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Abstract The complexity of decoding the standard Reed-Solomon code is a well-known
open problem in coding theory. The main problem is to compute the error distance of a
received word. Using the Weil bound for character sum estimate, Li and Wan showed that
the error distance can be determined when the degree of the received word as a polynomial
is small. In the first part, the result of Li and Wan is improved. On the other hand, one of
the important parameters of an error-correcting code is the dimension. In most cases, one
can only get bounds for the dimension. In the second part, a formula for the dimension of
the generalized trace Reed-Solomon codes in some cases is obtained.
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1 On Improved Bounds for Error Distance of Standard
Reed-Solomon Codes

Let Fq be the finite field of q elements with characteristic p. Fix a subset D = {x1, · · · , xn} ⊆
Fq, which is called the evaluation set. The generalized Reed-Solomon code Cq(D, k) of length n

and dimension k over Fq is

Cq(D, k) = {(f(x1), · · · , f(xn)) ∈ F
n
q | f(x) ∈ Fq[x], deg f(x) ≤ k − 1}.

Its elements are called codewords. The most widely used cases are D = Fq or F
∗
q . These two

cases are essentially equivalent. We call the case D = Fq the standard Reed-Solomon code.
Note that in other literature, the case D = F

∗
q is called standard.

For a linear code C of length n over Fq and a word u ∈ F
n
q , we define the error distance of

u to the code C to be
d(u, C) = min

v∈C
d(u, v),

where d( , ) denote the Hamming distance. It is clear that d(u, C) = 0 if and only if u is a
codeword. The covering radius of C is defined to be

ρ(C) = max
u∈Fn

q

d(u, C).
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The minimal distance of C is defined to be

d(C) = min
u�=v∈C

d(u, v) = min
0�=v∈C

d(0, v).

It is easy to see that the minimal distance of the generalized Reed-Solomon code Cq(D, k) is
n−k+1, and its covering radius ρ is n−k. The most important algorithmic problem in coding
theory is the maximal likelihood decoding (MLD): given a word u ∈ F

n
q , find a codeword v ∈ C

such that d(u, v) = d(u, C). The decision version of this problem is essentially computing the
error distance d(u, C) for a received word u. This is well-known to be NP-complete.

Given a received word u ∈ F
n
q , if the error distance is small, say, d(u, C) ≤ n − √

nk, then
the list decoding algorithm of Sudan [11] and Guruswami-Sudan [5] provides a polynomial time
algorithm for the decoding of u. When the error distance increases, the decoding becomes more
complicated, in fact, NP-complete for generalized Reed-Solomon codes (see [7]).

For u = (u1, · · · , un) ∈ F
n
q , let

u(x) =
n∑

i=1

ui

∏
j �=i

(x − xj)∏
j �=i

(xi − xj)
∈ Fq[x],

that is, u(x) is the unique polynomial of degree at most n−1 such that u(xi) = ui for 1 ≤ i ≤ n.
For u ∈ F

n
q , we define deg u := deg u(x), called the degree of u. As mentioned above, the

fundamental decoding problem is to compute the error distance d(u, C) for received word u ∈ F
n
q .

It is clear that d(u, C) = 0 if and only if deg u ≤ k−1. Without loss of generality, we can assume
that k ≤ deg u ≤ n − 1.

Lemma 1.1 (see [8]) For k ≤ deg u ≤ n − 1, we have the inequality

n − deg u ≤ d(u, C) ≤ n − k = ρ.

In particular, the word u is called a deep hole if the above upper bound is an equality, i.e., if
d(u, C) = n − k. The word u is called ordinary if the above lower bound is an equality, i.e., if
d(u, C) = n − deg u.

By definition, we have the following result.

Lemma 1.2 (see [8]) Let u ∈ F
n
q be a word with deg u = k+d, where k+1 ≤ k+d ≤ n−1.

Then the error distance d(u, C) ≤ n − k − r (1 ≤ r ≤ d) if and only if there exists a subset
{x1, · · · , xk+r} ⊆ D and a monic polynomial w(x) ∈ Fq[x] of degree d − r such that

u(x) − v(x) = (x − x1) · · · (x − xk+r)w(x)

for some v(x) ∈ Fq[x] with deg v(x) ≤ k − 1.

