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1 Introduction and Main Results

The energy of an inhomogeneous superconducting sample is given by the functional (see
[2, 8])

Gε,H(ψ,A) =
∫

Ω

(
|(∇− iA)ψ|2 +

1
2ε2

(p(x) − |ψ|2)2 + |curlA−H |2
)

dx. (1.1)

Ω an open, smooth and simply connected subset of R2. We take S1 an open smooth set such
that S1 ⊂ Ω, S2 = Ω \ S1. In this paper, the function p is a step function defined as

p(x) =
{

1, if x ∈ S1,
a, if x ∈ S2,

(1.2)

where a ∈ R+ \ {1} is a given constant. Then, if (ψ,A) is a minimizer of (1.1), it holds that

Gε,H(ψ,H) = Gε,0(uε, 0) + Fε,H
( ψ
uε
, A

)
,

and the configuration ( ψuε
, A) is a minimizer of the functional Fε,H introduced below,

Fε,H(ϕ,A) =
∫

Ω

(
u2
ε|(∇− iA)ϕ|2 +

u4
ε

2ε2
(1 − |ϕ|2)2 + |curlA−H |2

)
dy, (1.3)

where uε is the minimizer over H1(Ω,R) of

J(u) =
∫

Ω

(
|∇u|2 +

1
2ε2

(p(y) − |u|2)2
)
dy. (1.4)
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The vortex nucleation for minimizers of Fε,H for applied magnetic fields comparable to the
first critical field was done firstly by Kachmar (for more details see ([4, 5])), and afterwards by
Aydi-Kachmar [1]. In this work, we let H be such that | log ε| � H � 1

ε2 as ε → 0 and our
goal is to evaluate

min
H1×H1

(Fε,H(ϕ,A)) .

First, we state the following result (see [1]).

Theorem 1.1 (see [1]) Given λ > 0, assume that

lim
ε→0

H

| ln ε| = λ.

Then if (ϕε, Aε) is a minimizer of (1.3), then, denoting by

hε = curlAε, με = hε + curl(iϕε, (∇− iAε)ϕε)

the “induced magnetic field” and “vorticity measure” respectively, the following convergences
hold,

με
H

→ μ∗, in
(
C0,γ(Ω)

)∗
for all γ ∈ (0, 1), (1.5)

hε
H

→ hμ∗ , weakly in H1
1 (Ω) and strongly in W 1,p(Ω), ∀ p < 2. (1.6)

Again
Fε,H(ϕε, Aε)

H2
→ Eλ(μ∗)

in the sense of Γ-convergence. Here Eλ(μ∗) is by definition

Eλ(μ∗) =
1
λ

∫
Ω

p(x)|μ∗| dx+
∫

Ω

( 1
p(x)

|∇hμ∗ |2 + |hμ∗ − 1|2
)

dx (1.7)

and μ∗ = −div(∇h∗
p ) + h∗ is the unique minimizer of Eλ.

In [9], Sandier-Serfaty obtained that, for the classic Ginzburg-Landau energy denoted by G
given by

G(ψ,A) =
∫

Ω

(
|(∇− iA)ψ|2 +

1
2ε2

(1 − |ψ|2)2 + |curlA−H |2
)

dx, (1.8)

if | log ε| � H � 1
ε2 , we have

G(ψε, Aε) = min
H1×H1

G(ψ,A) � H |Ω| log
1

ε
√
H

(1 + o(1)), (1.9)

as ε→ 0. Our motivation now is to evaluate the analogous minimal energy Fε,H(ϕε, Aε). Our
main result is the following theorem (in the same spirit as (1.9)).

Theorem 1.2 Assume, as ε → 0, that | ln ε| � H � 1
ε2 . Then, letting (ϕε, Aε) minimize

(1.3), we have

Fε,H(ϕε, Aε) ∼ H log
1

ε
√
H

(1 + o(1))
∫

Ω

p(x)dx. (1.10)
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A consequence of this result is the following corollary.

Corollary 1.1 With | ln ε| � H � 1
ε2 , we have

lim
ε→0

Fε,H(ϕε, Aε)
H2

= 0. (1.11)

Then hμ∗ = 1, and so μ∗ = dx.

