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Abstract Let E be a Hilbert C∗-module, and S be an orthogonally complemented closed
submodule of E. The authors generalize the definitions of S -complementability and S -
compatibility for general (adjointable) operators from Hilbert space to Hilbert C∗-module,
and discuss the relationship between each other. Several equivalent statements about S -
complementability and S -compatibility, and several representations of Schur complements
of S -complementable operators (especially, of S -compatible operators and of positive S -
compatible operators) on a Hilbert C∗-module are obtained. In addition, the quotient
property for Schur complements of matrices is generalized to the quotient property for
Schur complements of S -complementable operators and S ∗-complementable operators
on a Hilbert C∗-module.
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1 Introduction

The Schur complement plays an important role in matrix analysis, statistics, numerical
analysis, and many other areas of mathematics and its applications. The Schur complement
was first formally introduced by Haynsworth [18], but it had been implicitly used since the
beginning of the theory of matrices: given a block matrix T = ( B C

D E ) with B invertible, then
T/B = E − DB−1C is the Schur complement of B in T . This notion was then generalized in
several directions for bounded linear operators on Hilbert spaces.

Anderson and Trapp [1] first introduced the definition of the Schur complement for positive
operators on Hilbert spaces and applied it in electrical network theory. Given a positive operator
T ∈ L(H), where H is a Hilbert space, the shorted operator (just the Schur complement) of T

to a closed subspace S is defined as

T/S = max{X ∈ L(H) : 0 ≤ X ≤ T, R(X) ⊆ S ⊥},

which actually had been studied as part of the theory of extensions of Hermitian operators by
Krein [22].

Later, given a closed subspace S of Hilbert space H , Ando introduced the definition of
the Schur complement for S -complementable bounded operators in [2]. Since then, the Schur
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complement of bounded linear operators has attracted more and more attention (see [5, 9, 10,
16, 28, 29], etc.).

Compatible pairs were recently studied by Hassi and Nordstrom [17] and Corach et al [9]
because they defined the classes of projections which have a minimality property that may be
relevant to different areas, e.g., approximation theory, abstract splines and least square problems
(see [8]). Corach et al [10] showed that a selfadjoint operator A ∈ L(H) is S -complementable
if and only if the pair (A, S ) is compatible, i.e., there exists an idempotent Q ∈ L(H) with
range S which is selfadjoint with respect to the sesquilinear form induced by A:

〈x, y〉A = 〈Ax, y〉, x, y ∈ H.

Moreover, Corach et al [9] gave some characterizations of the compatibility of (A, S ).
As a natural generalization of the notions of Hilbert space and C∗-algebra, the notion of

Hilbert C∗-module is an important tool in the theory of C∗-algebras, especially in the theory
of KK-group and in the theory of induced representations (see [12–14, 19, 23, 31]). Therefore,
it is meaningful to put forward a generalized version of the previous results in the context of
Hilbert C∗-modules.

In this paper, for an orthogonal complemented closed submodule S of a Hilbert C∗-module,
we aim to put forward the definitions of S -compatibility and S -complementability for ad-
jointable operators (not just for selfadjoint operators as in [9]) on Hilbert C∗-modules and
discuss the Schur complement of this kind of operators. In Section 2, we obtain some char-
acterizations of the compatibility of (A, S ) (in which case A is called a S -compatible oper-
ator) as in [9]. In Section 3, we obtain some characterizations of S -complementability and
S ∗-complementability, the equivalence of S -compatibility and S ∗-complementability, and a
concrete representation of Schur complements of S -complementable operators. In Section 4,
we obtain more concrete representations of Schur complements of positive S -compatible op-
erators. Finally in Section 5, we generalize the quotient property for Schur complements of
matrices to the quotient property for Schur complements of S -complementable operators and
S ∗-complementable operators on a Hilbert C∗-module.

First of all, we recall some knowledge about Hilbert C∗-modules.
Throughout this paper, A is a C∗-algebra. An inner-product A-module is a linear space E

which is a right A-module, together with a map (x, y) → 〈x, y〉 : E × E → A such that for any
x, y, z ∈ E, α, β ∈ C and a ∈ A, the following conditions hold:

( i ) 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉;
( ii ) 〈x, ya〉 = 〈x, y〉a;
(iii) 〈x, y〉 = 〈y, x〉∗;
(iv) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

An inner-product A-module E is called a (right) Hilbert A-module if it is complete with
respect to the induced norm ‖x‖ = ‖〈x, x〉‖ 1

2 .
Suppose that E, F are two Hilbert A-modules. We denote by LA(E, F ) the set of all maps

T : E → F which are adjointable in the sense that there is a map T ∗ : F → E such that

〈Tx, y〉 = 〈x, T ∗y〉 for each x ∈ E and y ∈ F.
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It is known that any element T of LA(E, F ) must be a bounded linear operator, and also A-
linear in the sense that T (xa) = T (x)a for x ∈ E and a ∈ A. We denote by BA(E, F ) the set
of all bounded linear A-maps, and therefore LA(E, F ) ⊆ BA(E, F ). For any T ∈ BA(E, F ),
the range space and the null space of T are denoted by R(T ) and N(T ) respectively. In case
E = F , LA(E), to which we abbreviate LA(E, E), is a C∗-algebra. Then for A ∈ LA(E),
A is Hermitian (selfadjoint) if and only if 〈Ax, y〉 = 〈x, Ay〉 for any x, y ∈ E, and positive if
and only if 〈Ax, x〉 ≥ 0 for any x ∈ E, in which case, we denote by A

1
2 the unique positive

element B such that B2 = A in the C∗-algebra LA(E) and then R(A) = R(A
1
2 ). Denote by

LA(E)sa and LA(E)+ the sets of Hermitian and positive elements of LA(E) respectively. For
any A, B ∈ LA(E)sa, we say A ≥ B if 〈(A − B)x, x〉 ≥ 0 for any x ∈ E. For A+, the set of
positive elements of the C∗-algebra A, is a positive cone, we could easily verify that “ ≥ ” is a
partial order of LA(E).

We say that a closed submodule E1 of E is topologically complemented if there is a closed
submodule E2 of E such that E1 + E2 = E and E1 ∩ E2 = 0, and briefly denote the sum by
E = E1⊕̃E2, called the direct sum of E1 and E2. If moreover E2 = E⊥

1 , where E⊥
1 = {x ∈

E : 〈x, y〉 = 0 for all y ∈ E1}, we say that E1 is orthogonally complemented and briefly denote
the sum by E = E1 ⊕ E2, called the orthogonal sum of E1 and E2. In this case E1 = E⊥⊥

1 .
Let T ∈ LA(E, F ). Then (1) N(T ) = R(T ∗)⊥ and N(T )⊥ ⊇ R(T ∗); (2) if R(T ) is closed,
then so is R(T ∗), and in this case both R(T ) and R(T ∗) are orthogonally complemented (see
[23, Theorem 3.2]). It is well-known that the range of any idempotent in BA(E, E) is closed,
and therefore orthogonally complemented if this idempotent is adjointable. If E = E1⊕̃E2,
it is known that there exists an idempotent operator Q ∈ BA(E, E) with R(Q) = E1 and
N(Q) = E2. Moreover, (1) if E2 = E⊥

1 , then Q is a selfadjoint operator in LA(E), i.e., a
projection in LA(E); (2) if Q is adjointable, i.e., in LA(E), then both the closed submodules
E1 and E2, as the range spaces of Q and 1−Q respectively, are orthogonally complemented, in
which case we call the direct sum E = E1⊕̃E2 adjointable. For two closed submodules S , T

of E, we denote S 
 T = S ∩ (S ∩ T )⊥. If moreover S is orthogonally complemented
and T ⊆ S , then T is orthogonally complemented in E if and only if T is orthogonally
complemented in S . The reader may refer to [19, 23, 31] for details.

