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On a Class of Infinite-Dimensional Hamiltonian Systems

with Asymptotically Periodic Nonlinearities∗

Minbo YANG1 Zifei SHEN2 Yanheng DING2

Abstract The authors study the existence of homoclinic type solutions for the following
system of diffusion equations on R × R

N :{
∂tu − Δxu + b · ∇xu + au + V (t, x)v = Hv(t, x, u, v),

−∂tv − Δxv − b · ∇xv + av + V (t, x)u = Hu(t, x, u, v),

where z = (u, v) : R × R
N → R

m × R
m, a > 0, b = (b1, · · · , bN) is a constant vector and

V ∈ C(R × R
N , R), H ∈ C1(R × R

N × R
2m, R). Under suitable conditions on V (t, x) and

the nonlinearity for H(t, x, z), at least one non-stationary homoclinic solution with least
energy is obtained.
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1 Introduction

Recently, the following system of diffusion equations has been wildly considered:{
∂tu− Δxu+ b(t, x) · ∇xu+ V (x)u = Hv(t, x, u, v),
−∂tv − Δxv − b(t, x) · ∇xv + V (x)v = Hu(t, x, u, v),

(t, x) ∈ R × Ω, (1.1)

where Ω is a domain of RN , z = (u, v) : R × Ω → Rm × Rm, b = (b1, · · · , bN ) is a vector,
V ∈ C(Ω,R) and H ∈ C1(R × Ω × R2m,R). Such problems arise from optimal control of
systems governed by partial differential equations (cf. [22]), and are related to the Schrödinger
equations (cf. [25]).

When the existence of stationary solutions is involved. Many authors have devoted to the
research of the Hamiltonian type elliptic systems. For example: de Figueiredo and Jianfu Yang
[18] considered {

−Δϕ+ ϕ = g(x, ψ), in RN ,

−Δψ + ψ = f(x, ϕ), in RN ,
(1.2)
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and showed the existence of a strong radial solution pair. There are also some results about
the existence of solutions for (1.2) in bounded domain. Hulshof-Van der Vorst [20] and de
Figueiredo, Felmer [17] considered the elliptic systems by using the Sobolev spaces of fractional
order.

As far as we know, there is not so much work on the existence of nonstationary solutions
for systems like (1.1). In the case b(t, x) ≡ 0, V (x) ≡ 0, Brézis and Nirenberg [6] considered the
system {

∂tu− Δxu = −v5 + f,

−∂tv − Δxv = u3 + g,
in (0, T )× Ω, (1.3)

where Ω is a bounded domain, f, g ∈ L∞(Ω), subject to the boundary conditions u = v = 0
on (0, T ) × ∂Ω and u(0, x) = v(T, x) = 0 on Ω. Using Schauder’s fixed point theorem, they
obtained a (generalized) solution (u, v) with u ∈ L4 and v ∈ L6. Clément, Felmer and Mitidieri
[7] considered {

∂tu− Δxu = |v|q−2v,

−∂tv − Δxv = |u|p−2u,
in (−T, T ) × Ω, (1.4)

where p, q satisfy

N

N + 2
<

1
p

+
1
q
< 1.

By using the mountain pass theorem, they proved that there exists T0 > 0 such that for each
T > T0, problem (1.4) has at least one positive solution.

In the case b(t, x) ≡ 0, V (x) �= 0, Bartsch and Ding [4] investigated the following infinite-
dimensional Hamiltonian system:{

∂tu− Δxu+ V (x)u = Hv(t, x, u, v),
−∂tv − Δxv + V (x)v = Hu(t, x, u, v).

(1.5)

They established the existence and multiplicity of solutions of homoclinic type under the as-
sumptions that V (x) and H(t, x, u, v) are periodic in t, x, and H(t, x, u, v) is superlinear at
infinity.

For the case b(t, x) �= 0, V (x) �= 0, the diffusion equations with periodic potential and
nonlinearities was recently considered by Ding, Luan and Willem in [14]. They assumed that
H(t, x, 0) ≡ 0 and H(t, x, z) is asymptotically quadratic or super-quadratic as |z| → ∞. By
establishing a proper variational setting based on some recent critical point theorems, they
obtained that at least one nontrivial solution and infinitely many solutions provided moreover
H are symmetric in z.

For other results concerning Hamiltonian system, we refer readers to [2, 8, 10–13, 19, 21,
27].