Proof It is clear with the above assumption on the applied field H , that H ln 1
ε
√
H

� H2,
so taking it in (1.10) leads to (1.11). We know again that∫

Ω

( |∇h|2
u2
ε

+ |h−H |2
)
dx ≤ Fε,H(ϕε, Aε) = o(H2).

We use the uniform boundedness of uε, min(1,
√
a ) < uε < max(1,

√
a ) in Ω for a small ε (this

inequality is stated in Theorem 2.1 below), it is evident that h
H tends strongly to h∗ = 1 in H1,

so that μ∗ = dx.

Remark 1.1 Remark that (1.10) is analogous to what done by Sandier-Serfaty given by
(1.9). In the case λ = +∞, i.e, for large H , Corollary 1.1 says that μ∗ = 1 which means that
there is a uniform density of vortices in all Ω independently of a. This is in contrast with [1]
where for a wide range of applied fields (H = λ| ln ε|(1+o(1))) such that λ is chosen convenably
and when a is sufficiently small, vortices exist and are pinned in S2.

Sketch of the Proof of Theorem 1.2 The proof of Theorem 1.2 is obtained by getting
first an upper bound on the minimal energy of Fε,H (see Proposition 3.1, proved in Section 3),
and then a lower bound (see Corollary 4.1, proved in Section 4).

The upper bound is done by construction of a test configuration which goes with the same
idea of [10]. On the other hand, for such large applied fields, the problem of minimizing Fε,H
reduces to that of minimizing it on any subdomain, in other words, the minimization problem
becomes local. Thus, we may perform blow-ups which yield the right lower bound.

Remark 1.2 (1) The letters C, C̃,M, etc. denote positive constants independent of ε.
(2) For n ∈ N and X ⊂ Rn, |X | denotes the Lebesgue measure of X . B(x, r) denotes the

open ball in R
n of radius r and center x.

(3) Fε,H(ϕ,A,U) means that the energy density of (ϕ,A) is integrated only on U ⊂ Ω.
(4) Again, we define

Ga(ψ,A,U) =
∫
U

(
a |(∇− iA)ψ|2 +

a2

2ε2
(1 − |ψ|2)2 + |curlA−H |2

)
dx. (1.12)

(5) For two positive functions a(ε) and b(ε), we write a(ε) � b(ε) as ε → 0 to mean that
lim
ε→0

a(ε)
b(ε) = 0.

2 Preliminary Analysis of Minimizers

2.1 The case without applied magnetic field

This section is devoted to an analysis for minimizers of (1.1) when the applied magnetic
field H = 0. We follow closely similar results obtained in [6].
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We keep the notation introduced in Section 1. Upon taking A = 0 and H = 0 in (1.1), one
is led to introduce the functional

Gε(u) :=
∫

Ω

(
|∇u|2 +

1
2ε2

(p(x) − u2)2
)

dx, (2.1)

defined for functions in H1(Ω; R).
We introduce

C0(ε) = inf
u∈H1(Ω;R)

Gε(u). (2.2)

The next theorem is an analogue of [6, Theorem 1.1].

Theorem 2.1 Given a ∈ R+ \ {1}, there exists ε0 such that for all ε ∈]0, ε0[, the functional
(2.1) admits in H1(Ω; R) a minimizer uε ∈ C2(S1) ∪C2(S2) such that

min(1,
√
a ) < uε < max(1,

√
a ), in Ω.

If H = 0, minimizers of (1.1) are gauge equivalent to the state (uε, 0).

We state also some estimates, taken from [6, Proposition 5.1], that describe the decay of uε
away from the boundary of S1.

Lemma 2.1 Let k ∈ N. There exist positive constants ε0, δ and C such that, for all
ε ∈]0, ε0],∥∥∥(1−uε) exp

(δdist(x, ∂S1)
ε

)∥∥∥
Hk(S1)

+
∥∥∥(
√
a−uε) exp

(δdist(x, ∂S1)|
ε

)∥∥∥
Hk(S2)

≤ C

εk
. (2.3)

Finally, we mention without proof that the energy C0(ε) (cf. (2.2)) has the order of ε−1, and
we refer to the methods in [6, Section 6] which permit to obtain the leading order asymptotic
expansion

C0(ε) =
c1(a)
ε

+ c2(a) + o(1), ε→ 0,

where c1(a) and c2(a) are positive explicit constants.