In this paper, E, F and G are three Hilbert A-modules.

2 Compatibility of an Operator and a Closed Submodule

Given A ∈ LA(E), consider the sesquilinear form in E × E defined by

〈x, y〉A = 〈Ax, y〉 for all x, y ∈ E.

If S is a closed submodule of E and A ∈ LA(E), the A-orthogonal submodule to S is given
by

S ⊥A := {x ∈ E : 〈x, s〉A = 〈s, x〉A = 0, ∀s ∈ S }
= (AS )⊥ ∩ (A∗S )⊥ = A−1(S ⊥) ∩ (A∗)−1(S ⊥).

An operator T ∈ LA(E) is called A-selfadjoint if 〈Tx, y〉A = 〈x, T y〉A for all x, y ∈ E. It is
easy to see that T ∈ LA(E) is A-selfadjoint if and only if AT = T ∗A.
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Definition 2.1 (see [9]) Let A ∈ LA(E) and S be an orthogonally complemented closed
submodule of E. The pair (A, S ) is called compatible if there exists an (adjointable) A-
selfadjoint idempotent with range S , i.e., if the set

P(A, S ) = {Q ∈ LA(E) : Q = Q2, R(Q) = S , AQ = Q∗A}

is not empty.
In this case, A is said to be S -compatible.

Remark 2.1 (1) Definition 3.1 in [9] gave the definition of the compatibility of (A, S ) only
for selfadjoint operators on Hilbert spaces, so even in the case of Hilbert space, the definition
here is suitable for more operators, and the concerning proofs have to take more spaces.

(2) Given an orthogonally complemented closed submodule S of E. Let P = PS be the
projection of E onto S . Under the decomposition I = P + (I − P ), each operator A ∈ LA(E)
is identified with

A =
(

A11 A12

A21 A22

)
.

Suppose that Q ∈ LA(E) is an idempotent. Then R(Q) is closed and there exists decomposition
E = R(Q)⊕R(Q)⊥, under which Q is of the form ( U V

0 0 ) . For every x ∈ R(Q), there exists y ∈ E

such that x = Qy. So we get Qx = Q2y = Qy = x and then U = I. Therefore Q = ( I V
0 0 ) .

From this it could be seen that Q ∈ LA(E) is an idempotent if and only if R(Q) is closed
and Q = ( I V

0 0 ) with V ∈ LA(R(Q)⊥, R(Q)) under the decomposition E = R(Q) ⊕ R(Q)⊥.
Moreover, it is easy to see that N(Q) = R(I − Q) for any idempotent Q ∈ LA(E).

Lemma 2.1 (see [15]) Let C ∈ LA(G, F ) and A ∈ LA(E, F ) with R(A∗) ⊆ E orthogonally
complemented. Then the following statements are equivalent:

( i ) CC∗ ≤ λAA∗ for some λ > 0.

( ii ) There exists μ > 0 such that ‖C∗z‖ ≤ μ‖A∗z‖ for all z ∈ F .
(iii) There exists X ∈ LA(G, E) such that C = AX, i.e., the equation AX = C has a

solution.
(iv) R(C) ⊆ R(A).

Moreover, there exists a unique operator D ∈ LA(G, E) which satisfies the conditions

C = AD, R(D) ⊆ N(A)⊥.

In this case,

‖D‖2 = inf{λ : CC∗ ≤ λAA∗} and R(D) ⊆ R(A∗); N(D) = N(C),

and this D is called the reduced solution of the equation AX = C.

Lemma 2.2 (see [15]) Let A ∈ LA(E, F ) with R(A∗) ⊆ E orthogonally complemented and
Q be an idempotent in LA(F ) such that R(QA) ⊆ R(A). Then the reduced solution D (i.e.,
R(D) ⊆ N(A)⊥) of AX = QA is an idempotent.

The following lemma is easy to prove in the case of Hilbert space, but in the case of Hilbert
C∗-module for the lack of Riesz representation theory, we have to use the functional calculus
of C∗-algebras.
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Lemma 2.3 Let T ∈ LA(E) and S ⊆ E be an orthogonally complemented closed sub-
module. Suppose that T = ( I V

0 0 ) under the orthogonal decomposition E = S ⊕ S ⊥. Then
‖T ‖2 = 1 + ‖V ‖2.

Proof For T ∈ LA(E), which is a C∗-algebra, we know ‖T ‖2 = ‖TT ∗‖. It could be
seen easily that TT ∗ =

(
I V V ∗
0 0

)
and ‖TT ∗‖ = ‖I + V V ∗‖ = max{1 + λ | λ ∈ σ(V V ∗)} =

1 + ‖V V ∗‖ = 1 + ‖V ‖2. So we have ‖T ‖2 = 1 + ‖V ‖2.

Corollary 2.1 Let Q ∈ LA(E) be an idempotent and ‖Q‖ ≤ 1. Then Q∗ = Q.

The following proposition is similar to [9, Lemma 3.2], but it is for the general (not only
selfadjoint) operators on Hilbert C∗-modules.

Proposition 2.1 Let A ∈ LA(E), S be an orthogonally complemented closed submodule
of E and Q ∈ LA(E) be an idempotent with range S . Then the following statements are
equivalent:

( i ) Q ∈ P(A, S ), which is equivalent to Q∗A = AQ.
( ii ) N(Q) ⊆ S ⊥A.

If A ≥ 0, then (i) and (ii) imply
(iii) Q∗AQ ≤ A.

If A ≥ 0 and R(A) is orthogonally complemented in E, then (i), (ii) and (iii) are equivalent.

Proof If Q ∈ P(A, S ), it is obvious that for any x, y ∈ E,

〈Ax, Qy〉 = 〈Q∗Ax, y〉 = 〈AQx, y〉 = 〈Qx, A∗y〉,
〈A∗x, Qy〉 = 〈Q∗A∗x, y〉 = 〈A∗Qx, y〉 = 〈Qx, Ay〉,

so N(Q) ⊆ A−1(S ⊥) ∩ A∗−1(S ⊥) = S ⊥A.
With the preparation of Lemmas 2.1, 2.2 and Corollary 2.1, the rest of the proof could be

referred to that of [9, Lemma 3.2].

Corollary 2.2 Let A ∈ LA(E) and S ⊆ E be an orthogonally complemented closed sub-
module with the orthogonal projection P . Then P ∈ P(A, S ) if and only if S is the reduced
submodule (i.e., AS ⊆ S and A(S ⊥) ⊆ S ⊥) of E, and if and only if S ⊥ ⊆ S ⊥A.

Theorem 2.1 Let A ∈ LA(E) and S ⊆ E be an orthogonally complemented closed sub-
module with the orthogonal projection P . Suppose that A =

(
A11 A12
A21 A22

)
under the decomposition

E = S ⊕ S ⊥. Then
( i ) (A, S ) is compatible if and only if the equations A11X = A12 and A∗

11X = A∗
21 have

a common solution X ∈ LA(S ⊥, S ). Moreover, Q ∈ P(A, S ) if and only if Q ∈ LA(E)
is of the form ( I V

0 0 ), where V ∈ LA(S ⊥, S ) is a common solution of A11X = A12 and
A11

∗X = A21
∗.

( ii ) (A, S ) is compatible if and only if there exists an idempotent Q ∈ LA(E) with range
S such that N(Q) ⊆ S ⊥A.

