(B̃∞) =
0, iA(B∞) = iA(B̃∞) and Φ′′(z) ≥ B̃∞, ‖z‖ ≥ K. Up to the authors known, some similar
conditions as (1.5) in (P∞) were introduced in [14, 18].
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Theorem 1.3 Assume that the conditions in Theorem 1.2 are all satisfied and further more
Φ is even, then (1.2) has at least iA(B∞) − iA(B0) − 1 pairs of nontrivial solutions.

Remark 1.2 Comparing with [6, Theorem 3.1.7], the functional Φ is more restricted at
infinity than that in our Theorem 1.2, where it is required essentially that Φ′′(x) is pinched by
two linear self-adjoint bounded operators B1 and B2, that is B1 ≤ Φ′′(x) ≤ B2, and with the
conditions iA(B1) + νA(B1) = iA(B2) + νA(B2), νA(B2) = 0. Namely, in [6, Theorem 3.1.7],
the functional Φ behaves as a quadratic functional at infinity but in our Theorem 1.2 it is only
required that the functional Φ is estimated from below by a quadratic functional.

2 Proofs of the Main Results

The following lemma is similar to [18, Lemma 3.3].

Lemma 2.1 Assume that Φ ∈ C2(X,R) satisfies (P), (P∞). Then there exists a sequence
of functions Φm ∈ C2(X,R), m ∈ N satisfying

(1) there exists an increasing sequence of real numbers Rm → ∞ (m→ ∞) such that

Φm(z) ≡ Φ(z), ∀‖z‖ ≤ Rm, (2.1)

(2) for each m ∈ N,

Φ′′
m(z) ≥ B∞, ∀‖z‖ ≥ K, (2.2)

(3) there exists C̃ > 0 and M̃ ∈ R, such that

‖Φ′
m(z)‖ < C̃‖z‖, Φ′′

m ≥ M̃ · Id, ∀ z ∈ X, m ∈ N, (2.3)

(4) there exists γ, satisfying γ · Id > B∞, νA(γ · Id) = 0 and Cm > 0, such that

‖Φ′
m(z) − γz‖ < Cm. (2.4)

Proof Choose a sequence {Rm} of positive numbers such that K < R1 < R2 < · · · <
Rm < · · · → ∞, m→ ∞. For each m ∈ N, define φm : [Rm, 2Rm] → R as

φm(s) =
2

9R3
m

(s−Rm)3 − 1
9R4

m

(s−Rm)4, s ∈ [Rm, 2Rm]. (2.5)

Then define the function

ψm(s) = 1 − 128R2
m

9(12R2
m + s2)

. (2.6)

Now for each m ∈ N, define the function

ηm(s) =

⎧⎪⎨⎪⎩
0, 0 ≤ s ≤ Rm,

φm(s), Rm ≤ s ≤ 2Rm,

ψm(s), 2Rm ≤ s ≤ ∞.

(2.7)

Then define Φm by

Φm(z) = (1 − ηm(‖z‖))Φ(z) +
γ

2
ηm(‖z‖)‖z‖2, m ∈ N, (2.8)
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which satisfies the properties (1)–(4). In fact, we can get the statements (2.1), (2.3), (2.4) by
direct computations. In order to check (2.2), we show

(Φ′′
m(z)x, x) ≥ (B∞x, x) (2.9)

for all x ∈ X , with ‖z‖ ≥ K. The proof is the same as that of Lemma 3.4 in [19]. The only
difference is that in [19, Lemma 3.4], it deals with the finite dimensional case, but here we
deal with the infinite dimensional case. Since where involved only formal computations, all the
estimates are still valid, the proof carries over verbatim.

Then we choose α ∈ R, with −α large enough, such that

νA(α · Id) = 0, (2.10)

B∞ − α · Id ≥ Id, M̃ − α > 1, (2.11)

N ′′
m(z) ≥ Id, ∀ z ∈ X, m ∈ N, (2.12)

N ′′
m(z) ≥ B∞ − α · Id, ‖z‖ ≥ K, m ∈ N, (2.13)

where Nm(z) = Φm(z)− α
2 (z, z), m ∈ N. Let N∞(z) = 1

2 ((B∞−α·Id)z, z), Ñγ = 1
2 (γ−α)(z, z),

N(z) = Φ(z) − α
2 (z, z). We have Nm, N∞, Ñγ ∈ C2(X,R), and N ′′

m(z), N ′′
∞(z), Ñ ′′

γ (z) ≥
Id, ∀z ∈ X. Define

Λz = Az + αz, (2.14)

Ψm(z) =
1
2
(Λ−1z, z) +N∗

m(z), m ∈ N, (2.15)

Ψ̃γ(z) =
1
2
(Λ−1z, z) + Ñ∗

γ (z), (2.16)

Ψ∞(z) =
1
2
(Λ−1z, z) +N∗

∞(z), (2.17)

where N∗
m, Ñ

∗
γ and N∗∞ are the Fenchel dual of Nm, Ñγ and N∞ (see [8] for the definition and

properties). We know Ψm,Ψ∞, Ψ̃γ ∈ C2(X,R).