2.2 The case with magnetic field

This section is devoted to a preliminary analysis of the minimizers of (1.1) when H �= 0.
The main point that we shall show is how to extract the singular term C0(ε) (see (2.2)) from
the energy of a minimizer.

Notice that the existence of minimizers is standard starting from a minimizing sequence
(see e.g., [3]). A standard choice of gauge permits one to assume that the magnetic potential
satisfies

divA = 0 in Ω, ν ·A = 0 on ∂Ω, (2.4)

where ν is the outward unit normal vector of ∂Ω.
With this choice of gauge, one is able to prove (since the boundaries of Ω and S1 are smooth)

that a minimizer (ψ,A) is in C1(Ω; C) × C1(Ω; R2). One has also the following regularity (see
[6, Appendix A]),

ψ ∈ C2(S1; C) ∪ C2(S2; C), A ∈ C2(S1; R2) ∪ C2(S2; R2).
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The next lemma is inspired from the work of Lassoued-Mironescu [7].

Lemma 2.2 Let (ψ,A) be a minimizer of (1.1). Then 0 ≤ |ψ| ≤ uε in Ω, where uε is the
positive minimizer of (2.1). Moreover, putting ϕ = ψ

uε
, then the energy functional (1.1) splits

in the form

Gε,H(ψ,A) = C0(ε) + Fε,H(ϕ,A), (2.5)

where C0(ε) has been introduced in (2.2) and the functional Fε,H is defined in (1.3) by

Fε,H(ϕ,A) =
∫

Ω

(
u2
ε|(∇− iA)ϕ|2 +

1
2ε2

u4
ε(1 − |ϕ|2)2 + |curlA−H |2

)
dx.

3 Upper Bound of the Energy

3.1 Main result

The objective of this section is to establish the following upper bound.

Proposition 3.1 Assume that | ln ε| � H � 1
ε2 . Then, let (ϕε, Aε) minimize Fε,H . For

any small ε,

Fε,H(ϕε, Aε,Ω) ≤ H
(

ln
1

ε
√
H

+ C
) ∫

Ω

p(y) dy.

With this assumption on the applied field H , the following is evident.

Corollary 3.1 If | ln ε| � H � 1
ε2 , then when ε→ 0,

min
H1×H1

Fε,H(ϕ,A,Ω) ≤ H ln
1

ε
√
H

(1 + o(1))
∫

Ω

p(y) dy.

3.2 Proof of Proposition 3.1

The proof of Proposition 3.1 relies on a construction of a test configuration. Let us take
| ln ε| � H � 1

ε2 and let

λ =

√
H

2π
.

Step 1 Let Lε = λZ × λZ and h be the solution in R2 of

−Δh+ h = 2π
∑
a∈Lε

δa.

It is thus periodic with respect Lε. Then, if we choose the origin carefully and take Kε to be
the unit cell of Lε defined as

Kε =
(
− 1

2λ
,

1
2λ

)
×

(
− 1

2λ
,

1
2λ

)
,

then h is also a solution of −Δh+ h = 2πδ0 in Kε and ∂νh = 0 on ∂Kε. Again we define an
induced magnetic potential A by taking simply

curlA = h.
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We now turn to define an order parameter ϕ which we take in the form

ϕ = ρ eiφ, (3.1)

where ρ is defined on Ω by

ρ(x) =

⎧⎪⎨⎪⎩
0, if |x− a| ≤ ε for some a ∈ Lε,
1, if ε < |x− a| < 2ε for some a ∈ Lε,
|x− a|
ε

− 1, otherwise.
(3.2)

The phase φ is defined (modulo 2π) by the relation

∇φ−A = − 1
u2
ε

∇⊥h, in R
2 \ Lε. (3.3)

Let gε,H be the energy density given as

gε,H(y) =
(
|(∇− iA)ϕ|2 +

1
2ε2

(1 − |ϕ|2)2 + |curlA−H |2
)
(y).