The aim of this paper is to investigate the existence of homoclinic type solutions for the
following system of diffusion equations:

(H.S.)
{
∂tu− Δxu+ b · ∇xu+ au+ V (t, x)v = Hv(t, x, u, v),
−∂tv − Δxv − b · ∇xv + av + V (t, x)u = Hu(t, x, u, v), (1.6)
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where z = (u, v) : R × RN → Rm × Rm, a > 0, b = (b1, · · · , bN ) is a constant vector,
V ∈ C(R × R

N ,R), and H ∈ C1(R × R
N × R

2m,R) is asymptotically periodic.
To solve the problem by variational methods, we need to overcome some difficulties. First,

there is no compactness for the Sobolev imbedding. Second, the energy functional is strongly
indefinite, the classical critical point can not be applied directly. Third, the potential V (t, x) and
the nonlinearity H(t, x, z) are both nonperiodic in variables t , x; moreover, the nonlinearity
H(t, x, z) is super-quadratic as |z| → ∞. We can not use the the periodicity property to
obtain the existence of nontrivial solutions. Inspired by recent works of Ding and Wei [15]
and Li and Yang [24], we are going to investigate the existence of nontrivial homoclinic type
solutions for (H.S.). In [15], the authors considered a class of nonlinear Dirac equations with
general potential and special nonlinearities (satisfying Ambrosetti-Rabinowitz condition and
(H1), (H4), see below) by a reduction discussion, where they also gave the exponential decaying
proposition for the solutions.

To simplify the notation, we denote

J =
(

0 −I
I 0

)
, J0 =

(
0 I
I 0

)
, S = −Δx + a, A = J0S + J b · ∇x. (1.7)

Then system (H.S.) can be rewritten in the form of J d
dtz + (A + V (t, x))z = Hz(t, x, z). It

was called an unbounded Hamiltonian system (cf. [3]), or an infinite dimensional Hamiltonian
system (cf. [4]). Indeed, it has the representation

J d
dt
z = gradzH(t, z)

with the Hamiltonian

H(t, z) := −
∫

RN

(
∇xu∇xv + b · ∇xuv + auv +

1
2
V (t, x)|z|2 −H(t, x, z)

)
dx

in L2(R,R2m), where gradz denotes the gradient operator in L2(R,R2m) and

∇xu∇xv =
m∑

j=1

N∑
i=1

∂xiuj∂xivj , b · ∇xuv =
m∑

j=1

N∑
i=1

bi∂xiujvj

for u = (u1, · · · , um) and v = (v1 · · · , vm).
In order to state our main results, we introduce for r ≥ 1 the Banach space

Br = Br(R × R
N ,R2m) := W 1,r(R, Lr(RN ,R2m)) ∩ Lr(R,W 2,r ∩W 1,r(RN ,R2m))

equipped with norm

‖z‖Br =
( ∫

R×RN

(
|z|r + |∂tz|r +

N∑
j=1

|∂2
xj
z|r

)) 1
r

.

Clearly, Br is the completion of C∞
0 (R × RN ,R2m) with respect to the norm ‖ · ‖Br . If r = 2,

B2 is a Hilbert space.



48 M. B. Yang, Z. F. Shen and Y. H. Ding

Let N∗ := ∞ if N = 1, and N∗ := 2(N+2)
N if N ≥ 2, and define

V (∞) := lim
|t|+|x|→∞

V (t, x), W (t, x) := V (∞) − V (t, x).

Vsup := sup
(t,x)∈R×RN

|V (t, x)|, Wsup := sup
(t,x)∈R×RN

W (t, x). (1.8)

We make the following assumptions on the potential and nonlinearities:

(V1) Vsup < a, Wsup < a− V (∞), W (t, x) > 0 for all t, x,

(H1) Hz(t, x, z) = h(t, x, |z|)z, h(t, x, s) ≥ 0, h(t, x, s) = o(s) as s→ 0,

(H2) h(t, x, |z|) → ∞ uniformly in t, x, as |z| → ∞,

(H3) there is r > 0 and 1 < q < 2
σ−1 with σ > 1 if N = 1, σ > 1 + N

2 if N ≥ 2, such that

H(t, x, z) ≥ C0|z|q+1,

|h(t, x, |z|)|σ ≤ C1H̃(t, x, z), if |z| ≥ r,

where H̃(t, x, z) =
1
2
h(t, x, |z|)|z|2 −H(t, x, z) > 0, if z �= 0,

(H4) there is h∞ ∈ C1(R+,R+) with h′∞(s) > 0 for s > 0 such that h(t, x, s) → h∞(s) as
|t| + |x| → ∞ uniformly on bounded sets of s, and h∞(s) ≤ h(t, x, s) for all (t, x, s). Moreover

H̃∞(z) =
1
2
h∞(|z|)|z|2 −H∞(z) > 0, if z �= 0.