(iii) (A, S ) is compatible if and only if there exists an adjointable direct sum E = S ⊕̃S ′

such that S ′ ⊆ S ⊥A.
(iv) If A ≥ 0 and R(A) is orthogonally complemented, then (A, S ) is compatible if and only

if there exists an idempotent Q ∈ LA(E) with range S such that Q∗AQ ≤ A.
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(v) If R(A11
∗) + R(A11) ⊆ E is orthogonally complemented, then (A, S ) is compatible

if and only if R
((

A12
A∗

21

))
⊆ R

((
A11
A∗

11

))
, if and only if

(
A11
A∗

11

)
X =

(
A12
A∗

21

)
has a solution

X ∈ LA(S ⊥, S ), and in which case we have a unique reduced solution.
(vi) If A = A∗ and R(A11) ⊆ E is orthogonally complemented, then (A, S ) is compatible if

and only if R(PA) = R(PAP ), and if and only if R(A12) ⊆ R(A11).

Proof Assume that Q ∈ P(A, S ), and Q = ( I V
0 0 ) under the decomposition E = S ⊕S ⊥.

Since Q is A-selfadjoint, Q∗A = AQ, by direct calculation, it follows that

A11V = A12, A∗
11V = A∗

21,

and then V is a common solution to the equations A11X = A12 and A∗
11X = A∗

21.

Conversely, if there exists an operator X ∈ LA(S ⊥, S ) such that

A11X = A12, A∗
11X = A∗

21,

then set Q = ( I X
0 0 ), which is an A-selfadjoint idempotent with range S .

(ii)–(iv) By Proposition 2.1, (ii)–(iv) are obvious.

(v) It is easy to check that R
((

A11
A∗

11

)∗)
= R(A∗

11) + R(A11). Then we can get (v) from
Lemma 2.1 and (i).

(vi) With the similar proof to that of Proposition 3.3 in [9], we obtain that R(A12) ⊆ R(A11)
if and only if R(PA) = R(PAP ).

For A12 = A∗
21 and A11 = A∗

11, from (v) and Lemma 2.1, we obtain that (A, S ) is compatible
if and only if R(A12) ⊆ R(A11).

The Proof of Theorem 2.1 is completed.

The following proposition is similar to [9, Theorem 3.6(3)], but it is for the general (not
only selfadjoint) operators on Hilbert C∗-modules.

Proposition 2.2 Let A ∈ LA(E) and S ⊆ E be an orthogonally complemented closed
submodule such that (A, S ) is compatible. Set N = S ∩ N(A) ∩ N(A∗). Then

S ∩ S ⊥A = N .

Proof Obviously, S ∩N(A∗)∩N(A) ⊆ S ∩S ⊥A. Since (A, S ) is compatible, by Theorem
2.1(i) there exists an operator V ∈ LA(S ⊥, S ) such that A11V = A12, A∗

11V = A∗
21, where

A11, A12, A21 are set as in Theorem 2.1.
For any x ∈ S ∩ S ⊥A and y ∈ S , we have 〈Ax, y〉 = 0 and 〈A∗x, y〉 = 0. It follows that

〈A11x, y〉 = 0 and 〈A∗
11x, y〉 = 0, so that A11x = A∗

11x = 0. Thus

Ax = A11x + A21x = A11x + V ∗A11x = 0,

A∗x = A∗
11x + A∗

12x = A∗
11x + V ∗A∗

11x = 0,

which is to say x ∈ N(A) ∩ N(A∗), so that S ∩ S ⊥A ⊆ S ∩ N(A) ∩ N(A∗).

Remark 2.2 (1) If A ∈ LA(E) is positive, then for any x ∈ S ∩ S ⊥A, 〈A 1
2 x, A

1
2 x〉 =

〈Ax, x〉 = 0, so that S ∩ N(A) = S ∩ S ⊥A. Therefore, S ∩ N(A) = S ∩ S ⊥A for positive
operators without the assumption of S -compatibility.
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(2) Suppose that N is orthogonally complemented in E. Then S = N ⊕ (S 
 N ) and
S ⊥A = N ⊕ (S ⊥A 
 N ). If additionally, (A, S ) is compatible, then E = S + S ⊥A by
Theorem 2.1(iii) and N = S ∩ S ⊥A by Proposition 2.2. Therefore,

E = S + (N ⊕ (S ⊥A 
 N )) = S + (S ⊥A 
 N ) = S ⊕̃(S ⊥A 
 N ).

Similarly, we have E = (S 
 N )⊕̃S ⊥A.

Definition 2.2 (see [9]) Let A ∈ LA(E) and S ⊆ E be an orthogonally complemented
closed submodule with the orthogonal projection P such that (A, S ) is compatible. Suppose that
A =

(
A11 A12
A21 A22

)
under the decomposition I = P +(I−P ) and the equation

(
A11
A∗

11

)
X =

(
A12
A∗

21

)
has

the reduced solution D ∈ LA(S ⊥, S ) (in particular if R(A11
∗) + R(A11) ⊆ E is orthogonally

complemented by Theorem 2.1(v)). We define the following idempotent onto S by PA,S :

PA,S =
(

I D
0 0

)
.

Theorem 2.2 (see [9]) Let A, S and D be as in Definition 2.2, N = S ∩N(A)∩N(A∗),
and let LN

A (S ⊥, S ) = {T ∈ LA(S ⊥, S ) : R(T ) ⊆ N } be viewed as a subspace of LA(E).
Then

P(A, S ) = PA,S + LN
A (S ⊥, S ).

Moreover, if N is an orthogonally complemented submodule of E, then
(i) there is a matrix representation of the above equation: Q ∈ P(A, S ) if and only if there

is a unique Z ∈ LN
A (S ⊥, S ) such that

Q = PA,S + Z =

⎛⎝I 0 D
0 I Z
0 0 0

⎞⎠
under the decomposition E = (S 
 N ) ⊕ N ⊕ S ⊥.

(ii) PA,S has the minimal norm in P(A, S ), i.e.,

‖PA,S ‖ = min{‖Q‖ : Q ∈ P(A, S )}.

Proof It is obvious that PA,S ∈ P(A, S ) by Theorem 2.1(i). Moreover, it is easy to check
that for any Z ∈ LN

A (S ⊥, S ), Q = PA,S + Z ∈ P(A, S ).
Now we assume Q ∈ P(A, S ), just as in the proof of Theorem 3.6(4) in [9]. Replacing A11

by
(

A11
A∗

11

)
, we could obtain some operator Z ∈ LA(S ⊥, S ) such that Q = PA,S +Z and R(Z) ⊆

N
((

A11
A∗

11

))
, i.e., R(Z) ⊆ N(A11) ∩ N(A11

∗). It is easy to know that N(A11) ∩ N(A11
∗) = N

and so Z ∈ LN
A (S ⊥, S ).

Now we assume that N is an orthogonally complemented submodule of E. Then by Lemma
2.1,

R(D) ⊆ N

((
A11

A11
∗

))⊥
= (N(A11) ∩ N(A11

∗))⊥ = S ∩ N ⊥ = S 
 N .

Thus (i) is proved, and (ii) is obvious by Lemma 2.3.

Corollary 2.3 Let A, S and D be as in Definition 2.2, and N = S ∩ N(A) ∩ N(A∗).
Then P(A, S ) has a unique element (namely, PA,S ) if and only if S ⊕̃S ⊥A = E.
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Proof From Theorem 2.1(i) and the definition of PA,S , we know that if P(A, S ) has a
unique element, it must be PA,S .

