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Abstract Propagation criteria and resiliency of vectorial Boolean functions are important
for cryptographic purpose (see [1–4, 7, 8, 10, 11, 16]). Kurosawa, Stoh [8] and Carlet [1]
gave a construction of Boolean functions satisfying PC(l) of order k from binary linear
or nonlinear codes. In this paper, the algebraic-geometric codes over GF(2m) are used to
modify the Carlet and Kurosawa-Satoh’s construction for giving vectorial resilient Boolean
functions satisfying PC(l) of order k criterion. This new construction is compared with
previously known results.
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1 Introduction

In cryptography, vectorial Boolean functions are used in many applications (see [2, 3]).
Propagation criterion of degree l and order k is one of the most general properties of Boolean
functions, which has to be satisfied for cryptographic purpose. It was introduced in Preneel et
al [11], which extends the property strictly avalanche criterion SAC in [16]. The weight of a
Boolean function f of n variables is the number of vectors in v ∈ GF(2)n such that f(v) = 1.
A Boolean function f of n variables is called balanced if wt(f) = 2n−1. For a Boolean function
f(x) = (x1, · · · , xn) of n variables, set Df

Dα = f(x)+f(x+α). f satisfies PC(l) if Df
Dα is a balanced

Boolean function for any α with 1 ≤ wt(α) ≤ l. When the function obtained from f by keeping
any k variables fixed satisfies PC(l), we say that f has the property PC(l) of order k. For a
vectorial Boolean function f = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)) it is called (n, m)−PC(l) of
order k if any nonzero linear combination of f1, · · · , fm satisfies PC(l) of order k. We say that f
satisfies SAC(k) if it has PC(1) of order k property. A Boolean function f of n variables is called
k-resilient if it is balanced and wt(f ′) = wt(f)

2k where f ′ is the n − k variable Boolean function
obtained from f by substituting constants for any k variables in f(x1, · · · , xn). A vectorial
Boolean function f = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)) is called k-resilient, if any nonzero
linear combination

∑
i

aifi is a k-resilient Boolean function. Resiliency of vectorial Boolean

functions are relevant to quantum key distribution and pseudo-random sequence generators for
stream ciphers (see [1–4, 17]).
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We recall the Maiorana-MacFarland construction of vectorial Boolean functions. Let φi :
GF(2)s → GF(2)r be vectorial Boolean functions for i = 1, · · · , m, the class of Maiorana-
MacFarland (r+s, m) Boolean functions is the set of the functions F (x, y) of the form F (x, y) =
(x · φ1(y) + h1(y), · · · , x · φm(y) + hm(y)) : GF(2)r+s → GF(2)m, (x, y) ∈ GF(2)r × GF(2)s,
where h1, · · · , hm are Boolean functions of s variables. It is well-known that F (x, y) is at
least t-resilient if a1φ1(y) + · · · + amφm(y), for any nonzero (a1, · · · , am) ∈ GF(2)m and any
y ∈ GF(2)s, has its Hamming weight at least t + 1 (see [1–3]).

In this paper, the functions φi’s in the Mairana-MacFarland construction are of the form
Aiy + vi, where Ai is a fixed r × s matrix over GF(2) and vi is a fixed vector in GF(2)r for
i = 1, · · · , m.

PC(n) Boolean functions of n variables are just the perfect nonlinear functions introduced
by Meier and Staffebach [10]. They exist only when n is even. Bent functions are the examples
of this kind of functions (see [10, 16]). People only have few constructions of PC(l) of order k
Boolean functions. In [1, 8], PC(l) of order k (vectorial) Boolean functions were constructed
from binary linear or nonlinear codes. For satisfying the conditions of the construction the
minimum distances of the binary codes and its dual have to be lower bounded. Some lower
bounds on the minimum length (which is the half of the variable number in the Kurosawa-Satoh
construction) of these binary linear codes were studied in [9].

From [1, 8], we know the following results.

Theorem 1.1 (Kurosawa-Satoh Theorem) (see [8]) Let C1 be a linear binary code of length
s and minimum distance d1 and dual distance d′1, C2 be a linear binary code of length t with
minimum distance d2 and dual distance d′2. Set l = min{d′1, d′2} − 1 and k = min{d1, d2} − 1.
Then the Boolean functions of s+ t variables satisfying PC(l) of order k can be explicitly given.

Corollary 1.1 (see [8, 9]) Let C be a linear binary code with length n, minimum distance
at least k+1 and dual distance at least l+1. Then Boolean functions of 2n variables satisfying
PC(l) of order k can be explicitly given.