Lemma 2.2 For any m ∈ N, there is a C̃m, such that ‖N∗′
m (z) − Ñ∗′′

γ (0)z‖ ≤ C̃m, ∀m ∈
N, z ∈ X.

Proof Otherwise, there are {zn} ⊂ X , such that N∗′
m (zn) − Ñ∗′′

γ (0)zn = yn, and ‖yn‖ →
∞ (n→ ∞). That is

N∗′
m (zn) = Ñ∗′′

γ (0)zn + yn = (γ − α)−1zn + yn, (2.18)

N ′
m((γ − α)−1zn + yn) = zn, (2.19)

and from the definition of Nm, we have

Φ′
m((γ − α)−1zn + yn) − α((γ − α)−1zn + yn) = zn, (2.20)

and

Φ′
m((γ − α)−1zn + yn) − γ((γ − α)−1zn + yn) = (α− γ)yn, (2.21)

but from the proposition (4) in Lemma 2.1, the left-hand side is bounded. This is a contradiction
to the fact that yn are unbounded.
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Lemma 2.3 For any m ∈ N, Ψm satisfies the (PS) condition, and the critical-point set
Km = {z ∈ X | Ψ′

m(z) = 0} is compact set.

Proof For any m ∈ N, assume {zn} ⊂ X , and Ψ′
m(zn) → 0. From Lemma 2.2, we have

‖Ψ′
m(zn) − Ψ̃′′

γ(0)zn‖ = ‖N∗′
m(zn) − Ñ∗′′

γ (0)zn‖ ≤ C̃m. (2.22)

And since νA(γ · Id) = 0, we have that Ψ̃′′
γ(0) has bounded inverse, so {zn} are bounded. Then

there exists a subsequence znk
⇀ z0 in X , and Λ−1znk

→ Λ−1z0 in X . From the definition of
Ψm, we have

Λ−1znk
+N∗′

m (znk
) = Ψ′

m(znk
), (2.23)

and

N∗′
m (znk

) = Ψ′
m(znk

) − Λ−1znk
, (2.24)

so znk
= N ′

m(Ψ′
m(znk

) − Λ−1znk
) → N ′

m(−Λ−1z0), nk → ∞. The (PS) condition is satisfied.
From the similar reason, we have that Km is a compact set.

Because νA(γ · Id) = 0, we have X = E−
γ ⊕ E+

γ , where Ψ̃γ is negative definite on E−
γ and

positive definite on E+
γ , and dim(E−

γ ) = iA(γ · Id | α · Id). Similarly to Lemma II.5.1 in [2], we
have the following lemma.

Lemma 2.4 For any m ∈ N, there is an am ∈ R with −am large enough, such that

Hq(X, (Ψm)am ; R) = δqrR,

where r = dim(E−
γ ) = iA(γ · Id | α · Id).

Proof Since νA(γ) = 0, 0 is a non-degenerate critical point of Ψ̃γ , we have

X = E−
γ ⊕ E+

γ , (2.25)

such that there is a cγ > 0, satisfying

Ψ̃′′
γ(0)|E−

γ
≤ −cγ · Id, and Ψ̃′′

γ(0)|E+
γ
≥ cγ · Id. (2.26)

From Lemma 2.2, we have

‖Ψ′
m(z) − Ψ̃′′

γ(0)z‖ = ‖N∗′
m (z) − (γ − α)−1z‖ ≤ C̃m, ∀m ∈ N, z ∈ X. (2.27)

Let R+
m > C̃m \ cγ . Then if z+ ∈ E+

γ and ‖z+‖ ≥ R+
m, we have

〈Ψ′
m(z), z+〉 = 〈Ψ̃′′

γ(0)z+, z+〉 + 〈(Ψ′
m(z) − Ψ̃′′

γ(0)z), z+〉
≥ cγ‖z+‖2 − C̃m‖z+‖ > 0. (2.28)

Let M = (E+
γ ∩ BR+

m
) ⊕ E−

γ . We have that Ψm has no critical point outside M, and that
−Ψ′(z) points inward to M on ∂M. Further more, we have