From now on, we assume that C is the standard Reed-Solomon code Cq(Fq, k). For the
standard Reed-Solomon code C, the complexity of decoding is unknown and much more subtle.
It was shown in [2, 4] to be at least as hard as the discrete logarithm in a large extension Fqh ,
where h can be as large as

√
q. If deg u(x) = k, then u is a deep hole. Based on numerical

calculations, Cheng and Murray [1] conjectured that there are no other deep holes for standard
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Reed-Solomon codes. As a theoretical evidence, they proved that their conjecture is true if
d := deg u−k is small and q is sufficiently large compared to d+k. More precisely, they showed

Proposition 1.1 Let u ∈ F
q
q such that 1 ≤ d := deg u(x) − k ≤ q − k − 1. Assume that

q ≥ max(k7+ε, d
13
3 +ε)

for some constant ε > 0. Then d(u, C) < q − k, that is, u is not a deep hole.

For the words with small degree represented by a polynomial in Fq[x], Li and Wan [9]
applied the method of Cheng and Wan [2] to study the error distance d(u, C) for the standard
Reed-Solomon code. They proved the following two results.

Proposition 1.2 (see [9, Theorem 1.4]) Let u ∈ F
q
q be such that 1 ≤ d := deg u(x) − k ≤

q − k − 1. Assume that

q > max((k + 1)2, d2+ε), k >
(2

ε
+ 1

)
d +

8
ε

+ 2

for some constant ε > 0. Then d(u, C) < q − k, that is, u is not a deep hole.

More precisely, the error distance can be determined with a similar hypothesis.

Proposition 1.3 (see [9, Theorem 1.5]) Let u ∈ F
q
q be such that 1 ≤ d := deg u(x) − k ≤

q − k − 1. Assume that

q > max((k + 1)2, d2+ε), k >
(4

ε
+ 1

)
d +

4
ε

+ 2

for some constant ε > 0. Then d(u, C) = q − (k + d), that is, u is ordinary.

This result can be used to determine the error distance d(u, C) only for the received word
u ∈ F

q
q with small degree.

In this part, for the standard Reed-Solomon code C = Cq(Fq, k), we generalize the above
results. In fact, we prove the following result.

Theorem 1.1 Let r ≥ 1 be an integer. For any received word u ∈ F
q
q with u(x) as its

interpolation polynomial of degree m, if m ≥ k + r,

q > max
{

2
(

k + r
2

)
+ (m − k), (m − k)2+ε

}
and

k >
1

1 + ε

(
r + (2 + ε)

(m

2
+ 1

))
for some constant ε > 0, then we have d(u, C) ≤ q − k − r. So u is not a deep hole.

Taking h = 0 in the following proof and r = 1 or m−k in Theorem 1.1, we get Propositions
1.2 and 1.3 respectively.

Proof Let h(x) be a fixed monic polynomial in Fq[x] of degree 0 ≤ h ≤ min{m−k+1, k−1}
with no zero in Fq. Let h(x) = xm−k+1h( 1

x) ∈ Fq[x], A = (Fq[x]/(h(x)))∗ and Â denotes the
set of all characters of A. Then |Â| = Φ(h(x)) ≤ qdeg h(x) − 1 = qm−k+1 − 1, where Φ(h(x)) is
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the Euler function of the polynomial h(x), i.e., Φ(h(x)) is equal to the number of units in A.
Then B̂ = {χ ∈ Â | χ(F∗

q) = 1} is an abelian group of order ≤ qm−k.
For g(x) ∈ Fq[x], define

χ(g(x)) =

{
χ(g(x)(mod h(x))), if gcd(g(x), h(x)) = 1,

0, othserwise.

This defines a multiplicative function of the polynomial ring Fq[x]. By the Weil bound as given
in [14], if χ �= 1 and χ(F∗

q) = 1, we have∣∣∣ ∑
g(0)=1

deg g(x)=m−(k+r)

Λ(g(x))χ(g(x))
∣∣∣ ≤ (m − k)q

m−(k+r)
2 , (1.1)

where Λ(g(x)) is the Von-Mangoldt function on Fq[x], i.e., Λ(g(x)) is equal to deg P if g is a
power of an irreducible polynomial P and is otherwise equal to zero.