Proceeding as in [11, Chapter 8], we may define for each x ∈ Kε a translated lattice Lxε and a
corresponding test configuration (ϕx, Ax) with energy density gε,H(y − x). We find then

G(ϕx, Ax, S1) ≤ |S1|
|Kε|G(ϕ,A,Kε). (3.4)

Similarly to this, we get again

Ga(ϕx, Ax, S2) ≤ |S2|
|Kε| Ga(ϕ,A,Kε). (3.5)

Step 2 By definition of the functional Fε,H given in (1.3)

Fε,H(ϕx, Ax,Ω) =
∫

Ω

(
u2
ε|(∇− iAx)ϕx|2 +

u4
ε

2ε2
(1 − |ϕx|2)2 + |curlAx −H |2

)
dy. (3.6)

Recall that u2
ε converges uniformly to the function p in Ω, so we can write for a small ε,

Fε,H(ϕx, Ax,Ω) =
∫
S1

(
|(∇− iAx)ϕx|2 +

1
2ε2

(1 − |ϕx|2)2 + |curlAx −H |2
)

dy

+
∫
S2

(
a|(∇− iAx)ϕx|2 +

a2

2ε2
(1 − |ϕx|2)2 + |curlAx −H |2

)
dy + oε(1)

= G(ϕx, Ax, S1) +Ga(ϕx, Ax, S2) + oε(1). (3.7)

We return to (3.4)–(3.5),

Fε,H(ϕx, Ax,Ω) ≤ |S1|
|Kε| G(ϕ,A,Kε) +

|S2|
|Kε| Ga(ϕ,A,Kε) + oε(1). (3.8)

Step 3 Let us estimate the right-hand side of (3.8), for example Ga(ϕ,A,Kε) (the other
case G(ϕ,A,Kε) will be done similarly). First, by the definition of the configuration (ϕ,A)
given in Step 1, it is evident that

Ga(ϕ,A,Kε) ≤
∫
Kε\Bε

a |∇h(x)|2 +
∫
Kε

|h(x) −H |2dx+ C, (3.9)
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where Bε = B(0, ε). We take the constant a aside. Use the change of variables y = λx. Then∫
Kε\Bε

|∇h|2dx+
∫
Kε

|h(x) −H |2dx =
∫
K\Bλε

|∇ĥ|2dy +
2π
H

∫
K

|ĥ(y)|2 dy, (3.10)

where ĥ(y) = h(x) −H and K = (− 1
2 ,

1
2 ) × (− 1

2 ,
1
2 ). Now, we put

g(y) = ĥ(y) + ln |y|. (3.11)

We show that g is bounded in W 1,q(K) independently of ε for any q > 0. First, since ĥ satisfies{
−λ2Δĥ(y) + ĥ(y) +H = 2πδ0( yλ ), in K,
∂ν ĥ = 0, on ∂K,

g is a solution of {
−λ2Δg(y) + g(y) +H − ln |y| = 0, in K,
∂νg = ∂ν ln |y|, on ∂K.

(3.12)

Multiply this equation by g and integrate convenably∫
K

|∇g|2 dy +
1
λ2

∫
K

(g2(y) dy +H g(y) dy − ln |y| g(y) dy) =
∫
∂K

g ∂ν ln |y| dy. (3.13)

Since
∫
K
ĥ(y)dy = 0, from (3.11) we have∫

K

g(y)dy =
∫
K

ln |y| dy ≤ C.

Therefore, using the Cauchy-Schwartz inequality in (3.13), we have

C

∫
K

|∇g|2 dy ≤ 1
λ2

(
CH +

∫
K

g2(y) dy + C
( ∫

K

g2(y)
) 1

2
)

+ C
(∫

∂K

g2
) 1

2
, (3.14)

where C is an arbitrary positive constant. Because the mean value of g in K is uniformly
bounded in ε, then we deduce from the Poincaré’s inequality that

|g|2L2(K) ≤ C(1 + |∇g|2L2(K)). (3.15)

Recalling that λ2 = H
2π � 1, so bounding the L2 norm of the trace of g by the H1 norm and

using (3.15), the inequality (3.14) becomes∫
K

|∇g|2 dy ≤ C, hence |g|H1(K) ≤ C. (3.16)