Ψm(z) = Ψm(0) +
∫ 1

0

〈Ψ′
m(tz), z〉dt

= Ψm(0) +
∫ 1

0

〈Ψ′
m(tz) − Ψ̃′′

γ(0)tz, z〉dt+
∫ 1

0

〈Ψ̃′′
γ(0)tz, z〉dt. (2.29)
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That is

Ψm(0) − C̃m‖z‖ − 1
2
‖Ψ̃′′

γ(0)‖‖z−‖2

≤ Ψm(z) ≤ Ψm(0) + C̃m‖z‖ − cγ
2
‖z−‖2 +

1
2
‖Ψ̃′′

γ(0)‖‖z+‖2. (2.30)

We obtain

Ψm(z) → −∞ ⇔ ‖z−‖ → ∞, uniformly in z+ ∈ E+
γ ∩BR+

m
. (2.31)

Thus, ∀T > 0, ∃a′m < am < −T, r1 > r2 > 0 such that

(E+
γ ∩BR+

m
) ⊕ (E−

γ \Br1)⊂(Ψm)a′
m
∩M⊂(E+

γ ∩BR+
m

) ⊕ (E−
γ \Br2)⊂(Ψm)am ∩M. (2.32)

And from Lemma 2.3 we choose T large enough such that Km ∩ (Ψm)−T = ∅. The negative
gradient flow of Ψm defines a strong deformation retract

τ1 : (Ψm)am ∩M → (Ψm)a′
m
∩M. (2.33)

Another strong deformation retract in (Ψm)am ∩M
τ2 : (E+

γ ∩BR+
m

) ⊕ (E−
γ \ Br2) → (E+

γ ∩BR+
m

) ⊕ (E−
γ \ Br1) (2.34)

is defined by τ2 = ξ(1, · ), where

ξ(t; z+ + z−) =

⎧⎪⎨⎪⎩
z+ + z−, ‖z−‖ ≥ r1,

z+ +
z−

‖z−‖ (tr1 + (1 − t)‖z−‖), ‖z−‖ ≤ r1.
(2.35)

We compose these two strong deformation retracts, τ = τ2 ◦ τ1, and then obtain a strong
deformation retract

τ : (Ψm)am ∩M → (E+
γ ∩BR+

m
) ⊕ E−

γ \ Br1 , (2.36)

and the following deformation

η(t; z+ + z−) =

⎧⎪⎨⎪⎩
z+ + z−, ‖z+‖ ≤ R+

m,

z− +
z+

‖z+‖(tR+
m + (1 − t)‖z+‖), ‖z−‖ ≥ R+

m

(2.37)

is a strong deformation retract of the topological pair from (X, (Ψm)am) to (M,M∩(Ψm)am).
Finally, we have

Hq(X, (Ψm)am) ∼= Hq(M,M∩ (Ψm)am)
∼= Hq((E+

γ ∩BR+
m

) ⊕ E−
γ , (E

+
γ ∩BR+

m
) ⊕ E−

γ \Br1)
∼= Hq(E−

γ , E
−
γ \Br1)

∼= Hq(E−
γ ∩Br1 , ∂(E−

γ ∩Br1))
∼= δqrR.

Let K∗
m = Km \ {θ}. From Definition 1.4 and Theorem 1.1, we have that θ is an isolate

critical point of Ψm. And since Km is compact for every m ∈ N, we have K∗
m is also compact.

Then we have the next lemma.
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Lemma 2.5 For any ε, μ > 0 small enough there exists a functional Ψ̂m, such that
(1) ‖Ψm − Ψ̂m‖C2 < ε,
(2) Ψ(z) = Ψ̂m, z /∈ N2μ(K∗

m),
(3) Ψ′′

m(z) = Ψ̂′′
m(z), z ∈ Nμ(K∗

m),
where Nμ(K∗

m) = {z ∈ X | dist(z,Km)∗ < μ}. Moreover, Ψ̂m satisfies the (PS) condition and
has only a finite number of critical points. All nontrivial critical points of Ψ̂m are in Nμ(K∗

m)
and are non-degenerate.