By Theorem 2.2, P(A, S ) has a unique element if and only if for all Z ∈ LN
A (S ⊥, S ),

Z = 0, which is equivalent to N = 0. Since (A, S ) is compatible, N = S ∩ S ⊥A and
E = S + S ⊥A. Therefore, N = 0 if and only if E = S ⊕̃S ⊥A.

3 Schur Complements of Operators on Hilbert C∗-Module

The Schur complement was first defined for square matrices in [18]: Given a block matrix
T = ( B C

D E ) with B invertible, then T/B = E − DB−1C is the Schur complement of B in T .
This notion was then generalized in several directions. In this section, we first put forward this
definition in the context of Hilbert C∗-modules following the generalization by Ando [2] in the
context of Hilbert spaces, and then obtain some characterizations of Schur complement.

Definition 3.1 (see [2]) Given an operator T ∈ LA(E) and an orthogonally complemented
closed submodule S of E. T is called S -complementable if there exist operators Ml, Mr ∈
LA(E) such that

PMr = Mr, MlP = Ml, PTMr = PT, MlTP = TP,

where P = PS is the projection onto S .

In this case, TMr is independent of the choice of Mr. The operator TS = TMr is defined
as the S -compression of T to S , and T/S = T − TS is defined as the Schur complement of
T to S .

Remark 3.1 (1) From the above analysis we know that TMr = MlPT = MlT . Therefore,
if T is selfadjoint, then the existence of Mr is sufficient to ensure the S -complementability of
T as we can choose Ml = M∗

r .
(2) If E = Cn, S = Ck ×{0} and S ⊥ = {0}×Cn−k, then every T ∈ LA(E) can be written

as T = ( B C
D E ). Moreover if B−1 is invertible, then Mr =

(
I B−1C
0 0

)
and Ml =

(
I 0

DB−1 0

)
satisfy

the equations in Definition 3.1 and

TS =
(

B C
D DB−1C

)
, T/S =

(
0 0
0 E − DB−1C

)
.

Thus T/S is determined by the classical Schur complement.

Theorem 3.1 Let T ∈ LA(E) and S ⊆ E be an orthogonally complemented submodule
with the orthogonal projection P . Suppose T =

(
T11 T12
T21 T22

)
under the decomposition E = S ⊕

S ⊥. Then the following statements are equivalent:
( i ) T is S -complementable.
( ii ) There exist operators X, Y ∈ LA(S ⊥, S ) such that T11X = T12 and T11

∗Y = T21
∗.

(iii) There exist idempotents Q, R ∈ LA(E) with ranges S such that PTQ = PT and
PT ∗R = PT ∗, i.e., each of the equations PTX = PT and PT ∗Y = PT ∗ has an idempotent
solution in LA(E) with range S .

In which case, the Schur complement of T to S is

T/S =
(

0 0
0 T22 − W ∗T11V

)
= T (1 − Q) = (1 − R∗)T,
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where V and W are the solutions of T11X = T12 and T11
∗Y = T21

∗ in LA(S ⊥, S ) respectively,
and Q, R are given by (iii)

(
in particular, Q = ( I V

0 0 ) and R = ( I W
0 0 )

)
.

Proof (i)⇒(ii) Let T be S -complementable and

Mr =
(

M11 M12

M21 M22

)
, Ml =

(
N11 N12

N21 N22

)
.

From Mr = PMr and PTMr = PT , it could be seen that T11M11 = T11, T11M12 = T12.
Similarly, by MlP = Ml, MlTP = TP , we easily obtain that N11T11 = T11, N21T11 = T21.

Therefore, each of the equations T11X = T12 and T11
∗Y = T21

∗ has a solution in LA(S ⊥, S ).
(ii)⇒(iii) Let V and W be the solutions of T11X = T12 and T11

∗Y = T21
∗ in LA(S ⊥, S )

respectively. Set Mr = ( I V
0 0 ) , Ml =

(
I 0

W∗ 0

)
. It is easy to check that

PTMr = PT, PT ∗Ml
∗ = PT ∗,

Mr = Mr
2, Ml

∗ = Ml
∗2, R(Mr) = R(Ml

∗) = S .

Set Q = Mr and R = Ml
∗, we complete the proof.

(iii)⇒(i) Set Mr = Q, Ml = R∗.
Thus we prove the equivalence of (i)–(iii).
If T is S -complementable, set

Mr =
(

I V
0 0

)
, Ml =

(
I 0

W ∗ 0

)
,

where V and W are the solutions of T11X = T12 and T11
∗Y = T21

∗ in LA(S ⊥, S ) respectively.
Then by the discussion above and the definition of the Schur complement of T to S , we have

T/S = T (I − Mr) = (I − Ml)T (I − Mr) =
(

0 0
0 T22 − W ∗T11V

)
.

Definition 3.2 Let T ∈ LA(E) and S ⊆ E be an orthogonally complemented closed sub-
module. We call T S ∗-complementable if there exists an operator M ∈ LA(E) such that

PM = M, PTM = PT, PT ∗M = PT ∗, i.e., M∗TP = TP,

where P = PS is the projection of E onto S .

Remark 3.2 Clearly if T is S ∗-complementable, it must be S -complementable. Con-
versely, it may be not true. For example, in Remark 3.1(2), Ml = M∗

r need not be ensured.
However, for selfadjoint operators, the two definitions are identical with each other from Re-
mark 3.1(1). Corach et al [10] showed that S -compatibility and S -complementability are
equivalent properties for selfadjoint operators on Hilbert spaces, and so S -compatibility and
S ∗-complementability are equivalent properties for selfadjoint operators on Hilbert spaces too.
We could see that this result is also true for general adjointable (maybe not selfadjoint) opera-
tors not only on Hilbert spaces but also on Hilbert C∗-modules.

Theorem 3.2 Let T ∈ LA(E) and S ⊆ E be an orthogonally complemented closed sub-
module of E. Then the following statements are equivalent:

( i ) T is S ∗-complementable.
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( ii ) (T, S ) is compatible.
(iii) T11X = T12 and T11

∗X = T21
∗ have a common solution X ∈ LA(S ⊥, S ).

(iv) There exists an idempotent Q ∈ LA(E) with range S such that PTQ = PT and
PT ∗Q = PT ∗, i.e., PTX = PT and PT ∗X = PT ∗ have a common idempotent solution in
LA(E) with range S .

In which case, Q ∈ P(T, S ) if and only if Q ∈ LA(E) is of the form ( I V
0 0 ) under the

decomposition E = S ⊕ S ⊥, where V ∈ LA(S ⊥, S ) is a common solution of T11X =
T12, T11

∗X = T21
∗, if and only if Q ∈ LA(E) is an idempotent with range S such that

PTQ = PT and PT ∗Q = PT ∗. Moreover, with V, Q as above,

T/S =
(

0 0
0 T22 − V ∗T11V

)
= T (1 − Q) = (1 − Q∗)T.

Proof By the similar proof as in Theorem 3.1, we could easily obtain the equivalence of
(i), (iii) and (iv). The proof is then completed by Theorem 2.1, Remark 2.1 and the proof of
Theorem 3.1.

4 Schur Complements of Positive Operators on Hilbert C∗-Module

Corach et al [10] proved that, if H is a Hilbert space, A ∈ L(H)+ and (A, S ) is compatible,
then the Schur complement (Ando)

A/S = max{X ∈ L(H)+ : X ≤ A, R(X) ⊆ S ⊥},

where the maximum in the right-hand side of the equation above does exist for any positive
operator A and any closed subspace S of H , and is defined by Anderson and Trapp [1] as
the shorted operator of A by S . Therefore, the Schur complement (Ando) of S -compatible
positive operators have the same properties as the shorted operators which were widely studied
(see [1, 9, 10, 28]).