For a solution z of (H.S.), we denote the associated action functional by

Φ(z) :=
∫

R×RN

(1
2
J ż · z −H(t, x, z)

)
dt.

Set

cmin := inf
{
Φ(z) : z �= 0 is a solution to (H.S.)

}
,

a solution z0 �= 0 with Φ(z0) = cmin called a least energy solution. Let Smin denote the set of
all least energy solutions to (H.S.).

The main result of this paper is the following theorem.

Theorem 1.1 Let (V1) and (H1) − (H4) be satisfied. Then

( i ) system (H.S.) has at least one least energy solution;

(ii) Smin is compact in B2.

Theorem 1.1 can be applied to the following special case:{
∂tu− Δxu+ b · ∇xu+ au+ V (t, x)v = h(t, x)|z|p−2v,

−∂tv − Δxv − b · ∇xv + av + V (t, x)u = h(t, x)|z|p−2u,
(1.9)

with 2 < p < N∗ and h(t, x) satisfying (h0): h ∈ C(R × RN ,R), h(t, x) ≥ h0 > 0 for all t, x.
Here h0 := lim

|t|+|x|→∞
h(t, x).

Corollary 1.1 Let (V1) and (h0) be satisfied. Then

( i ) (1.9) has at least one least energy solution;

(ii) Smin is compact in B2.
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This paper is organized as follows. In Section 2, we formulate the variational setting and
recall some critical point theorems required. In Section 3, we discuss the least action solutions
of the associated limit equation. And finally, in Section 4, we complete the proof of the main
results.

2 The Variational Setting and Critical Point Theorem

Let A0 := J ∂t +A, L0 := J ∂t + (A+ V (∞)) and L = J ∂t + (A+ V (t, x)), where J and A
are given by (1.7). Since b is a constant, A0 is a selfadjoint operator acting in L2(R×R

N ,R2m)
with domain D(A0) = B2(R × RN ,R2m) (cf. [14]). Let σ( · ) and σc( · ) denote the spectrum
and continuous spectrum respectively. Recall that the operator S is self-adjoint on L2(RN ,R)
and σ(S) ⊂ [a,∞). By [14, Lemma 2.1], we know σ(A0) = σc(A0) ⊂ R \ (−a, a).

Lemma 2.1 Under the assumptions on V , we have the following

(1) L0 are self-adjoint operators and σ(L0) ⊂ R \ (V (∞) − a, a− V (∞));

(2) L are self-adjoint operators and σ(L) ⊂ R \ (Vsup − a, a− Vsup).

Proof We check (2) only, the proof of L0 is similar. Since Vsup < a, it follows from the
Kato-Rellich theorem that L is selfadjoint. Furthermore,

|Lz|2 = |(A0 + V (t, x))z|2 ≥ |A0z|2 − |V (t, x)z|2 ≥ a|z|2 − Vsup|z|2 = (a− Vsup)|z|2,

thus, σ(L) ⊂ R \ (Vsup − a, a− Vsup).

It follows from Lemma 2.1 that the space L2(R×RN ) possesses the orthogonal decomposi-
tion:

L2 = L− ⊕ L+, z = z− + z+,

so that L0 is negative definite (resp. positive definite) in L− (resp. L+). Let |L0| denote the
absolute, |L0|

1
2 the squared root, and take E = D(|L0|

1
2 ). E is a Hilbert space equipped with

the inner product

(z, w) = (|L0|
1
2 z, |L0|

1
2w)2

and the induced norm ‖z‖ = (z, z)
1
2 . E possesses the following decomposition

E = E− ⊕ E+ with E± = E ∩ L±,

orthogonal with respect to both ( · , · )2 and ( · , · ) inner products. It is clear that ‖z‖2 ≥
(a − V (∞))|z|22 for all z ∈ E. Since L0 is periodic, the following results can be obtained
similarly to [14].