Proof We follow the idea of [25]. Since K∗
m is a compact subset of X , we have the following

result. For every μ > 0, there exists a C∞ function l : X → [0, 1], with all its derivatives
bounded and

l(z) = 1, ∀ z ∈ Nμ(K∗
m), (2.38)

l(z) = 0, ∀ z ∈ X \N2μ(K∗
m). (2.39)

Let M = sup
z∈N2μ(K∗

m)

{‖z‖}, C = ‖l(z)‖C2, δ = inf
z∈N2μ(K∗

m)\Nμ(K∗
m)
{‖Ψ′

m(z)‖} > 0. We use the

Sard-Smale Theorem to find y ∈ X such that ‖y‖ < min{ ε
C(2+2M) ,

δ
2C(1+2M)}, and −y is a

regular value for Ψ′
m. For any z0 ∈ N2μ(K∗

m), the functional is defined by

Ψ̂m(z) = Ψm(z) + l(z)〈y, z − z0〉. (2.40)

By ‖y‖ < ε
C(2+2M) and the definition of l(z), we have (1) and (2), (3). Since ‖y‖ < δ

2C(1+2M)

and −y is a regular value for Ψm, we have that all nontrivial critical points of Ψ̂m are in Nμ(K∗
m)

and are non-degenerate.
In order to prove that Ψ̂m satisfies the (PS) condition, assume that there are {zn} ⊂ X and

Ψ̂′
m(zn) → 0 (n → ∞). From the definition of Ψ̂m, we have ‖Ψ̂′

m(z)‖ > δ
2 , ∀z ∈ N2μ(K∗

m) \
Nμ(K∗

m). So zn ∈ (X \ N2μ(K∗
m)) ∪ Nμ(K∗

m), when n is large enough. From the proposition
of Ψ̂m and the proof in Lemma 2.3, we have that Ψ̂m satisfies the (PS) condition. So it has
finitely many critical points.

Proof of Theorem 1.2 We divide the proof into two steps and follow the ideas of [18].
Step 1 Note that z = 0 is a critical point of Ψm. The Morse index of 0 for Ψm is

iA(B0 | α · Id). Since γ · Id > B∞, we have

iA(γ · Id | α · Id) ≥ iA(B∞ | α · Id) > iA(B0 | α · Id) + 1. (2.41)

Now we claim that Ψm has a nontrivial critical point zm with its Morse index satisfying

m−(zm) ≤ iA(B0 | α · Id) + 1. (2.42)

If Ψm has only finite critical points, we use the (iA(B0 | α · Id) + 1)th Morse inequality:

q∑
p=0

(−1)q−pMp(am, bm,Ψm) ≥
q∑

p=0

(−1)q−pβp(am, bm,Ψm), (2.43)

where q = iA(B0 | α · Id) + 1, and bm is large enough such that Km ⊂ Ψ−1
m [am, bm].

Because Ψm satisfies the (PS) condition and from Lemma 2.4, we have

βp(am, bm,Ψm) = rank(Hp(X, (Ψm)am)) = δpr, (2.44)
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where r = iA(γ · Id | α · Id). Since iA(γ · Id | α · Id) > iA(B0 | α · Id) + 1, the right-hand side of
the inequality is equal to 0. If Ψm has no nontrivial critical point with its Morse index less than
iA(B0 | α · Id) + 1, the left-hand side of the inequality is equal to −1, which is a contradiction.

If Ψm has infinitely many critical points, assuming that for any z ∈ K∗
m,

m−(z) > iA(B0 | α · Id) + 1, (2.45)

we use Lemma 2.5 and choose μ small enough, such that
(1) 0 /∈ N2μ(K∗

m), so 0 is also an isolated critical point of Ψ̂m and has the same Morse index
iA(B0 | α · Id).

(2) For any z ∈ Nμ(K∗
m), m−(z), which is the dimension of the negative subspace of Ψ̂′′

m(z),
satisfies m−(z) > iA(B0 | α · Id) + 1. (Because Ψm is C2 continuous, we can assume this.)

From the proposition (3) in Lemma 2.5, we have if z is a nontrivial critical point of Ψ̂m, the
Morse index m−

Ψ̂m
(z) satisfies

m−
Ψ̂m

(z) > iA(B0 | α · Id) + 1. (2.46)

Then choose ãm satisfying N2μ(K∗
m) ∩ (Ψm)ãm

= ∅, that is (Ψm)ãm
= (Ψ̂m)ãm

. So

Hq(X, (Ψm)ãm
; R) = Hq(X, (Ψ̂m)ãm

; R) = δqrR. (2.47)

Then Ψ̂m do not satisfy the (iA(B0 | α · Id) + 1)th Morse inequality. It is a contradiction.
Step 2 Let ym = −Λ−1zm, since Ψ′

m(zm) = 0, that is Λ−1zm +N∗′
m(zm) = 0. So we have

ym = −Λ−1zm = N∗′
m(zm), and ym satisfies the equation Aym + Φ′

m(ym) = 0. If there is an
R > 0 such that ‖ym‖ < R, m ∈ N, so from the definition of Φm, ym is a nontrivial solution of
equation (1.2) when m large enough.