We return to (3.12) to deduce that g is bounded in W 1,q(K) independently of ε for any q > 0.
Together with (3.11), this implies that∫

K\Bλε

|∇ĥ|2dy ≤ C +
∫
K\Bλε

|∇ ln |y||2 dy ≤
(
C + 2π ln

1
λε

)
, (3.17)

and also 2π
H

∫
K |ĥ(y)|2 dy ≤ C.
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Combining all the above in (3.10) together with (3.9), the desired control on Ga(ϕ,A,Kε)
becomes

Ga(ϕ,A,Kε) ≤ a
(
2π ln

1
λε

+ C
)
.

Similarly, we can find that

G(ϕ,A,Kε) ≤
(
2π ln

1
λε

+ C
)
.

Combining the two above inequalities in (3.8), we have

Fε,H(ϕx, Ax,Ω) ≤ |S1| + a|S2|
|Kε|

(
2π log

1
λε

+ C
)

+ oε(1)

≤ H
(∫

Ω

p(y)dy
)(

ln
1

ε
√
H

+ C
)
,

since |Kε| = λ−2 = 2π
H . This completes the proof of Proposition 3.1.

4 Lower Bound of the Energy

We now wish to compute a lower bound for Fε,H(ϕ,A,Ω) which matches the upper bound
of the previous section.

In what follows, we denote Bxα = B(x, 1
α ) and we often omit the subscript ε, where x is the

center of the blow-up.

Proposition 4.1 Assume that | ln ε| � H � 1
ε2 and (ϕε, Aε) minimizes Fε,H. Then, for

any K > 0, there exists 1 � α� 1
ε such that for every x ∈ Ω such that Bxα ⊂ Ω, we have

Fε,H(ϕε, Aε, Bxα) ≥ H ln
1

ε
√
H

(1 − o(1))
∫
Bx

α

γK(y)p(y)dy, (4.1)

where γK(x) is equal to a constant γ1
K if x ∈ S1 and γ2

K if x ∈ S1, where for each i = 1, 2,
γiK → 1 if K → +∞.

As a consequence of this, the appropriate lower bound is given by the following result.

Corollary 4.1 Under the hypotheses of Proposition 4.1, we have

Fε,H(ϕε, Aε,Ω) ≥ H ln
1

ε
√
H

(1 − o(1))
∫

Ω

p(y)dy. (4.2)

Proof We investigate (4.1) with respect to x. Letting U be any open subdomain of Ω and
using Fubini’s theorem, referring to [11, Chapter 8, p. 163], we have∫

x∈U
Fε,H(ϕ,A,U ∩Bxα) =

∫
x∈U∩S1

Fε,H(ϕ,A,U ∩ S1 ∩Bxα)

+
∫
x∈U∩S2

Fε,H(ϕ,A,U ∩ S2 ∩Bxα)

≤ π

α2
[Fε,H(ϕ,A,U ∩ S1) + Fε,H(ϕ,A,U ∩ S2)].

Again similarly as in [11, Chapter 8, p. 163], we deduce by using (4.1), Fatou’s lemma and the
appropriate expression of p(x) and γK(x) that

lim inf
ε→0

Fε,H(ϕ,A,U)
H ln 1

ε
√
H

≥ γ1
K |U ∩ S1| + γ2

K a|U ∩ S2|.
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Letting K → +∞, we get lim inf
ε→0

Fε,H(ϕ,A,U)

H ln 1
ε
√

H

≥ ∫
U p(y)dy, since for each i = 1, 2, γiK → 1. The

fact that U is arbitrary completes the proof of Corollary 4.1.

4.1 Proof of Proposition 4.1

First, we start with a preliminary rescaling formula. Its proof is straightforward and we
omit it.