Lemma 2.2 There exist c1, c2 such that

c1‖z‖2
B2

≤ |L0z|22 ≤ c2‖z‖2
B2

for all z ∈ B2.
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Lemma 2.3 E is continuously embedded in Lr for any r ≥ 2 if N = 1, and for r ∈ [2, N∗]
if N ≥ 2. E is compactly embedded in Lr

loc for all r ∈ [1, N∗).

Assuming that (V1) and (H1) − (H4) are satisfied, we define on E the following functional:

Φ(z) =
1
2

(
‖z+‖2 − ‖z−‖2

)
− 1

2

∫
R×RN

W (t, x)|z|2 − Ψ(z)

for all z = z− + z+ ∈ E, where

Ψ(z) :=
∫

R×RN

H(t, x, z).

Then Φ ∈ C1(E,R) and a standard argument show that critical points of Φ are solutions to
(H.S.).

Using the spectrum decomposition of L, one may give Φ another representation as follows.
By Lemma 2.1, we have E = D(|L| 12 ) with the equivalent inner product

(z, v)L := (|L| 12 z, |L| 12 v)2

and norm ‖z‖L := (u, u)
1
2
L. Then as above, there is a decomposition

E = E−
L ⊕ E+

L

with
‖z±‖2

L ≥ (a− Vsup)|z±|22 for all z± ∈ E±
L .

Now Φ can be represented as

Φ(u) =
1
2
(
‖z+‖2

L − ‖z−‖2
L

)
− Ψ(z)

for all z = z− + z+ ∈ E−
L ⊕ E+

L .
In order to find critical points of Φ, we use the following abstract theorem which is taken

from [4, 10].
Let E be a Banach space with direct sum decomposition E = X ⊕ Y, z = x + y and

corresponding projections PX , PY onto X,Y , respectively. For a functional Φ ∈ C1(E,R), we
write Φa = {z ∈ E : Φ(z) ≥ a}. Recall that a sequence (zn) ⊂ E is said to be a (C)c-sequence if
Φ(zn) → c and (1+‖zn‖)Φ′(zn) → 0. Φ is said to satisfy the (C)c-condition if any (C)c-sequence
has a convergent subsequence.

Now we assume that X is separable and reflexive, and we fix a countable dense subset
S ⊂ X∗. For each s ∈ S, there is a semi-norm on E defined by

ps : E → R, ps(z) = |s(x)| + ‖y‖ for z = x+ y ∈ X ⊕ Y.

We denote by TS the induced topology. Let w∗ denote the weak*-topology on E∗. Suppose
that

(Φ0) There exists ζ > 0 such that ‖z‖ < ζ‖PY z‖ for all z ∈ Φ0;
(Φ1) For any c ∈ R, Φc is TS -closed, and Φ′ : (Φc, TS) → (E∗, w∗) is continuous;
(Φ2) There exists ρ > 0 with κ := inf Φ(SρY ) > 0 where SρY := {z ∈ Y : ‖z‖ = ρ}.
The following theorem is taken from [4] (also cf. [10]).
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Theorem 2.1 Let (Φ0)–(Φ2) be satisfied and suppose that there are R > ρ > 0 and e ∈ Y

with ‖e‖ = 1 such that sup Φ(∂Q) ≤ κ where Q = {z = x+ te : x ∈ X, t ≥ 0, ‖z‖ < R}. Then
Φ has a (C)c-sequence with κ ≤ c ≤ sup Φ(Q).

The following lemma is useful to verify (Φ1) (cf. [4, 10]).

Lemma 2.4 Suppose that Φ ∈ C1(E,R) is of the form

Φ(z) =
1
2
(
‖y‖2 − ‖x‖2

)
− Ψ(z) for z = x+ y ∈ E = X ⊕ Y,

such that
( i ) Ψ ∈ C1(E,R) is bounded from below;
( ii ) Ψ : (E, Tw) → R is sequentially lower semicontinuous, that is, zn ⇀ z in E implies

Ψ(z) ≤ lim inf Ψ(un);
(iii) Ψ′ : (E, Tw) → (E∗, Tw∗) is sequentially continuous;
(iv) ν : E → R, ν(z) = ‖z‖2, is C1 and ν′ : (E, Tw) → (E∗, Tw∗) is sequentially continuous.

Then Φ satisfies (Φ1).