We prove it indirectly and assume ‖ym‖ → ∞, as m → ∞. From equation (2.13), we have
N ′′

m(ym) ≥ B∞ − α · Id > 0 for m large enough. That is N∗′′
m (zm) ≤ (B∞ − α · Id)−1.

Let E−
∞ = E−(Ψ′′

∞(0)). We have dim(E−
∞) = iA(B∞ | α · Id). For any z ∈ E−

∞,

〈Ψ′′
m(zm)z, z〉 = 〈Λ−1z, z〉+ 〈N∗′′

m (zm)z, z〉
≤ 〈Λ−1z, z〉+ 〈(B∞ − α · Id)−1z, z〉
= 〈Ψ′′

∞(0)z, z〉 ≤ −δ‖z‖2.

That is m−
Ψm

(zm) ≥ iA(B∞|α · Id), and iA(B0 | α · Id) + 1 ≥ iA(B∞|α · Id), which contradicts
the fact that iA(B∞|α · Id)− iA(B0 | α · Id) = iA(B∞)− iA(B0) > 1. So ‖ym‖ are bounded and
equation (1.2) has a nontrivial solution.

The proof of Theorem 1.3 is similar to that of Theorem 1.2. The difference is in Step 1.
Instead of Morse theory, we make use of minimax arguments for multiplicity of critical points.

Let X be a Hilbert space and assume that φ ∈ C2(X,R) is an even functional, satisfies the
(PS) condition and φ(0) = 0. Denote Sa = {u ∈ X | ‖u‖ = a}.

Lemma 2.6 (see [12, Corollary 10.19]) Assume that Y and Z are subspaces of X satisfying
dimY = j > k = codimZ. If there exist R > r > 0 and α > 0 such that

inf φ(Sr ∩ Z) ≥ α, supφ(SR ∩ Y ) ≤ 0,

then φ has j−k pairs of nontrivial critical points {±x1,±x2, · · · ,±xj−k}, so that μ(ui) ≤ k+i,
for i = 1, 2, · · · , j − k.
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Since Ψ is even, we have that Ψm is also even, and satisfies Lemma 2.1. Let Y = E−∞,
and Z = E+

m = E+(Ψ′′
m(0)). We have dimY = iA(B∞|α · Id), codimZ = iA(B0 | α · Id),

dimY >codimZ. Then it is easy to prove that Ψm satisfies Lemma 2.6 for R, and 1
r is large

enough. So Ψm has l := iA(B∞) − iA(B0) pairs of nontrivial critical points

{±x1,±x2, · · · ,±xl},
and l − 1 pairs of them satisfy

m−(xi) ≤ iA(B0 | α · Id) + i < iA(B∞ | α · Id), i = 1, 2, · · · , l − 1. (2.48)

From (2.48), we complete the proof of Theorem 1.3.

3 Applications

We can use the abstract critical point Theorem1.2 and Theorem1.3 to deal with the ex-
istence and multiplicity problems of solutions of nonlinear elliptic equations as in [19], the
periodic solutions of asymptotically linear Hamiltonian systems as in [18] and the Lagrangian
boundary value problems of asymptotically linear Hamiltonian systems as in [14, 17]. To avoid
tedious, in the following, we only show an application of the abstract critical point Theorem 1.2
and Theorem 1.3 to the problem of nonlinear Hamiltonian systems with P -periodic boundary
conditions.

3.1 First order Hamiltonian systems

In this subsection, we consider the solutions of the nonlinear Hamiltonian systems{
ż(t) = JH ′(t, z(t)), t ∈ [0, 1],
z(1) = Pz(0), (3.1)

where z(t) ∈ R
2n, J =

(
0 −In

In 0

)
is the standard symplectic matrix, N =

(−In 0
0 In

)
with In the

identity in R
n and P ∈ Sp(2n) = {M ∈ GL(R2n) |MTJM = J}, H ∈ C2([0, 1] × R

2n,R), and
H ′(t, z) denotes the gradient of H with respect to the variable z.