Lemma 4.1 Given (ϕ,A) and Ω, assume 0 ∈ Ω. Define (ϕα, Aα) and

ϕα(αx) = ϕ(α), αAα(αx) = A(x), Ωα = αΩ. (4.3)

Then, for any H, we have Fε,H(ϕ,A,Ω) = Fα
ε,H(ϕα, Aα,Ωα) where

Fα
ε,H(ϕα, Aα,Ωα) =

∫
Ωα

(
u2
ε

( y
α

)
|(∇− iAα)ϕα|2 + α2

∣∣∣curlAα − H

α2

∣∣∣2
+ u4

ε

( y
α

) (1 − |ϕα|2)2
2α2ε2

)
dy. (4.4)

The proof of Proposition 4.1 is achieved by blowing up at the scale α. Define (ϕα, Aα) as
in (4.3), but take the origin at x. Using Lemma 4.1 again with the origin at x, and dropping
the ε subscripts, the left-hand side of (4.1) is equal to∫

B1

(
u2
ε

( y
α

)
|(∇− iAα)ϕα|2 + α2

∣∣∣curlAα − H

α2

∣∣∣2 + u4
ε

( y
α

)(1 − |ϕα|2)2
2α2ε2

)
dy.

Thus, if we choose ϕ′ = ϕα, A′ = Aα, ε′ = αε and H ′ = H
α2 , the inequality (4.1) that we wish

to prove is equivalent to∫
B1

(
u2
ε

( y
α

)
|(∇− iA′)ϕ′|2 + α2|curlA′ −H ′2|2 + u4

ε

( y
α

) (1 − |ϕ′|2)2
2ε′2

)
dy

≥ H ′ ln
1

ε
√
H

(1 − o(1))
∫
B1

γK(y)p(y)dy.

Now for any ε > 0, we choose α such that

H ′ = K| ln ε′|. (4.5)

Proceeding as in [11, Chapter 8, p. 161], this is possible and we find that (4.5) can be verified
and then corresponding α, ε′ verify

1 � α� 1
ε
, ε′ � 1, ln

1
ε
√
H

� | ln ε′|.

The inequality that we wish to prove becomes∫
B1

(
u2
ε

( y
α

)
|(∇− iA′)ϕ′|2 + α2|curlA′ −H ′2|2 + u4

ε

( y
α

)(1 − |ϕ′|2)2
2ε′2

)
dy

≥ H ′| ln ε′|(1 − o(1))
∫
B1

γK(y)p(y)dy. (4.6)
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There are two cases, depending on the blow-up origin x. Either∫
B1

(
u2
ε

( y
α

)
|(∇− iA′)ϕ′|2 + α2|curlA′ −H ′2|2 + u4

ε

( y
α

) (1 − |ϕ′|2)2
2ε′2

)
dy � H ′2,

as ε→ 0, and then, the inequality (4.6) is clearly satisfied, or∫
B1

(
u2
ε

( y
α

)
|(∇− iA′)ϕ′|2 + α2|curlA′ −H ′2|2 + u4

ε

( y
α

)(1 − |ϕ′|2)2
2ε′2

)
dy ≤ CH ′2. (4.7)

We know that u2
ε converges uniformly to the function p in Ω and α� 1. Hence for a small ε,∫

B1

(
u2
ε

( y
α

)
|(∇− iA′)ϕ′|2 + α2|curlA′ −H ′2|2 + u4

ε

( y
α

)(1 − |ϕ′|2)2
2ε′2

)
dy

=
∫
B1∩S1

(
|(∇− iA′)ϕ′|2 + |curlA′ −H ′2|2 +

(1 − |ϕ′|2)2
2ε′2

)
dy

+
∫
B1∩S2

(
a|(∇− iA′)ϕ′|2 + |curlA′ −H ′2|2 + a2 (1 − |ϕ′|2)2

2ε′2
)

dy + oε(1)

= G(ϕ′, A′, B1 ∩ S1) +Ga(ϕ′, A′, B1 ∩ S2) + oε(1). (4.8)

Going back to (4.7), we have

G(ϕ′, A′, B1 ∩ S1) ≤ CH ′2 and Ga(ϕ′, A′, B1 ∩ S2) ≤ CH ′2.