For a polynomial f(x) ∈ Fq[x] of degree at most k − 1 − deg h(x) (thus f(x) represents a
codeword), the sum

u(x)
h(x)

+ f(x) =
u(x) + f(x)h(x)

h(x)

has at most deg u(x) = m roots in Fq since

deg u(x) = m ≥ k + h − 1 ≥ deg f(x)h(x).

Then by Lemma 1.2, we know that

d(u, C) ≤ q − k − r

if there exists a subset {x1, · · · , xk+r} ⊆ Fq and a monic polynomial v(x) ∈ Fq[x] of degree
m − (k + r) such that v(0) �= 0 and

(x − x1) · · · (x − xk+r)v(x) = u(x) + f(x)h(x)

for some f(x) ∈ Fq[x], deg f(x) ≤ k − 1 − deg h(x). This is equivalent to the equation

(1 − xx1) · · · (1 − xxk+r)xm−(k+r)v
( 1

x

)
= xmu

(1
x

)
+ xmf

(1
x

)
h
( 1

x

)
.

If we denote ũ(x)=xmu
(

1
x

)
, h̃(x)=xhh

(
1
x

)
, f̃(x)=xk−1−deg h(x)f

(
1
x

)
, ṽ(x)=xm−(k+r)v

(
1
x

)
,

then

deg ũ(x)= deg u(x) = m, deg h̃(x)= deg h(x) = h,

deg ṽ(x)= m − (k + r), deg f̃(x)≤ k − 1 − deg h(x).

That is
(1 − xx1) · · · (1 − xxk+r)ṽ(x) = ũ(x) + xm−(k+h−1)f̃(x)h̃(x). (1.2)

By definition

h(x) = xm−k+1h
( 1

x

)
= xm−k−h+1h̃(x),
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we have
xm−(k+h−1)f̃(x)h̃(x) ≡ 0 (mod h(x)).

Thus the equation (1.2) is equivalent to the congruence

(1 − xx1) · · · (1 − xxk+r)ṽ(x) ≡ ũ(x) (mod h(x)). (1.3)

Since (u(x), h(x)) = 1 and h(x) has no zero, deg u(x) = m and ũ(0) �= 0, we know that
(h(x), ũ(x)) = 1. Thus (1.3) is equivalent to the congruence

(1 − xx1) · · · (1 − xxk+r)
ṽ(x)
ũ(x)

≡ 1 (mod h(x)).

The number of solutions of this congruence in xi’s is

Nu = �

⎧⎨⎩(x1, · · · , xk+r , ṽ(x))

∣∣∣∣∣ (1 − xx1) · · · (1 − xxk+r)
ṽ(x)
ũ(x)

≡ 1(mod h(x)), xi ∈ Fq,

distinct, 1 ≤ i ≤ k + r, ṽ(0) = 1, deg ṽ(x) = m − (k + r)

⎫⎬⎭ .

Denote

N =
1

|B̂|
∑

xi∈Fq,distinct
1≤i≤k+r

∑
ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=m−(k+r)

Λ(ṽ(x))
∑
χ∈B̂

χ
((1 − xx1) · · · (1 − xxk+r)ṽ(x)

ũ(x)

)
.

One can easily check that if N > 0, then Nu > 0. So, in order to show that Nu > 0, it is enough
to show that N > 0. Since the second summand of the above formula is always non-negative,
applying inclusion and exclusion principle, we deduce

N ≥ 1

|B̂|
{ ∑

xi∈Fq
1≤i≤k+r

∑
ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=m−(k+r)

Λ(ṽ(x))
∑
χ∈B̂

χ
((1 − xx1) · · · (1 − xxk+r)ṽ(x)

ũ(x)

)

−
∑

1≤i<j≤k+r

∑
xi=xj∈Fq

∑
ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=m−(k+r)

Λ(ṽ(x))
∑
χ∈B̂

χ
((1 − xx1) · · · (1 − xxk+r)ṽ(x)

ũ(x)

)}
.

Separating the trivial character, we obtain

N ≥ 1

|B̂|
{

qm −
(

k + r
2

)
qm−1

+
∑
χ∈B̂
χ �=1

∑
xi∈Fq

1≤i≤k+r

∑
ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=m−(k+r)

Λ(ṽ(x))χ
( (1 − xx1) · · · (1 − xxk+r)ṽ(x)

ũ(x)

)

−
∑
χ∈B̂
χ �=1

∑
1≤i<j≤k+r

∑
xi=xj∈Fq

∑
ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=m−(k+r)

Λ(ṽ(x))χ
( (1 − xx1) · · · (1 − xxk+r)ṽ(x)

ũ(x)

)}
.