Theorem 1.2 (Carlet Theorem) (see [1]) For a Boolean function f(x, y) = x · φ(y) + g(y)
from GF(2)r+s to GF(2), where φ and g are (vectorial) Boolean functions of the forms φ :
GF(2)s → GF(2)r and g : GF(2)s → GF(2), f satisfies PC(l) of order k if the following two
conditions are satisfied:

(1) the sum of at least 1 and at most l coordinates of φ is k-resilient;
(2) if b ∈ GF(2)s is nonzero and has its weight smaller than or equal to l, at least k + 1

coordinates of the words φ(y + b) and φ(y) differ.

Let us now recall some basic facts about AG-codes (algebraic-geometric codes, see [12–14]).
Let X be an absolutely irreducible, projective and smooth curve defined over GF(q) with genus
g, P = {P1, · · · , Pn} be a set of GF(q)-rational points of X , and G be a GF(q)-rational divisor
satisfying supp(G) ∩ P = ∅, 2g − 2 < deg(G) < n. Let L(G) = {f : (f) + G ≥ 0} be the
linear space (over GF(q)) of rational functions associated with the divisor G, and Ω(B) = {ω :
(ω) ≥ B} be the linear space of differentials associated with the divisor B. Then the functional
AG-code CL(P, G) ⊂ GF(q)n and residual AG-code CΩ(P, G) ⊂ GF(q)n can be defined (see
[12]). CL(D, G) is a linear [n, k = deg(G)−g+1, d ≥ n−deg(G)] code over GF(q) and CΩ(P, G)
is a linear [n, k = n− deg(G) + g − 1, d ≥ deg(G)− 2g + 2] code over GF(q). We know that the
functional code is just the evaluations of functions in L(G) at the points in P and the residual
code is just the residues of differentials in Ω(G − P ) at the points in P .

We also know that CL(P, G) and CΩ(P, G) are dual codes. It is known that for a differential
η that has poles at P1, · · ·Pn with residue 1 (there always exists such a η (see [12])), we have
CΩ(P, G) = CL(P, P − G + (η)), the function f corresponds to the differential fη. This means
that functional codes and residue codes are essentially the same. For many examples of AG
codes, we refer to [12–14].

From the theory of algebraic curves over finite fields, there exist algebraic curves {Xt}
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defined over GF(q2) with the property lim N(Xt)
g(Xt)

= q− 1 (Drinfeld-Vladut bound) (see [5, 13]),
where N(Xt) is the number of GF(q2) rational points on the curve Xt and g(Xt) is the genus
of the curve Xt. Actually for this family of curves N(Xt) ≥ (q − 1)qt + 1, g(Xt) = qt − 2q

t
2 + 1

for t even and g(Xt) = qt − q
t+1
2 − q

t−1
2 + 1 for t odd (see [5]).

For an AG-code over GF(2m), its expansion to some base B of GF(2m) over GF(2) will be
used in our construction. Let {e1, · · · , em} be a base of GF(2m) as a linear space over GF(2).
For an [n, k, d] linear code C ⊆ GF(2m)n, the expansion with respect to the base B is a binary
linear code B(C) ⊆ GF(2)mn consisting of all codewords B(x) = (B(x1), · · · , B(xn)), x =

(x1, · · · , xn) ∈ C. Here B(xi) is a length m binary vector (x1
i , · · · , xm

i ), where xi =
m∑

j=1

xj
iej ∈

GF(2m). It is easy to verify that the binary linear code B(C) is [mn, mk,≥ d] code. It is
well-known that there exists a self-dual base B for any finite field GF(2m) of characteristic 2.
The following result is useful in our construction.

Proposition 1.1 (see [6]) Let B be a self-dual base of GF(2m) over GF(2) and C be a
linear code over GF(2m). Then the dual code B(C)⊥ is just B(C⊥).

A divisor G on the curve X is called effective if the coefficients of all points in the sup-
port G are non-negative. We say G1 ≥ G2 if G1 − G2 is an effective divisor. This gives a
partial order relation on the set of all divisors. Let U1, · · · , Um be divisors on the curve X ,
set max{U1, · · · , Um} the smallest divisor U such that U − Ui is effective for all i = 1, · · · , m.
It is clear that the linear span of L(U1), · · · , L(Um) is in L(max{U1, · · · , Um}). The following
lemma is useful in our construction.

Lemma 1.1 (1) Let X be an absolutely irreducible, projective and smooth curve defined
over GF(q) with genus g, G = G′ − G′′ and H = H ′ − H ′′ be two GF(q) rational divisors on
X, where G′, G′′, H ′, H ′′ are nonzero effective divisors satisfying supp(G′)∩ supp(G′′) = ∅ and
supp(H ′) ∩ supp(H ′′) = ∅. Suppose supp(G) ∩ supp(H) = ∅. Then L(G) ∩ L(H) = 0.

(2) For any positive integer t and any set P of points on X, there exists a GF(q) rational
divisor G of degree t with the form G = G′ −G′′, where G′ and G′′ are GF(q) rational effective
divisors, such that supp(G) ∩ P = ∅.