Unfortunately, in the case of Hilbert C∗-module, the maximum above maybe does not exist.
For instance, let A = C0(−1, 1). Then E = A ⊕ A is a Hilbert A-module under the inner
product

〈f1 ⊕ g1, f2 ⊕ g2〉 = f1f2 + g1g2 ∈ A for f1, f2, g1, g2 ∈ A.

It is well-known that LA(E) = M2(LA(A)) = M2(Cb(−1, 1)), where Cb(−1, 1) is the algebra
of continuous bounded functions on (−1, 1). Set S = A ⊕ 0. Then S ⊆ E is orthogonally
complemented and S ⊥ = 0 ⊕A. Define continuous functions as follows:

f(x) =

{
0, x ∈ (−1, 0),
x2, x ∈ (0, 1),

h(x) =

{
0, x ∈ (−1, 0),
x, x ∈ (0, 1),

g(x) = 2x + 2.

Obviously f, h, g ∈ Cb(−1, 1). Set A =
(

f h
h g

)
under the orthogonal decomposition E = S ⊕

S ⊥. Then A ∈ LA(E). For any a, b ∈ A, we have〈
A

(
a
b

)
,

(
a
b

) 〉
=

〈 (
f h
h g

) (
a
b

)
,

(
a
b

) 〉
= 〈fa + hb, a〉 + 〈ha + gb, b〉
= fa2 + 2hab + gb2.
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For any x ∈ (−1, 0), y ∈ (0, 1), we have

(fa2 + 2hab + gb2)(x) = g(x)b2 ≥ 0,

(fa2 + 2hab + gb2)(y) = y2a2 + 2yab + g(y)b2 = (ya + b)2 + (g(y) − 1)b2 ≥ 0.

Thus we obtain A ≥ 0. If X ∈ LA(E)+ and R(X) ⊆ S ⊥, we note X =
(

0 0
0 X1

)
and X1 ≥ 0.

Suppose X ≤ A. Then we have for any a, b ∈ A,〈
(A − X)

(
a
b

)
,

(
a
b

) 〉
= fa2 + 2hab + (g − X1)b2 ≥ 0.

By previous calculation, we know that X1|(−1,0) ≤ g = 2x + 2 and X1|(0,1) ≤ g − 1 = 2x + 1.
Therefore, we obtain that X ∈ LA(E)+ such that X ≤ A and R(X) ⊆ S ⊥ if and only if
X =

(
0 0
0 X1

)
with X1 ∈ Cb(−1, 1) such that X1 ≥ 0, X1|(−1,0) ≤ 2x + 2 and X1|(0,1) ≤ 2x + 1.

From this, we easily know that the maximum of {X ∈ LA(E)+ : X ≤ A, R(X) ⊆ S ⊥} does
not exist.

Therefore, we could not define the shorted operator as we did in the case of Hilbert space,
and by which study the properties of Schur complements as in [10]. However, we prove that if
(A, S ) is compatible, then the maximum above exists.

In this section, we want to obtain more representations of the Schur complements for S -
compatible positive operators. Throughout this section, A denotes a positive operator in LA(E)
and S denotes an orthogonally complemented closed submodule in E, and A =

(
A11 A12
A∗

12 A22

)
under the orthogonal decomposition E = S ⊕ S ⊥.

Lemma 4.1 There exists a positive number λ > 0 such that A12A
∗
12 ≤ λA11. If additionally,

R(A11) is orthogonally complemented in S , then the equation A
1
2
11X = A12 has a reduced

solution.

Proof Set A = S∗S and S =
(

S11 S12
S21 S22

)
under the orthogonal decomposition E = S ⊕S ⊥.

Then we have

A =
(

S∗
11 S∗

21

S∗
12 S∗

22

) (
S11 S12

S21 S22

)
=

(
S∗

11S11 + S∗
21S21 S∗

11S12 + S∗
21S22

S∗
12S11 + S∗

22S21 S∗
12S12 + S∗

22S22

)
.

By direct computation it follows that

A12A
∗
12 ≤ 2(‖S12‖2S11

∗S11 + ‖S22‖2S21
∗S21).

Set λ = max{2‖S12‖2, 2‖S22‖2}. Then we have

A12A
∗
12 ≤ λA11.

If R(A11) = R(A
1
2
11) is the orthogonally complemented closed submodule of S , by Lemma

2.1, we know that R(A12) ⊆ R(A
1
2
11), and the equation A

1
2
11X = A12 has a reduced solution

X ∈ LA(S ⊥, S ).

Theorem 4.1 (i) If (A, S ) is compatible, then A
1
2
11X = A12 has the reduced solution D ∈

LA(S ⊥, S ) such that D = A
1
2
11V , where V ∈ LA(S ⊥, S ) is a solution to A11X = A12. In

this case,

A/S =
(

0 0
0 A22 − D∗D

)
.
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(ii) Suppose that A11
1
2 X = A12 has the reduced solution D in LA(S ⊥, S ) (in particular if

R(A11) is orthogonally complemented in S ). Then (A, S ) is compatible if and only if A11
1
2 X =

D has a solution.
(iii) Suppose that R(A11) = R(A11

1
2 ), and R(A11) is orthogonally complemented in S .

Then (A, S ) is compatible. In particular, if A11 is invertible (especially if A is invertible), then
(A, S ) is compatible and A/S =

(
0 0
0 A22−A∗

12A11
−1A12

)
.

Proof (i) Let V ∈ LA(S ⊥, S ) be a solution to A11X = A12. Then A
1
2
11(A

1
2
11V ) = A12.

Moreover, we know that R(A
1
2
11V ) ⊆ R(A

1
2
11) ⊆ N(A

1
2
11)

⊥, so A
1
2
11V is the reduced solution to

A
1
2
11X = A12, which we denote by D. Therefore, the Schur complement of A to S

A/S =
(

0 0
0 A22 − V ∗A11V

)
=

(
0 0
0 A22 − D∗D

)
.

(ii) It is clear from (i) and Theorem 3.2.
(iii) From Lemma 4.1 and Theorem 2.1(vi) we obtain that (A, S ) is compatible.
If A is invertible, it is easy to know that A11 is invertible, then so is A

1
2
11. Let A

− 1
2

11 denote

the inverse of A
1
2
11 in LA(S ). Then D = A

− 1
2

11 A12 and

A/S =
(

0 0
0 A22 − A∗

12A
−1
11 A12

)
.

Theorem 4.2 Suppose that A
1
2
11X = A12 has the reduced solution D ∈ LA(S ⊥, S ) (in

particular if R(A11) is orthogonally complemented in S , or if (A, S ) is compatible). Then the
following statements are equivalent:

( i )
(

0 0
0 A22−D∗D

)
is the minimum of {Q∗AQ : Q2 = Q, N(Q) = S }.

( ii ) The equation A11
1
2 X = D has a solution X ∈ LA(S ⊥, S ).

(iii) (A, S ) is compatible.
In this case, A/S =

(
0 0
0 A22−D∗D

)
, and A/S is also the maximum of {X ∈ LA(E)+ : X ≤

A, R(X) ⊆ S ⊥}.
Proof We only need to show (i)⇔(ii).
By the previous discussion, we know that if Q is an idempotent with N(Q) = S , i.e.,

R(I − Q) = S , then Q = ( 0 X
0 I ) under the orthogonal decomposition E = S ⊕ S ⊥, where

X ∈ LA(S ⊥, S ). So we have

Q∗AQ =
(

0 0
0 A22 + X∗A12 + A∗

12X + X∗A11X

)
.