If χ is non-trivial and χ(F∗
q) = 1, Weil’s estimate (see [14]) gives∣∣∣ ∑

xi∈Fq

χ(1 − xxi)
∣∣∣ =

∣∣∣1 +
∑
a∈Fq

χ(x − a)
∣∣∣ ≤ (m − k)q

1
2 .

Thus ∣∣∣ k+r∏
i=1

∑
xi∈Fq

χ(1 − xix)
∣∣∣ ≤ (m − k)k+rq

k+r
2 .
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If χ2 �= 1,∣∣∣ ∑
1≤i<j≤k+r

∑
xi=xj∈Fq

χ((1 − xx1) · · · (1 − xxk+r))
∣∣∣ ≤ (m − k)k+r−1q

k+r−1
2

(
k + r

2

)
.

If χ �= 1 but χ2 = 1,∣∣∣ ∑
1≤i<j≤k+r

∑
xi=xj∈Fq

χ((1 − xx1) · · · (1 − xxk+r))
∣∣∣ ≤ (m − k)k+r−2q

k+r
2

(
k + r

2

)
.

By (1.1), we know that for χ �= 1 and χ(F∗
q) = 1,∣∣∣ ∑

ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=m−(k+r)

Λ(ṽ(x))χ(ṽ(x))
∣∣∣ ≤ (m − k)q

m−(k+r)
2 .

Thus for χ �= 1 and χ(F∗
q) = 1,∣∣∣ ∑

xi∈Fq
1≤i≤k+r

∑
ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=m−(k+r)

Λ(ṽ(x))χ
( (1 − xx1) · · · (1 − xxk+r)ṽ(x)

ũ(x)

)

−
∑

1≤i<j≤k+r

∑
xi=xj∈Fq

∑
ṽ(x)∈Fq [x],ṽ(0)=1
deg ṽ(x)=m−(k+r)

Λ(ṽ(x))χ
( (1 − xx1) · · · (1 − xxk+r)ṽ(x)

ũ(x)

)∣∣∣
≤ (m − k)k+rq

m
2

((k + r
2

)
+ (m − k)

)
.

Since |B̂| ≤ qm−k, we have

N ≥ 1

|B̂|
((

q −
(k + r

2

))
qm−1 − qm−k(m − k)k+rq

m
2

((k + r
2

)
+ (m − k)

))
.

By our assumption, q > 2
(

k+r
2

)
+ (m − k). To prove N > 0, it suffices to show that

qm−1 > qm−k(m − k)k+rq
m
2 .

Now since q > (m−k)2+ε and k > 1
1+ε

(
r + (2 + ε)(m

2 + 1)
)

for some constant ε > 0, we deduce
that N > 0. Thus Nu > 0. The proof is completed.

2 A Formula for the Dimension of Trace Reed-Solomon Codes

One of the important parameters of an error-correcting code is the dimension. In most
cases, we only have bounds for the dimension (see [10, Chapter 7, 12]). It is interesting to try
to improve these bounds, or better, to determine the true dimension. This part is a contribution
to the solution of the dimension problem for generalized Reed-Solomon codes in some cases.

For 1 ≤ k ≤ n ≤ qm, and the generalized Reed-Solomon code Cqm [D, k], the following code
over Fq

Trqm [D, k] = {(Tr(f(x1)), · · · , Tr(f(xn))) ∈ F
n
q | f(x) ∈ Fqm [x], deg (f(x)) ≤ k − 1}

is called the trace Reed-Solomon code of Cqm [D, k], where Tr is the Trace map from Fqm to Fq.



Reed-Solomon Codes 95

By the general bound for the dimension of the trace code given in [6], we have the following
result.

Proposition 2.1 (Trivial Bound) (see [6, Lemma VIII. 1.3]) For 1 ≤ k ≤ n ≤ qm − 1, we
have

k ≤ dimFq (Trqm [D, k]) ≤ mk.