Here, we have reduced to the case of configurations with a relatively small energy, for which all
the analysis of Sandier-Serfaty [10] will apply on the appropriate domains B1 ∩S1 and B1 ∩S2.
In this case, replacing ε by ε′ and H by H ′, the hypotheses (see [10, Theorem 1]) are satisfied
and we deduce (here K plays the role of λ in [10])

lim inf
ε′→0

G(ϕ′, A′, B1 ∩ S1)
H ′2

≥ PK(μ∗
1) =

1
K

∫
B1∩S1

|μ∗
1| dy +

∫
B1∩S1

(|∇hμ∗
1
|2 + |hμ∗

1
− 1|2) dy, (4.9)

where again from [10], the limit measure μ∗
1 = −Δh∗1 + h∗1 is equal to (1 − 1

2K )1W 1
K

and the
subdomain W 1

K is the coincidence set {x ∈ B1 ∩ S1, h
∗
1(x) = 1 − 1

2K }. Similarly as in [10], we
can have

lim inf
ε′→0

Ga(ϕ′, A′, B1 ∩ S2)
H ′2

≥ QK(μ∗
2) =

1
K

∫
B1∩S2

a|μ∗
2| dy +

∫
B1∩S2

(a|∇hμ∗
2
|2 + |hμ∗

2
− 1|2) dy, (4.10)

where μ∗
2 = −Δh∗2 + h∗2 = (1 − 1

2K )1W 2
K

and again W 2
K is equal to the set{

x ∈ B1 ∩ S2, h
∗
2(x) = 1 − 1

2K

}
.

Combining (4.9) together with (4.10) in (4.8), we get

lim inf
ε′→0

1
H ′2

∫
B1

(
u2
ε

( y
α

)
|(∇− iA′)ϕ′|2 + |curlA′ −H ′2|2 + u4

ε

( y
α

) (1 − |ϕ′|2)2
2ε′2

)
dy

≥ PK(μ∗
1) +QK(μ∗

2). (4.11)
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By definition of the functionals PK and QK , it follows that

PK(μ∗
1) ≥

1
K

∣∣∣1 − 1
2K

∣∣∣|W 1
K | and QK(μ∗

2) ≥ a
1
K

∣∣∣1 − 1
2K

∣∣∣|W 2
K |.

Note that |W 1
K | and |W 2

K | tend respectively to |B1 ∩ S1| and |B1 ∩ S2| when K tends to +∞.
Therefore, for any x ∈ Ω,

lim inf
ε′→0

1
H ′2

∫
B1

(
u2
ε

( y
α

)
|(∇− iA′)ϕ′|2 + |curlA′ −H ′2|2 + u4

ε

( y
α

) (1 − |ϕ′|2)2
2ε′2

)
dy

≥ 1
K

∣∣∣1 − 1
2K

∣∣∣(|W 1
K | + a|W 2

K |). (4.12)

Taking the fact that H ′2 = K H
α2 ln 1

ε
√
H

in (4.12), we obtain∫
B1

(
u2
ε

( y
α

)
|(∇− iA′)ϕ′|2 + |curlA′ −H ′2|2 + u4

ε

( y
α

) (1 − |ϕ′|2)2
2ε′2

)
dy

≥ H

α2

∣∣∣1 − 1
2K

∣∣∣(|W 1
K | + a|W 2

K |) ln
1

ε
√
H
. (4.13)

Let us take

γK(y) =

⎧⎪⎪⎨⎪⎪⎩
γ1
K =

∣∣∣1 − 1
2K

∣∣∣ |W 1
K |

|B1 ∩ S1| , if y ∈ S1,

γ2
K =

∣∣∣1 − 1
2K

∣∣∣ |W 2
K |

|B1 ∩ S2| , if y ∈ S2.

Remark that each γiK tends to 1 when K tends to +∞. We can then write∫
B1

(
u2
ε

( y
α

)
|(∇− iA′)ϕ′|2 + |curlA′ −H ′2|2 + u4

ε

( y
α

) (1 − |ϕ′|2)2
2ε′2

)
dy

≥ H

α2
ln

1
ε
√
H

∫
B1

γK(y)p(y)dy = H log
1

ε
√
H

∫
Bx

α

γK(y)p(y)dy.

Since 1 � α, (4.1) is satisfied for every choice of blow-up origin x. Proposition 4.1 is then
proved.
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