Define L2 = L2(0, 1; R2n), Ỹ = {z : [0, 1] → R
2n | z′ ∈ L2 and z(1) = Pz(0)}. Define

Ãz := Jz′ for every z ∈ Ỹ . By the spectral theory, there is a normal orthogonal basis {en}
of L2, and a sequence {λn}, such that Ãen = λnen, ∀n ∈ Z. Then for every z ∈ L2, with
z =

∑
n∈Z

znen, we have ‖z‖2
L2 =

∑
n∈Z

z2
n. Define

X =
{
z ∈ L2

∣∣∣ ∑
n∈Z

(1 + |λn| 12 )|zn|2 <∞
}
. (3.2)

Then X is a separable Hilbert space with the norm ‖z‖2 :=
∑
n∈Z

(1 + |λn| 12 )|zn|2 and the corre-

sponding inner product ( · , · ). Define

Y =
{
z ∈ L2

∣∣∣ ∑
n∈Z

(1 + |λn| 32 )|zn|2 <∞
}
. (3.3)

Then Y is a separable Hilbert space with the norm ‖z‖2
Y :=

∑
n∈Z

(1 + |λn| 32 )|zn|2 and the

corresponding inner product ( · , · )Y . Define the operator A : Y → X by

(Ay, x) =
∑
n∈Z

λnxnyn, ∀x ∈ X, y ∈ Y, (3.4)
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where x =
∑
n∈Z

xnen, y =
∑
n∈Z

ynen. It is easy to check that (X,Y,A) satisfy the conditions

introduced in Section 1. Define K : L2 → X by

(Kz, x) = (z, x)L2 , ∀x ∈ X, z ∈ L2, (3.5)

and it is easy to see that K is a compact operator. Define Φ : X → R by

Φ(x) =
∫ 1

0

H(t, x(t))dt. (3.6)

If there exists a constant C > 0, such that ‖H ′′(t, z)‖ ≤ C, ∀ t ∈ [0, 1], z ∈ R
2n, then we

have Φ ∈ C2(X,R), and Φ′(x) = KH ′(t, x(t)), Φ′′(x) = KH ′′(t, x(t)). If z ∈ Y , satisfying
Az + Φ′(z) = 0, we have that z is a solution of (3.1).

Similarly to Theorems 1.2 and 1.3, we have the following results.

Theorem 3.1 Assume H ∈ C2([0, 1] × R
2n,R) which satisfies

(H) There exists an M > 0 such that

|H ′′(t, z)| ≤M, ∀(t, z) ∈ [0, 1] × R
2n,

(H0) H ′(t, 0) ≡ 0, t ∈ [0, 1], H ′′(t, 0) = B0(t) and νA(KB0(t)) = 0,
(H±

∞) There exists a continuous symmetric matrix function B∞(t), and some R > 0, such
that

H ′′(t, z) ≥ B∞(or H ′′(t, z) ≤ B∞) for all t ∈ [0, 1] and |z| > R,

(Ht) iA(KB∞) > iA(KB0) + 1( or iA(KB∞) < iA(KB0) − 1).
Then (3.1) has at least one nontrivial solution.

Theorem 3.2 Assume that the conditions in Theorem 3.1 are all satisfied and further more
H is even in z. Then (3.1) has at least |iA(B∞) − iA(B0)| − 1 pairs of nontrivial solutions.

Remark 3.1 The cases of (H+
∞) and (H−

∞) are similar. In fact, the case (H−
∞) follows from

the case (H+
∞) by applying to the Hamiltonian function −H(1− t, z). So we only consider (H+

∞)
from now on. By Remark 1.1, it does not lose any generality, if we can assume νA(B∞) = 0.

The existence and multiplicity for nonlinear Hamiltonian systems with P -boundary condi-
tions was first studied by the first author in [13], where the conditions on H are more restricted
in some sense.

The proofs of Theorems 3.1 and 3.2 are similar to that of Theorems 1.2 and 1.3. Here we
only give a brief statement. Similarly to Lemma 2.1, there exists a sequence of Hamiltonian
functions Hm ∈ C2([0, 1] × R

2n) satisfying the following properties:
(1) there exists an increasing sequence of real numbers Rm → ∞ (m→ ∞) such that

Hm(t, z) ≡ H(t, z), ∀ t ∈ [0, 1], |z| ≤ Rm,

(2) for each m ∈ N,

H ′′
m(t, z) ≥ B∞(t), ∀ t ∈ [0, 1], |z| ≥ R,

(3) there exists an M̃ > 0, such that

‖H ′′
m‖ ≤ M̃, ∀ t ∈ [0, 1], z ∈ R

2n, m ∈ N,
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(4) there exist a γ ∈ R, satisfying γK > KB∞, νA(γK) = 0, and a Cm > 0, such that

‖H ′
m(t, z) − γz‖ < Cm for all t ∈ [0, 1], z ∈ R

2n, H ′′
m(t, z) − γ = o(|z|), as |z| → ∞.