In 1991, Marcel van der Vluge [12, 13] improved the above upper bound for the dimension
of Reed-Solomon codes in some special cases. In this section, we obtain an explicit formula for
the dimension of trace Reed-Solomon codes in some cases.

Theorem 2.1 Let n − 1 be a positive divisor of qm − 1, D = {x1, · · · , xn−1} ∪ {0} and
{x1, · · · , xn−1} be the subgroup of order n − 1 of the multiplicative group F

∗
qm . Suppose that

S = {1, · · · , n − 1} ∪ {0} and q acts on S as follows:

q : S → S, 0 �→ 0, u �→ 〈qu〉, ∀u ∈ S \ {0},

where 〈qu〉 denotes the least nonnegative residue of qu modulo n − 1. For any u ∈ S, denote
the q-orbit of u by

Ωu = {u, 〈qu〉, · · · , 〈qhu−1u〉},
where hu ∈ Z

+ is the least positive integer such that qhu · u ≡ u (mod n − 1) and u is the
smallest integer of Ωu. Then

dimFq Trqm [D, k] = mk − (m − 1) ·
(
1 +

∑
u∈S/∼

u∈[1,k−1]

hu

)
,

where “ ∼ ” is the equivalence relation on S × S given by the q-action on S.

Proof For the generalized Reed-solomon code

Cqm [D, k] = {(f(x1), · · · , f(xn)) | f(x) ∈ Fqm [x], deg f(x) ≤ k − 1},

the trace code is defined to be

Trqm [D, k] = {(Tr(f(x1)), · · · , Tr(f(xn))) | f(x) ∈ Fqm [x], deg f(x) ≤ k − 1},

where Tr(α) is the trace map of α ∈ Fqm over Fq. Suppose that Kk is the kernel of the trace
map TR which is defined to be

TR : Fqm [x]≤k−1 → Trq[D, k],

f(x) �→ (Tr(f(x1)), · · · , Tr(f(xn))),

where Fqm [x]≤k−1 is the set of polynomials in Fqm [x] with degree ≤ k − 1. Then

dimFq Trqm [D, k] = dimFq Cqm [D, k] − dimFq Kk = mk − dimFq Kk. (2.1)

For any u ∈ S, set fu(x) = cxu − cqx〈qu〉 ∈ Fqm [x]. Then deg fu(x) ≤ qm − 1. Note that
qu ≡ 〈qu〉 (mod n − 1), thus ∀α ∈ D, α〈qu〉 = αqu. This means that

Tr(fu(α)) = Tr(cαu) − Tr(cqα〈qu〉) = Tr(cαu) − Tr(cqαqu) = 0.
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And so

{cxu − cqx〈qu〉 |u ∈ S, c ∈ Fqm} ∩ {f(x) ∈ Fqm [x] | deg f(x) ≤ k − 1} ⊆ Kk.

For a fixed i = 1, · · · , hu, set Ai = {cxu − cqi

x〈qiu〉 | c ∈ Fqm}. Take α ∈ Fq and f(x) =
cxu − cqi

x〈qiu〉 ∈ Ai, g(x) = dxu − dqi

x〈qiu〉 ∈ Ai. Then

f(x) − g(x) = (c − d)xu − (cqi − dqi

)x〈qiu〉 = (c − d)xu − (c − d)qi

x〈qiu〉 ∈ Ai

and
αf(x) = αcxu − αcqi

x〈qiu〉 = (αc)xu − (αc)qi

x〈qiu〉 ∈ Ai.

Hence, Ai is an Fq-vector space. Furthermore, for any f(x) ∈ Ai ∩ Aj , 1 ≤ i �= j ≤ hu, from

f(x) = cxu − cqi

x〈qiu〉 = dxu − dqj

x〈qju〉,

we can get g(x) = (c − d)xu − cqi

x〈qiu〉 + dqj

x〈qju〉 ≡ 0. While deg g(x) ≤ qm − 1, thus c = d

and cqi

= dqj

= 0 or cqi − dqj

= 0 according as 〈qiu〉 = 〈qju〉 or not. Fix a u ∈ {1, · · · , n − 1}
and 1 ≤ i �= j ≤ hu − 1. By the definition of hu, we have 〈qiu〉 �= 〈qju〉. This means that
f(x) ≡ 0, i.e., Ai ∩ Aj = {0}, 1 ≤ i �= j ≤ hu − 1. Therefore

Vu =
hu⊕
i=1

{cxu − cqi

x〈qiu〉 | c ∈ Fqm}

is an Fq-vector space of Fqm [x], and dimFq Vu =
hu−1∑
i=1

dimFq Ai + dimFq Ahu .