In the other hand,

A22 + X∗A12 + A∗
12X + X∗A11X = A22 + X∗A

1
2
11D + D∗A

1
2
11X + X∗A11X

= A22 + (X∗A
1
2
11)D + D∗(A

1
2
11X) + X∗A11X

≥ A22 − D∗D,

and “ = ” holds if and only if A
1
2
11X = −D. Set X0 =

(
0 0
0 A22−D∗D

)
. Then X0 is the minimum

of {Q∗AQ : Q2 = Q, N(Q) = S } if and only if the equation A
1
2
11X = D has a solution in

LA(S ⊥, S ). Thus (i)⇔(ii) is proved.
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Now we assume that X0 is the minimum of {Q∗AQ : Q2 = Q, N(Q) = S }. It is clear that

R(X0) ⊆ S ⊥, and A − X0 =
(

A
1
2
11 D
0 0

)∗ (
A

1
2
11 D
0 0

)
≥ 0.

For any X ∈ LA(E) such that 0 ≤ X ≤ A and R(X) ⊆ S ⊥, X is of the form
(

0 0
0 X1

)
under

the orthogonal decomposition E = S ⊕ S ⊥. Let Q ∈ LA(E) with Q2 = Q and N(Q) = S

and set Q = ( 0 Y
0 I ) , with the direct computation we know that Q∗XQ = X and

0 ≤ Q∗(A − X)Q = Q∗AQ − Q∗XQ = Q∗AQ − X.

Therefore, X0 ≥ X . This completes the proof.

Corollary 4.1 Suppose that (A, S ) is compatible. Then

A/S = min{Q∗AQ : Q2 = Q, N(Q) = S }
= max{X ∈ LA(E)+ : X ≤ A, R(X) ⊆ S ⊥}.

Example 4.1 Let A = C0(0, 1). Then E = A ⊕ A is a Hilbert A-module, and LA(E) =
M2(Cb(0, 1)). Set S = A ⊕ 0. Then S ⊆ E is orthogonally complemented and S ⊥ = 0 ⊕A.
Suppose A =

(
x2 x
x 2

)
under the orthogonal decomposition E = S ⊕ S ⊥. As we discussed

previously in the case A = C0(−1, 1), we obtain that (i) A ∈ LA(E) and A ≥ 0; (ii) if
0 ≤ X ≤ A and R(X) ⊆ S ⊥, we may set X =

(
0 0
0 X1

)
with 0 ≤ X1 ≤ 1, i.e., X ≤ ( 0 0

0 1 ).
Obviously, ( 0 0

0 1 ) ∈ LA(E)+ and then ( 0 0
0 1 ) = max{X ∈ LA(E)+ : X ≤ A, R(X) ⊆ S }.

However, (A, S ) is not compatible for x−1 /∈ Cb(0, 1).

Lemma 4.2 Suppose that (A, S ) is compatible and R(A) is orthogonally complemented.
Set M = A

1
2 S . Then M is orthogonally complemented.

Proof Suppose Q ∈ P(A, S ). Since R(A
1
2 ) = R(A) is orthogonally complemented, we

have R(A
1
2 )⊕N(A

1
2 ) = E. For any x ∈ R(A

1
2 ), there exist {xn} ⊆ E such that x = lim

n
A

1
2 xn.

By Proposition 2.1, we know that Q∗AQ ≤ A. So

〈A 1
2 Q(xn − xm), A

1
2 Q(xn − xm)〉 ≤ 〈A 1

2 (xn − xm), A
1
2 (xn − xm)〉.

Then A
1
2 Qxn is convergent. Hence we obtain

R(A
1
2 ) = R(A

1
2 Q) + R(A

1
2 (I − Q)),

and so M + R(A
1
2 (I − Q)) + N(A

1
2 ) = E.

Obviously, N(A
1
2 ) ⊆ M⊥. For any x, y ∈ E, we have

〈A 1
2 (I − Q)x, A

1
2 Qy〉 = 〈A(I − Q)x, Qy〉 = 0,

so that R(A
1
2 (I − Q)) ⊆ M⊥. Therefore E = M ⊕M⊥, and M is orthogonally complemented

in E.

Proposition 4.1 Suppose that (A, S ) is compatible and R(A) is orthogonally comple-
mented in E. Then

A/S = A
1
2 (I − PM )A

1
2 ,

where M = A
1
2 S , and PM : E → M is the projection of E onto M .
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Proof Suppose Q ∈ P(A, S ). Given x ∈ E, for R(A
1
2 (I−Q)) ⊆ M⊥, we have PM A

1
2 x =

PM A
1
2 Qx = A

1
2 Qx. Therefore,

A/S = A(I − Q) = A − A
1
2 PM A

1
2 Q = A

1
2 (I − PM )A

1
2 .

Proposition 4.2 Suppose that (A, S ) is compatible and R(A) is orthogonally comple-
mented in E. Then

( i ) R(A/S ) = R(A) ∩ S ⊥,

(ii) R((A/S )
1
2 ) = R(A

1
2 ) ∩ S ⊥.

Proof (i) Let x ∈ E with Ax ∈ R(A) ∩ S ⊥. For any y ∈ S , we have 〈Ax, y〉 = 0 =
〈A 1

2 x, A
1
2 y〉, so that A

1
2 x ∈ M⊥, i.e., (I − PM )A

1
2 x = A

1
2 x. Then it follows that

Ax = A
1
2 A

1
2 x = A

1
2 (I − PM )A

1
2 x = A/S x

and so R(A) ∩ S ⊥ ⊆ R(A/S ). The other inclusion is obvious from Theorem 4.1.
(ii) By Proposition 4.1, we know A/S = A

1
2 (I − PM )A

1
2 ≤ A. From Lemma 2.1, it could

be seen that R((A/S )
1
2 ) ⊆ R(A

1
2 ) ∩ R(A/S ) ⊆ R(A

1
2 ) ∩ S ⊥.

Conversely, given x ∈ R(A
1
2 )∩S ⊥, we assume x = A

1
2 y, where y ∈ N(A

1
2 )⊥ = R(A

1
2 ). For

any z ∈ S , we get
〈x, z〉 = 0 = 〈A 1

2 y, z〉 = 〈y, A
1
2 z〉.

So y ∈ M⊥, i.e., PM y = 0.
Since y ∈ R(A

1
2 ), we set y = lim

n
A

1
2 yn. Then we have

x = A
1
2 y = A

1
2 (I − PM )y = lim

n
A/S yn.

As A/S ≤ A, we obtain that for all x ∈ E, 〈A/S x, x〉 ≤ 〈Ax, x〉, i.e.,

〈(A/S )
1
2 x, (A/S )

1
2 x〉 ≤ 〈A 1

2 x, A
1
2 x〉.

Therefore, (A/S )
1
2 yn is convergent in E in norm topology. So

x = lim
n

A/S yn = (A/S )
1
2 lim

n
(A/S )

1
2 yn

and R(A
1
2 ) ∩ S ⊥ ⊆ R((A/S )

1
2 ).

Magajna and Schweizer showed, respectively, that C∗-algebras of compact operators can
be characterized by the property that every closed in norm (coinciding with its biorthogonal
complement, respectively) submodule of every Hilbert C∗-module over them is automatically
an orthogonal summand (see [25, 30]). Hence, we obtain the following statement.

Theorem 4.3 Let A ∈ LA(E)+ and S be an orthogonally complemented closed submodule
of E. If A is S -compatible, then

( i ) The equation A
1
2
11X = A12 has the reduced solution D ∈ L(S ⊥, S ), and

A/S =
(

0 0
0 A22 − D∗D

)
.