So we can choose a, b ∈ R with νA(a · Id) = νA(b · Id) = 0,KB∞ − a · Id ≥ Id, and satisfying

b · Id ≥ N ′′
m(z) ≥ Id, ∀z ∈ X, (3.7)

where Nm(z) =
∫ 1

0 Hm(t, z(t))dt− a
2 (z, z)X . Define

N(z) =
∫ 1

0

H(t, z(t))dt− a

2
(z, z)X , (3.8)

N∞(z) =
1
2
(KB∞z, z)X − a

2
(z, z)X , (3.9)

Ñγ(z) =
1
2
(γKz, z)X − a

2
(z, z)X . (3.10)

Let Λ = A+a · Id. From νA(a · Id) = 0, we have that Λ is inversible and Λ−1 is compact. Define

Ψ(z) =
1
2
(Λ−1z, z) +N∗(z), (3.11)

Ψm(z) =
1
2
(Λ−1z, z) +N∗

m(z), (3.12)

Ψ̃γ(z) =
1
2
(Λ−1z, z) + Ñ∗

γ (z), (3.13)

Ψ∞(z) =
1
2
(Λ−1z, z) +N∗

∞(z). (3.14)

With similar arguments as in Section 2, we see that N∗
m satisfies Lemmas 2.2, Ψm satisfies

Lemmas 2.3–2.5. So Ψm possesses a nontrivial critical point zm with Morse index satisfying
m−(zm) ≤ iA(KB0 | a · Id) + 1. Denote by −Λ−1zm = ym. We have that ym satisfies the
following equations: {

ẏm(t) = JH ′
m(t, ym(t)),

ym(1) = Pym(0).

If there exists a C > 0 independent of m such that ‖ym‖L∞ ≤ C, then ym is a nontrivial
solution of the original equations (3.1) for m large enough. Otherwise, if ‖ym‖L∞ → ∞ as
m → ∞, by the same arguments as in the last part of [18], we have min

t∈[0,1]
|ym(t)| ≥ R for

m large enough. So from the definition of Hm, we have H ′′
m(t, ym) ≥ B∞. Thus we have

N∗′′(zm) ≤ (KB∞ − a · Id)−1. In this case, we have the contradiction as done in Section 2.
That is to say ‖ym‖L∞ is bounded, so ym is a nontrivial solution of the original equations (3.1).

3.2 Second order Hamiltonian systems

In this subsection, we consider the solutions of the nonlinear Hamiltonian system{
(Λ(t)x′)′ + V ′(t, x) = 0,
x(1) = Mx(0), x′(1) = Nx′(0),

(3.15)

where M ∈ GL(n), M τΛ(1)N = Λ(0), Λ ∈ C([0, 1]; GLs(n)) and Λ(t) is positive definite for
every t ∈ [0, 1].
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By the similar argument, let

Ỹ = {x : [0, 1] → R
n | (Λ(t)x′(t))′ ∈ L2(0, 1; Rn), x(1) = Mx(0), x′(1) = Nx′(0)}. (3.16)

We have a normal orthogonal basis {fn} of L2(0, 1; Rn) and a sequence {ηn}, such that
(Λ(t)x′(t))′fn = ηnfn, ∀n ∈ Z. For every x ∈ L2(0, 1; Rn), we have x =

∑
n∈Z

xnfn. Define

X =
{
x ∈ L2(0, 1; Rn)

∣∣∣ ∑
n∈Z

(1 + |ηn| 12 )x2
n <∞

}
. (3.17)

Then X is a separable Hilbert space with the norm ‖x‖2 :=
∑
n∈Z

(1 + |ηn| 12 )|xn|2 and the corre-

sponding inner product ( · , · ). Define

Y =
{
y ∈ (0, 1; Rn)

∣∣∣ ∑
n∈Z

(1 + |ηn| 32 )|yn|2 <∞
}
. (3.18)

Then Y is a separable Hilbert space with the norm ‖y‖2
Y :=

∑
n∈Z

(1 + |ηn| 32 )|yn|2 and the

corresponding inner product ( · , · )Y . Define the operator A : Y → X by

(Ay, x) =
∑
n∈Z

ηnxnyn, ∀x ∈ X, y ∈ Y, (3.19)

where x =
∑
n∈Z

xnfn, y =
∑
n∈Z

ynfn. Then we have that (X,Y,A) satisfies the conditions

introduced in Section 1. We have the following results.

Theorem 3.3 Assume that V ∈ C2([0, 1] × R
n,R) satisfies

(V) there exists an M > 0 such that

|V ′′(t, x)| ≤M, ∀ (t, x) ∈ [0, 1]× R
n,

(V0) V ′(t, 0) ≡ 0, t ∈ [0, 1], V ′′(t, 0) = B0(t) and νA(B0(t)) = 0,
(V∞) there exists a continuous symmetric matrix function B∞(t), and some R > 0, satis-

fying
V ′′(t, x) ≥ B∞ for all t ∈ R and |x| > R,

(Vt) iA(B∞) > iA(B0) + 1.
Then (3.15) has at least one nontrivial solution.