Now from
Ahu = {cxu − cqhu

x〈qhu u〉 = cxu − cqhu
xu | c ∈ Fqm}

and
Ai = {cxu − cqi

x〈qiu〉 | c ∈ Fqm}, ∀ i = 1, · · · , hu − 1,

we have
dimFq Ahu = m − hu, dimFq Ai = m, ∀ i = 1, · · · , hu − 1.

Namely,

dimFq Vu =
hu−1∑
i=1

m + (m − hu) = hu · m − hu.

And so
dimFq V =

∑
u∈S/∼

hu(m − 1) = n(m − 1),

where V =
⊕

u∈S/∼
Vu, “ ∼ ” is the equivalence relation on S × S given by the q-action on S.

Taking f(x) ∈ V and α ∈ D, we have Tr(f(α)) = 0, which means that V ⊆ KerT , where the
map T is defined to be

T : Fqm [x]≤n−1 → F
n
q ,

f(x) �→ (Tr(f(x1)), · · · , Tr(f(xn))).
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On the other hand, it is well-known that the trace map is surjective, hence dimFq KerT =
m · n − n = n(m − 1) = dimFq V , and then V = KerT . Therefore

Kk = KerT ∩ Fqm [x]≤k−1 = V ∩ Fqm [x]≤k−1

=
⊕

u∈S/∼
u∈[0,k−1]

hu⊕
i=1

〈qiu〉≤k−1

{cix
u − cqi

i x〈qiu〉 | ci ∈ Fqm}.

Thus
dimFq Kk = m − 1 + (m − 1) ·

∑
u∈S/∼

u∈[1,k−1]

hu.

Now from (2.1) we immediately have

dimFq Trqm [D, k] = mk − (m − 1) ·
(
1 +

∑
u∈S/∼

u∈[1,k−1]

hu

)
.

Corollary 2.1 With the assumptions as in Theorem 2.1, we have

mk − (m − 1) ·
(
1 +

∑
u∈[1,k−1]/∼

m
)

≤ dimFq Trqm [D, k] ≤ mk − (m − 1) ·
(
1 +

∑
u∈[1,k−1]/∼

1
)

< mk,

where ∼ is the equivalent relation given by the q-action on S.

Proof Since n − 1 is a positive divisor of qm − 1, qm ≡ 1 (mod n − 1). Note that
qu ≡ 〈qu〉 (mod n − 1) and Ωu = {u, 〈qu〉, · · · , 〈qhu−1u〉} is the q-orbit of u. Therefore hu|m,
and so

mk − (m − 1) ·
(
1 +

∑
u∈[1,k−1]/∼

m
)

≤ dimFq Trqm [D, k] ≤ mk − (m − 1) ·
(
1 +

∑
u∈[1,k−1]/∼

1
)

< mk,

Taking D = Fqm in Theorem 2.1, we get a formula for the dimension of the standard trace
Reed-Solomon code.

Corollary 2.2 Let S = {1, · · · , qm − 1}∪ {0}. Suppose that q acts on the set S as follows:

q : S → S

0 �→ 0,

u �→ 〈qu〉, ∀u ∈ S\{0},
where 〈qu〉 denotes the residue of qu modulo qm − 1. ∀u ∈ S, denote the q-orbit of u to be

Ωu = {u, 〈qu〉, · · · , 〈qhu−1u〉},
where hu = |Ωu| and u is the smallest integer in Ωu. Then

dimFq Trqm [Fqm , k] = mk − (m − 1) ·
(
1 +

∑
u∈S/∼

u∈[1,k−1]

hu

)
.
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And so

mk − (m − 1) ·
(
1 +

∑
u∈[1,k−1]/∼

m
)

≤ dimFq Trqm [Fqm , k] ≤ mk − (m − 1) ·
(
1 +

∑
u∈[1,k−1]/∼

1
)

< mk,

where ∼ is the equivalent relation given by the q-action on S.
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