3 The Autonomous Problem

In this section, we study the following limit equation related to (H.S.):⎧⎨⎩J d
dt
z + (A+ V (∞))z = h∞(|z|)z,

z(t, x) → 0, as |t| + |x| → ∞,
(3.1)

where h∞ is the function from assumption (H4).
From the assumptions (H3), (H4), we know that there are C′

0, C
′
1 such that

H∞(z) ≥ C′
0|z|q+1,

|h∞(|z|)|σ ≤ C′
1H̃∞(z), if |z| ≥ r,

(3.2)

which imply
|h∞(|z|)z| ≤ C2|z|

σ+1
σ−1 , if |z| ≥ r. (3.3)

Choosing 2σ
σ−1 ≤ p < N∗ and by (H1), we know that for any ε > 0, there exists a Cε > 0 such

that

H∞(z) ≤ ε|z|2 + Cε|z|p for all z ∈ R
2m. (3.4)

Set
Ψ∞(z) :=

∫
R×RN

H∞(z)

and define the functional

F (z) :=
1
2
‖z+‖2 − 1

2
‖z−‖2 − Ψ∞(z)

for z = z− + z+ ∈ E− ⊕E+. It follows from the assumption on h∞ that F ∈ C1(E,R) and its
critical points are solutions to (3.1).
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Lemma 3.1 F possesses the following properties:
(1) Ψ∞ is weakly sequentially lower semicontinuous and F ′ is weakly sequentially continuous.
(2) For any finite dimensional subspace Z ⊂ E+,

F (z) → −∞, as z ∈ E− ⊕ Z, ‖z‖ → ∞ .

(3) There are ρ > 0 and κ > 0 such that

F |Bρ∩E+ ≥ 0 and F |∂Bρ∩E+ ≥ κ.

(4) Let (zj) be a (C)c sequence for F . Then it is bounded and c ≥ 0.

Proof (1) The first conclusion follows easily because of Lemma 2.3.
(2) for all z ∈ E− ⊕ Z,

F (z) =
1
2
‖z+‖2 − 1

2
‖z−‖2 − Ψ∞(z) ≤

(1
2
‖z+‖2 − C′

0

∫
R×RN

|z+|q+1
)
− 1

2
‖z−‖2.

Since all norms in Z are equivalent and q > 1, one obtains easily the desired conclusion.
(3) From (3.4), for ε there exists a Cε such that H∞(z) ≤ ε|z|2 + Cε|z|p. Thus for z ∈ E+,

F (z) = 1
2‖z‖2 − Ψ∞(z) ≥ 1

2‖z‖2 − ε‖z‖2 − λCε‖z‖p.

Consequently, the conclusion follows since p > 2.
(4) The arguments in [14] show that (zj) is bounded.

Let K̂ := {z ∈ E : F ′(z) = 0} be the critical set of F .

Lemma 3.2 K̂ \ {0} �= ∅, K̂ ⊂
⋂

r≥2

Br,

Ĉ := inf{F (z) : z ∈ K̂ \ {0}} > 0

and is attained.

Proof Setting X = E− and Y = E+, one has E = X ⊕ Y . From Lemma 3.1, it is easy to
see that all the assumptions of Lemma 2.4 are satisfied. Thus there is a (C)c sequence (zj) for F
with κ ≤ c ≤ supF (Q). By Lemma 3.1(4), the (C)c sequence (zj) is also bounded in E. From
a standard concentration compactness argument in [23], there exist γ, η > 0 and (aj) ⊂ R1+N

such that lim sup
j→∞

∫
B(aj ,γ)

|zj |2 ≥ η. Set vj := aj ∗ zj by

(aj ∗ z)(t, x) := z(t+ a0
j , x1 + a1

j , · · · , xN + aN
j ) for all (t, x) ∈ R

1+N .

We know ‖vj‖ = ‖uj‖ ≤ C and F (vj) → c ≥ κ, F ′(vj) → 0. Therefore vj ⇀ v in E with v �= 0
and F ′(v) = 0, that is, v is a nontrivial solution of (3.1), therefore

K̂ \ {0} �= ∅.