( ii ) A/S = min{Q∗AQ : Q2 = Q, N(Q) = S }.
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(iii) A/S = max{X ∈ LA(E)+ : X ≤ A, R(X) ⊆ S ⊥}.
If additionally, A is an arbitrary C∗-algebra of compact operators, then
(iv) A/S = A

1
2 PM A

1
2 , where M = (A

1
2 S )⊥ and PM is the projection of E onto M .

( v ) R(A) ∩ S ⊥ = R(A/S ), R(A
1
2 ) ∩ S ⊥ = R((A/S )

1
2 ).

5 The Quotient Property for Schur Complements of Operators on
Hilbert C∗-Module

An important property of Schur complements of matrices is the quotient property first
demonstrated in [11]. Another proof was given in [26] and a simpler one can be found in
[4]: given a semi-positive definite matrix H = ( A B

C D ), A =
(

A11 A12
A21 A22

)
with A, A11 invertible,

then H/A = (H/A11 )/(A/A11)
.

In this section, we attempt to extend the above result for matrices to operators on Hilbert
C∗-modules, i.e., to prove the quotient property for Schur complements of S -complementable
(S ∗-complementable) operators on Hilbert C∗-module E.

Throughout this section, we assume that T ∈ LA(E), S ⊆ E and S1 ⊆ S are orthogo-
nally complemented closed submodules of Hilbert C∗-module E, and T =

(
T11 T12
T21 T22

)
under the

orthogonal decomposition E = S ⊕ S ⊥.

Lemma 5.1 Suppose that T is S -complementable (S ∗-complementable), and U1, U2 ∈
LA(E) (U1, U2 ∈ LA(E) with U1 = U∗

2 ) have the matrix representations

U1 =
(

I Y
0 I

)
, U2 =

(
I 0
Z I

)
under the orthogonal decomposition E = S ⊕ S ⊥. Then U2TU1 is S -complementable (S ∗-
complementable) and U2TU1/S = T/S .

Proof Suppose that T ∈ LA(E) is S -complementable and V, W are the solutions of
T11X = T12 and T ∗

11X = T ∗
21, respectively. We have by direct computation

U2TU1 =
(

T11 T11Y + T12

T21 + ZT11 ZT11Y + T21Y + ZT12 + T22

)
,

and it could be seen easily that

T11(V + Y ) = T11Y + T12, T ∗
11(W + Z∗) = (T21 + ZT11)∗,

i.e., V + Y, W + Z∗ are the solutions of T11X = T12 and T ∗
11X = T ∗

21, respectively. So by
Theorem 3.1, U2TU1 is S -complementable and

U2TU1/S =
(

0 0
0 ZT11Y + T21Y + ZT12 + T22 − (W + Z∗)∗T11(V + Y )

)
=

(
0 0
0 T22 − W ∗T11V

)
= T/S .

About the case of S ∗-complementability, it is enough to note that Y = Z∗ and V = W .
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Lemma 5.2 Suppose that T is S -complementable (S ∗-complementable) and T11 is S1-
complementable (S ∗

1 -complementable). Then T is also S1-complementable (S ∗
1 -complemen-

table), and there exist invertible operators U1, U2 ∈ LA(E) (U1, U2 ∈ LA(E) with U1 = U∗
2 )

such that
U2T/S1U1 = T/S + T11/S1 ,

where T11/S1 is identified with
(

T11/S1 0

0 0

)
in LA(E).

Proof Let P, P1 denote the orthogonal projections of E onto S , S1 respectively. By
assumption it could be seen that P − P1 ∈ LA(E) is a projection. We denote P − P1 by P2,
and R(P2) by S2, i.e., S2 = S 
 S1. Suppose that Ji : Si → S is the including map, and
Pi

′ : S → Si satisfies that for all x ∈ S , Pi
′x = Pix (i = 1, 2). It is easy to know that

Ji ∈ LA(Si, S ) and Ji
∗ = Pi

′.
Suppose

T =

⎛⎝T 1
11 T 2

11 T 1
12

T 3
11 T 4

11 T 2
12

T 1
21 T 2

21 T22

⎞⎠
under the orthogonal decomposition P1 + P2 + (I − P ) = I, where

T11 =
(

T 1
11 T 2

11

T 3
11 T 4

11

)
, T12 =

(
T 1

12

T 2
12

)
and T21 =

(
T 1

21 T 2
21

)
.

Since T ∈ LA(E) is S -complementable, we suppose that V1, W1 ∈ LA(S ⊥, S ) are the
solutions of T11X = T12 and T11

∗Y = T21
∗ respectively. So by Theorem 3.1, we have

T/S =
(

I −
(

0 0
W1

∗ I

))
T

(
I −

(
0 V1

0 I

))
=

(
0 0
0 T22 − W1

∗T11V1

)
.

Replacing T11, T12, T21 by
(

T 1
11 T 2

11

T 3
11 T 4

11

)
,
(

T 1
12

T 2
12

)
, ( T 1

21 T 2
21 ) in the equations T11V1 = T12 and

T11
∗W1 = T21

∗, we could obtain the following equations:⎧⎪⎪⎨⎪⎪⎩
T 1

11P1
′V1 + T 2

11P2
′V1 = T 1

12,
T 3

11P1
′V1 + T 4

11P2
′V1 = T 2

12,

T 1
11

∗
P1

′W1 + T 3
11

∗
P2

′W1 = T 1
21

∗
,

T 2
11

∗
P1

′W1 + T 4
11

∗
P2

′W1 = T 2
21

∗
.

Since T11 ∈ LA(S ) is S1-complementable, we may assume that V2, W2 ∈ LA(S2, S1) are
the solutions of T 1

11X = T 2
11, T 1

11
∗
Y = T 3

11
∗ respectively. Therefore, the Schur complement of

T11 to S1 is

T11/S1 =
(

I −
(

0 0
W2

∗ I

))
T11

(
I −

(
0 V2

0 I

))
=

(
0 0
0 T 4

11 − W ∗
2 T 1

11V2

)
∈ LA(S ).

Set
V = (V2, P1

′V1 + V2P2
′V1), W = (W2, P1

′W1 + W2P2
′W1).

Then V, W ∈ LA(S2 ⊕ S ⊥, S1). Moreover, we have

T 1
11V = (T 1

11V2, T 1
11P1

′V1 + T 1
11V2P2

′V1) = (T 2
11, T 1

11P1
′V1 + T 2

11P2
′V1) = (T 2

11, T 1
12),

T 1
11

∗
W = (T 1

11
∗
W2, T 1

11
∗
P1

′W1 + T 1
11

∗
W2P2

′W1) = (T 3
11

∗
, T 1

11
∗
P1

′W1 + T 3
11

∗
P2

′W1)

= (T 3
11

∗
, T 1

21
∗
) =

(
T 3

11

T 1
21

)∗
.
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By Theorem 3.1, we know that T ∈ LA(E) is S1-complementable.
Set Mr = ( I V

0 0 ) , Ml =
(

I 0
W∗ 0

)
. We obtain

T/S1 = (I − Ml)T (I − Mr)

=

⎛⎝ 0 0 0
−W2

∗ I 0
−W ∗

1 J1 − W ∗
1 J2W

∗
2 0 I

⎞⎠ T

⎛⎝0 − V2 − P1
′V1 − V2P2

′V1

0 I 0
0 0 I

⎞⎠ .