Theorem 3.4 Assume that the conditions in Theorem 3.3 are all satisfied and further more
V is even in x. Then (3.15) has at least iA(B∞) − iA(B0) − 1 pairs of nontrivial solutions.

The proofs of the above two results are similar to that of Theorems 3.1 and 3.2, in fact,
problem (3.15) can be transferred to problem (3.1).

References

[1] Amann, H. and Zehnder, E., Nontrivial soultions for a class of nonresonance problems and applications to
nonlinear differential equations, Annali Scuola Norm. Sup. Pisa., 7, 1980, 439–603.

[2] Chang, K. C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel,
1993.

[3] Chang, K. C., Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl.
Math., 34, 1981, 693–712.



14 C. G. Liu and Q. Wang

[4] Chang, K. C., Critical Point Theory and Its Application (in Chinese), Shanghai Sci. Tech. Press, Shanghai,
1986.

[5] Conley, C. and Zehnder, E., Morse-type index theory for flows and periodic solutions for Hamiltonian
equations, Comm. Pure Appl. Math., 37, 1984, 207–253.

[6] Dong, Y., Index theory for linear self-adjoint operator equations and nontrivial solutions for asymptotically
linear operator equations, Calc. Var., 38, 2010, 75–109.

[7] Dong, D. and Long, Y., The iteration formula of Maslov-type index theory with applications to nonlinear
Hamiltonian systems, Trans. Amer. Math. Soc., 349, 1997, 2619–2661.

[8] Ekeland, I., Convexity methods in Hamiltonian mechanics, Ergebnisse der Mathematik, Springer, Berlin,
1990.

[9] Ekeland, I., Une theorie de Morse pour les systemes hamiltoniens convexes, Ann IHP “Analyse non
lineaire”, 1, 1984, 19–78.

[10] Ekeland, I. and Hofer, H., Periodic solutions with prescribed period for convex autonomous Hamitonian
systems, Invent. Math., 81, 1985, 155–188.

[11] Ekeland, I. and Hofer, H., Convex Hamiltonian energy surfaces and their closed trajectories, Comm. Math.
Phys., 113, 1987, 419–467.

[12] Ghoussoub, N., Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press,
Cambridge, 1993.

[13] Liu, C., Maslov-type P -index theory for a symplectic path with applications, Chin. Ann. Math., 27B(4),
2006, 441–458.

[14] Liu, C., Asymptotically linear Hamiltonian system with Lagrangian boundary conditions, PJM, 232, 2007,
232–254.

[15] Liu, C., Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Advanced
Nonlinear Studies, 7, 2007, 131–161.

[16] Liu, C., Long, Y. and Zhu, C., Multiplicity of closed characteristics on symmetric convex hypersurfaces in
R

2n, Math. Ann., 323, 2002, 201–215.

[17] Liu, C., Wang, Q. and Lin, X., An index theory for symplectic paths associated with two Lagrangian
subspaces with applications, Nonlinearity, 24, 2011, 43–70.

[18] Liu, Z., Su, J. and Wang, Z., A twist condition and periodic solutions of Hamiltonian system, Adv. Math.,
218, 2008, 1895–1913.

[19] Liu, Z., Su, J. and Wang, Z., Solutions of elliptic problems with nonlinearities of linear growth, Calc. Var.,
35, 2009, 463–480.

[20] Long, Y., Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems,
Sci. China, 33, 1990, 1409–1419.

[21] Long, Y., A Maslov-type index theory for symplectic paths, Topol. Methods Nonlinear Anal., 10, 1997,
47–78.

[22] Long, Y. and Zehnder, E., Morse theory for forced oscillations of asymptotically linear Hamiltonian sys-
tems, Stock. Process. Phys. Geom., S. Alberverio et al (eds.), World Scientific Publishing, Teaneck, New
Jersey, 1990, 528–563.

[23] Long, Y. and Zhu, C., Closed characteristics on compact convex hypersurfaces in R
2n, Ann. Math., 155,

2000, 317–368.

[24] Long, Y. and Zhu, C., Maslov type index theorey for symplectiuc paths and spectral flow (II), Chin. Ann.
Math., 21B(1), 2000, 89–108.

[25] Solimini, S., Morse index estimates in min-max theorems, Manuscripta Math., 63, 1989, 421–453.

[26] Zhu, C. and Long, Y., Maslov type index theorey for symplectiuc paths and spectral flow (I), Chin. Ann.
Math., 20B(4), 1999, 413–424.