By bootstrap argument (cf. e.g., [4, 16]) we know K̂ ⊂
⋂

r≥2

Br.
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To show that there is a z ∈ K̂ with F (z) = Ĉ. Let zj ∈ K̂\{0} be such that F (zj) → Ĉ. Then
(zj) is bounded. By applying the concentration principle, one may assume zj ⇀ z ∈ K̂ \ {0}.
Now

Ĉ = lim
j→∞

F (uj) = lim
j→∞

∫
R×RN

H̃∞(zj) ≥
∫

R×RN

H̃∞(z) = F (z) ≥ Ĉ,

that is, F (z) = Ĉ. We prove Ĉ > 0 by contradiction. Assume Ĉ = 0. If z ∈ K̂, one has

F (z) = F (z) − 1
2
F ′(z)z =

∫
R×RN

1
2
h∞(|z|)|z|2 −H∞(z) ≥ 0,

which means C ≥ 0. If Ĉ = 0, let zj ∈ K̂ \ {0} be such that F (zj) → 0. Then (zj) is a (C)0-
sequence, hence is bounded by Lemma 3.1. We can suppose zj ⇀ z ∈ K̂. Then

F (zj) =
∫

R×RN

1
2
h∞(|zj |)|zj |2 −H∞(zj) =

∫
R×RN

H̃∞(zj) → 0.

By Hölder inequality 1
σ + 1

σ′ = 1, we have

‖zj‖2 =
∫

R×RN

h∞(|zj |)zj(z+
j − z−j )

≤ ε|uj|22 + cε

∫
R×RN

H̃∞(zj)
1
ν |zj||z+

j − z−j |

≤ ε|zj|22 + c1cε

(∫
R×RN

H̃∞(zj)
) 1

σ |zj |2σ′

≤ c2ε‖zj‖2 + c3cεF (zj)
1
σ ‖zj‖2.

Hence 1 ≤ c2ε+ o(1), a contradiction.

The following two lemmas are important to prove the main results of this paper.

Lemma 3.3 If z0 �= 0 is a critical point of F , then F ′′(z0) is negative definite on Ẽ ≡
E− ⊕Rz0 = E− ⊕Rz+

0 . More generally, if Ẽ ≡ Ẽ− ⊕Rz0 = Ẽ− ⊕Rz+
0 , where Ẽ− ⊂ E−, and

if z0 �= 0 is a critical point of F |Ẽ, then F ′′(z0) is negative definite on Ẽ.

Proof It suffices to prove the second statement. We denote J = F |Ẽ and suppose that
z �= 0 is a critical point of J . For z ∈ Ẽ we write z = tz0 + v where v ∈ Ẽ−. Since z0 �= 0 is a
critical point of J , from assumption (H4), we get

J ′′(z0)[tz0 + v, tz0 + v] = J ′′(z0)[tz0 + v, tz0 + v] − t
(
J ′(z0), tz0 + 2v

)
= t2‖z+

0 ‖2 − t2‖z−0 ‖2 − 2t(z−0 , v) − ‖v‖2

−
∫

R×RN

h′∞(|z0|)
|z0|

(z0(tz0 + v))2 −
∫

R×RN

h∞(|z0|)|tz0 + v|2 − t2‖z+
0 ‖2

+ t2‖z−0 ‖2 + 2t
(
z−0 , v

)
+ t

∫
R×RN

h∞(|z0|)z0(tz0 + 2v)

= −
∫

R×RN

h′∞(|z0|)
|z0|

(z0(tz0 + v))2 −
∫

R×RN

h∞(|z0|)|v|2 − ‖v‖2 < 0,

which means that F ′′(z0) is negative definite on Ẽ.
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Now we select z0 ∈ K̂ with F (z0) = Ĉ and set Ẽ ≡ E− ⊕ Rz0 = E− ⊕ Rz+
0 , Q := {z =

z− + sz+
0 : z− ∈ E−, s ≥ 0, ‖z‖ < R} where R be large enough. We have the lemma below.

Lemma 3.4 sup
u∈Q

F (u) = F (z0) = Ĉ.

Proof The proof is contained in [23]. We sketch the proof here for the convenience of the
readers and the completeness of the paper.

Let z = tz+
0 + z− ∈ Q. We have

F (z) := 1
2 t

2‖z+
0 ‖2 − 1

2‖z−‖2 − Ψ∞(z).

F takes its maximum on Q at some v0 and F (v0) > 0. We shall show that z0 is the only critical
point of F |Q\{0}. It will then follow that v0 = z0 and sup

u∈Q
F (u) = F (z0).