Because (
T11/S1 0

0 0

)
=

(
I − Ml2 0

0 0

)
T

(
I − Mr2 0

0 0

)
,

where Mr2 =
(

I V2
0 0

)
and Ml2 =

(
I 0

W2
∗ 0

)
, we obtain

T/S + T11/S1

=
(

0 0
−W ∗

1 I

)
T

(
0 − V1

0 I

)
+

(
I − Ml2 0

0 0

)
T

(
I − Mr2 0

0 0

)
=

(
I − Ml2 0
−W ∗

1 I

)
T

(
I − Mr2 − V1

0 I

)

=

⎛⎝ 0 0 0
−W ∗

2 I 0
−W ∗

1 J1 − W ∗
1 J2 I

⎞⎠ T

⎛⎝0 − V2 − P1
′V1

0 I − P2
′V1

0 0 I

⎞⎠ .

Set U1 =
(

I 0 0
0 I −P2

′V1
0 0 I

)
and U2 =

( I 0 0
0 I 0
0 −W∗

1 J2 I

)
. Therefore, we have

T/S + T11/S1

= U2

⎛⎝ 0 0 0
−W ∗

2 I 0
−W ∗

1 J1 − W ∗
1 J2W2

∗ 0 I

⎞⎠T

⎛⎝0 − V2 − P ′
1V1 − V2P

′
2V1

0 I 0
0 0 I

⎞⎠ U1

= U2T/S1U1.

In the case of S ∗-complementability, it is easy to see that in the proof above, W1 = V1 and
W2 = V2. Then W = V and U2 = U1

∗. Therefore T is S ∗
1 -complementable.

Lemma 5.3 T11 ∈ LA(S ) is S1-complementable if and only if PTP is S1-complementable.
Moreover,

(PTP )/S1 =
(

T11/S1 0
0 0

)
.

Proof Let T, P, P1, P2 be as in Lemma 5.2. Then under the orthogonal decomposition
P1 + P2 + (I − P ) = I,

PTP =

⎛⎝T 1
11 T 2

11 0
T 3

11 T 4
11 0

0 0 0

⎞⎠ .

If T11 is S1-complementable, then there exist operators V1 and W1 ∈ LA(S2, S1) which
are solutions of T 1

11X = T 2
11 and T 1

11
∗
Y = T 3

11
∗ respectively. Set V = (V1, 0), W = (W1, 0) ∈

LA(S2 ⊕ S ⊥, S1). We have T11V = (T 2
11, 0), T 1

11
∗
W = (T 3

11
∗
, 0) =

(
T 3
11

0

)∗
. Therefore, PTP

is S1-complementable.
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Conversely, if PTP is S1-complementable, there are operators V, W ∈ LA(S2 ⊕ S ⊥, S1)
such that T 1

11V =(T 2
11, 0), T 1

11
∗
W =(T 3

11
∗
, 0). It is easy to know that V JS2 , WJS2 ∈LA(S2, S1),

where JS2 : S2 → S2 ⊕ S ⊥ is the including map. Since T 1
11V JS2 = T 2

11, T 1
11

∗
WJS2 = T 3

11
∗,

by Theorem 3.1 we know that T11 is S1-complementable.
Set V1 = V JS2 , W1 = WJS2 . It is easy to know that (V1, 0) and (W1, 0) ∈ LA(S2⊕S ⊥, S1)

are solutions to T 1
11X = (T 2

11, 0) and T 1
11

∗
Y = (T 3

11
∗
, 0) respectively. So

(PTP )/S1 =

⎛⎝0 0 0
0 T 4

11 − W ∗
1 T 1

11V1 0
0 0 0

⎞⎠ =
(

T11/S1 0
0 0

)
.

Combining Lemma 5.2 and Lemma 5.3, we get the following proposition.

Proposition 5.1 Let T ∈ LA(E), S ⊆ E and S1 ⊆ S be orthogonally complemented
closed submodules of Hilbert C∗-module E, and P be the projection of E onto S . If T is
S -complementable and PTP is S1-complementable, then T is S1-complementable, and there
exist invertible operators U1, U2 ∈ LA(E) such that

U2T/S1U1 = T/S + (PTP )/S1 .

Corollary 5.1 Let T ∈ LA(E), S ⊆ E and S1 ⊆ S be orthogonally complemented
closed submodules of Hilbert C∗-module E, and P be the projection of E onto S . If T is S ∗-
complementable and PTP is S ∗

1 -complementable, then T is S ∗
1 -complementable, and there

exists an invertible operator U ∈ LA(E) such that

U∗T/S1U = T/S + (PTP )/S1.

Proof The proof is the same as that of Proposition 5.1. We note that in the proof of
Lemma 5.3 we could have W1 = V1 and W = V in the case of S ∗

1 -complementability. Then
T11 ∈ LA(S ) is S ∗

1 -complementable if and only if PTP is S ∗
1 -complementable.

Theorem 5.1 Let T ∈ LA(E), S ⊆ E and S1 ⊆ S be orthogonally complemented closed
submodules of Hilbert C∗-module E, and P be the projection of E onto S . If T is S -
complementable and PTP is S1-complementable, then T is S1 -complementable, T/S1 is S 

S1-complementable, and

(T/S1)/S�S1 = T/S .

As a consequence, (T/S )/S ⊥ = 0.

Proof From Lemma 5.2, it could be seen that T is S1-complementable. As in the proof of
Lemma 5.2, we set S2 = S 
 S1, and

U1 =

⎛⎝I 0 0
0 I − P ′

2V1

0 0 I

⎞⎠ , U2 =

⎛⎝I 0 0
0 I
0 − W ∗

1 J2 I

⎞⎠
under the orthogonal decomposition P1 +P2 +(I −P ) = I. So under the orthogonal decompo-
sition P2 + P1 + (I − P ) = I, we obtain the matrix representations

U1 =

⎛⎝I 0 − P ′
2V1

0 I 0
0 0 I

⎞⎠ , U2 =

⎛⎝ I 0 0
0 I

−W ∗
1 J2 0 I

⎞⎠ .
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For the sake of clarity, all matrix representations appeared next are under the orthogonal
decomposition P2 + P1 + (I − P ) = I.

It is easy to know U1
−1 =

(
I 0 P ′

2V1
0 I 0
0 0 I

)
, U2

−1 =
( I 0 0

0 I
W∗

1 J2 0 I

)
. By Proposition 5.1, we have

T/S1 = U2
−1U2T/S1U1U1

−1 = U2
−1(T/S + (PTP )/S1)U1

−1

= U2
−1

⎛⎝(T11/S1)22 0 0
0 0 0
0 0 (T/S )33

⎞⎠ U1
−1,

where (PTP )/S1 =
(

(T11/S1 )22 0 0

0 0 0
0 0 0

)
, T/S =

( 0 0 0
0 0 0
0 0 (T/S )33

)
.

Obviously,
(

(T11/S1 )22 0 0

0 0 0
0 0 (T/S )33

)
is S2-complementable. By Lemma 5.1, we know that T/S1

is S2-complementable, and

(T/S1)S2 =

⎛⎝(T11/S1)22 0 0
0 0 0
0 0 (T/S )33

⎞⎠
/S2

=

⎛⎝0 0 0
0 0 0
0 0 (T/S )33

⎞⎠ = T/S .

Proposition 5.2 Let T ∈ LA(E), S ⊆ E and S1 ⊆ S be orthogonally complemented
closed submodules of Hilbert C∗-module E, and P be the projection of E onto S . If T is
S ∗-complementable and PTP is S ∗

1 -complementable, then T is S ∗
1 -complementable, T/S1 is

(S 
 S1)∗-complementable, and

(T/S1)/S�S1 = T/S .

As a consequence, (T/S )/S ⊥ = 0.

Proof The proof is the same as that of Theorem 5.1. We note that in the proof of
Theorem 5.1 we could have W1 = V1 and U1 = U∗

2 in the case of S ∗-complementability and
S ∗

1 -complementability.
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