Suppose that F has another critical point on Q\{0} and let Ẽ ≡ Ẽ− ⊕Rz0 = Ẽ− ⊕Rz+
0 be

a finite-dimensional space such that Ẽ− ⊂ E− contains z0 and the second critical point. Let
Q̃ := (Q\B(0, ε)) ∩ Ẽ and J := F |Ẽ . It follows from the assumptions on H∞ that J has no
critical points on ∂Q̃ provide ε is small enough.

Define Π : Q̃× [0, 1] → Q̃ by

Π(z, s) : = (1 − s)(−tz+
0 + z− + Ψ′

∞(z)) + s((t− 1)z+
0 + z−)

= −(1 − s)J ′(z) + s(z − z+
0 ). (3.5)

It is easy to prove that Π is an admissible homotopy. Since Π(z, 0) = −J ′(z), Π(z, 1) = z − z+
0

and z+
0 ∈ Q̃, we get

deg(−J ′, Q̃, 0) = deg(I, Q̃, z+
0 ) = 1,

where I is the identity mapping.
However, by Lemma 3.3, if z0 �= 0 is a critical point of J = F |Ẽ , then −J ′′(z0) = −F ′′(z0)

is positive definite on Ẽ. Hence v0 is an isolated zero of −J ′ and the local degree at v0
deg(−J ′, v0, 0) = 1, and each z ∈ Q̃ with −J ′(z) = 0 is isolated with local degree 1.

It then follows from the additivity property of the degree that no second critical point can
exist in Q̃. Therefore v0 = z0.

4 Proof of the Main Result

In this section, we complete the proof of the main results.

Lemma 4.1 The functional Φ possesses the following properties:
(1) Ψ is weakly sequentially lower semicontinuous and Φ′ is weakly sequentially continuous.
(2) There exist r > 0 and ρ > 0 such that Φ|B+

r
(z) ≥ 0 and Φ|S+

r
≥ ρ, where B+

r = {z ∈
E+ : ‖z‖ ≤ r} and S+

r = {z ∈ E+ : ‖z‖ = r}.
(3) There is R > 0 such that, for any e ∈ E+ with ‖e‖ = 1 and Ee = E− ⊕ R e,

Φ(u) < 0 for all u ∈ Ee \BR.

(4) Any (C)c-sequence for Φ is bounded.
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Proof (1) The proof is standard.

(2) Observe that, for z ∈ E+,

Φ(z) =
1
2
‖z‖2 − 1

2

∫
R×RN

W (t, x)|z|2 −
∫

R×RN

H(t, x, z)

≥ 1
2
‖z‖2 − 1

2
Wsup|z|22 −

∫
R×RN

H(t, x, z)

≥ 1
2

(
1 − Wsup

a− V (∞)

)
‖z‖2 −

∫
R×RN

H(t, x, z).

Since for any ε > 0, there exists a Cε > 0 such that

H(t, x, z) ≤ ε|z|2 + Cε|z|p

for all z ∈ R2m, the result follows by the embedding theorem.

(3) This follows from the following facts:

Φ(z) =
1
2
(
‖z+‖2 − ‖z−‖2

)
− 1

2

∫
R×RN

W (t, x)|z|2 −
∫

R×RN

H(t, x, z)

≤ 1
2
(
‖z+‖2 − ‖z−‖2

)
−

∫
R×RN

H∞(z) = F (z),

and F satisfies the conclusion by Lemma 3.1.

(4) By conditions (H3), (H4), a careful observation of the argument in [14] shows that (zj)
is bounded.

In particular, let z0 ∈ K̂ with F (z0) = Ĉ. Setting e ≡ z+
0 and Ẽ ≡ E− ⊕ Re and Q := {z =

z− + sz+
0 : z− ∈ E−, s ≥ 0, ‖z‖ < R}, we have the following lemma.

Lemma 4.2 d := sup{Φ(z) : z ∈ Ẽ} = supΦ(Q) < Ĉ.

Proof By Lemma 4.1 and the linking property, we have d ≥ ρ. From Lemma 3.4 and
Φ(z) ≤ F (z) for all z = v + sz+

0 , we know Φ(z) ≤ Ĉ.

If d = Ĉ, let wj = v + sjz
+
0 ∈ Ẽ be such that d − 1

j ≤ Φ(wj) → d. It follows from Lemma
4.1 that wj is bounded and we can assume wj ⇀ w in E with vj ⇀ v ∈ E− and sj → s. It is
clear that s > 0 (otherwise there should appear the contradiction that d = 0). Then

d− 1
j

≤ Φ(wj) ≤ F (wj) −
1
2

∫
R×RN

W (t, x)wjwj ≤ Ĉ − 1
2

∫
R×RN

W (t, x)wjwj .

Taking the limit yields Ĉ ≤ Ĉ− 1
2

∫
R×RN W (t, x)ww which implies that w = 0, a contradiction.

By Lemma 4.1 any (C)c-sequence is bounded, hence it is a (PS)c-sequence. The following
lemma is an representation of (PS)c-sequence and its proof is well-known, see for example [1],
hence the details are omitted here.

Lemma 4.3 Let (zj) be a (C)c-sequence for Φ. Then either

( i ) zj → 0 (and hence c = 0), or
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(ii) c ≥ ρ and there exist a critical point z0 of Φ, a positive integer � ≤
[

c
ρ

]
, points

z1, · · · , z� ∈ K̂ \ {0}, a subsequence denoted again by (zj), and sequences (ai
j) ⊂ R, such

that ∥∥∥zj − z0 −
�∑

i=1

(ai
j ∗ zi)

∥∥∥ → 0, as j → ∞,

|ai
j − ak

j | → ∞ for i �= k, as j → ∞

and

Φ(z0) +
�∑

i=1

F (zi) = c.

As a straight consequence of Lemma 4.3, we have the following result.

Lemma 4.4 Φ satisfies the (C)c-condition for all c < C̃.

Let K := {z ∈ E : Φ′(z) = 0} be the critical set of Φ. Recall that

cmin := inf{Φ(z) : u ∈ K \ {0}},
Smin := {z ∈ K : Φ(z) = cmin}.

We now in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 It is easy to see that all the linking conditions of Theorem 2.1 are
satisfied. Combining with Lemma 4.2 yields a (C)c-sequence (zj) with c < Ĉ for Φ. Lemma
4.4 shows zj → z and so Φ′(z) = 0 and Φ(z) ≥ ρ, which imply K \ {0} �= ∅. By a bootstrap
argument, we have for any q ≥ 2, z ∈ Bq.

It is easy to see cmin ≥ 0 by (H3). Let zj ∈ K \ {0} be such that Φ(zj) → cmin. Then
(zj) is a (C)cmin

sequence, and since cmin < Ĉ, Lemma 4.4 implies zj → z ∈ Smin. Note that
Φ(zj) =

∫
RN H̃(t, x, zj) → cmin. As before, we obtain

‖zj‖2
L =

∫
R×RN

h(t, x, |zj |)zj(z+
j − z−j )

≤ ε|zj |22 + cε

∫
R×RN

H̃(t, x, zj)
1
σ |zj||z+

j − z−j |

≤ ε|zj |22 + c1cε(H̃(t, x, zj))
1
ν |zj |2σ

≤ c2ε‖zj‖2
L + c3cεΦ(zj)

1
σ ‖zj‖2

L.

Hence 1 ≤ c2ε+ c3cεc
1
ν

min, consequently cmin > 0.

We now prove that Smin is compact in B2. Smin is bounded. Let zj ∈ Smin. We have
zj → z ∈ Smin alone a subsequence and |zj |2 ≤ C2 for some C2 > 0. The bootstrap argument
also tells that for each q ∈ [2,∞), there is Λq > 0 such that

‖zj‖Bq ≤ Λq,

which implies that for some Λ∞, |zj |∞ ≤ Λ∞.
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By
L0z = W (t, x)z + h(t, x, |z|)z,

one has

|L0(zj − z)|2 ≤ |(W (t, x)(zj − z)|2 + |h( · , · , |zj|)zj − h( · , · , |z|)z|2
≤ o(1) + |h( · , · , |zj|)(zj − z)|2 + |(h( · , · , |zj |) − h( · , · , |z|))z|2.

Since |zj |∞ ≤ Λ∞ and zj → z in E, we get∫
R×RN

|h(t, x, |zj |)2|zj − z|2 ≤ C|zj − z|22 → 0,

and since |z(t, x)| → 0 as |t| + |x| → ∞, we get∫
R×RN

|(h(t, x, |zj |) − h(t, x, |z|))z|2 =
(∫

|t|+|x|<M

+
∫
|t|+|x|≥M

)
|(h(t, x, |zj |) − h(t, x, |z|))z|2

→ 0,

Therefore, one can see that |L0(zj − z)|2 → 0, i.e., zj → z in B2.
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[27] Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209, 1992,
27–42.