Proof Let f be a function in L(G)∩L(H). Then f has no pole, since supp(G′)∩supp(H ′) =
∅. Thus f is a constant function. On the other hand, f has to be zero at G′′ and H ′′. Thus
f = 0. The first conclusion is proved.

The second conclusion follows from Weak Approximation Theorem directly (see [12]).

2 Main Results

The following Theorem 2.1 and Corollary 3.2 are the main results of this paper.

Theorem 2.1 Let X (resp. X ′) be a projective, absolutely irreducible smooth curve of genus
g (resp. g′) defined over GF(2w) (resp. GF(2w′

)), P (resp. P ′) be a set of n GF(2w) (resp. n′,
GF(2w′

)) rational points on X (resp. X ′), U1, · · · , Um (resp. U ′
1, · · · , U ′

m) be GF(2w) (resp.
GF(2w′

)) rational divisors on X (resp. X ′) satisfying 2g − 2 < deg(Ui) < n, for i = 1, · · · , m
and supp(max{U1, · · · , Um}) ∩ P = ∅ (resp. 2g′ − 2 < deg(max{U ′

i} < n′, for i = 1, · · · , m,
supp(max{U ′

1, · · · , U ′
m}) ∩ P ′ = ∅). Suppose that Ui and U ′

i (i = 1, · · · , m) are divisors of
the form T1 − T2 where T1 and T2 are nonzero effective rational divisors satisfying supp(T1) ∩
supp(T2) = ∅. We also assume w(deg(Ui)− g + 1) = w′(deg(U ′

i) − g′ + 1) for i = 1, · · · , m. H

is another GF(2w′
)-rational divisor on X ′ satisfying deg(H)+deg(max{U ′

1, · · · , U ′
m}) < n′ and

w′(deg(H)−g′+1) ≥ m. Suppose that H is of the form H1−H2 where H1 and H2 are effective
rational divisors. It is assumed that U1, · · · , Um and U ′

1, · · · , U ′
m, H are disjoint divisors (that

is, their supports are disjoint). Then we have (wn+w′n′, m) vectorial t-resilient PC(l) of order



102 H. Chen, L. Ma and J. H. Li

k Boolean functions with wn + w′n′ variables, where

l = min{deg(max{U1, · · · , Um}) − 2g + 1, deg(max{U ′
1, · · · , U ′

m}) − 2g′ + 1},
k = min{n − deg(max{U1, · · · , Um}) − 1, n′ − deg(max{U ′

1, · · · , U ′
m}) − 1},

t = n′ − deg(max{U ′
1, · · · , U ′

m, H}) − 1.

If the curves, the bases of the linear space L(Ui)’s and Ω(Ui)’s (resp. L(U ′
i)’s, L(H) and

Ω(U ′
i)’s) are explicitly given, the (wn + w′n′, m) vectorial t-resilient PC(l) of order k Boolean

functions can be explicitly given.

Proof We consider the linear codes Di
1 = CL(P, Ui), Di

2 = CL(P ′, U ′
i). Then (Di

1)
⊥ =

CΩ(P, Ui), (Di
2)⊥ = CΩ(P ′, U ′

i). Let B and B′ be the self dual bases of GF(2w) and GF(2w′

over GF(2). We use the linear binary codes Ci
1 = B(Di

1), Ci
2 = B′(Di

2). From Proposition 1.1,
we have (Ci

1)
⊥ = B(CΩ(P, Ui)), (Ci

2)
⊥ = B′(CΩ(P ′, U ′

i)). The code parameters of Ci
1 and Ci

2

are [wn, w(deg(Ui − g +1),≥ n−deg(Ui)] and [w′n′, m′(deg(U ′
i)− g′ +1),≥ n′−deg(U ′

i)]. The
code parameters of (Ci

1)⊥ and (Ci
2)⊥ are [wn, w(n − deg(Ui) + g − 1),≥ deg(Ui) − 2g + 2] and

[w′n′, w′(n′ − deg(U ′
i) + g′ − 1),≥ deg(U ′

i) − 2g′ + 2].
Let Qi and Ri be the generator matrices of the binary linear codes Ci

1 and Ci
2 respectively,

for i = 1, · · · , m. Here, we note that Qi’s (resp. Ri’s) are w(deg(Ui) − g + 1) × wn matrices
(resp. w′(deg(U ′

i) − g′ + 1) × w′n′ matrices). Since w′(deg(H) − g′ + 1) ≥ m, we can find
m linear independent vectors v1, · · · , vm in the binary linear code B(CL(H, P ′)). Set φi(y) =
(Ri)τQi(y) + vi, y ∈ GF(2)wn for i = 1, · · · , m. In Maiorana-MacFarland construction, we get
our (wn + w′n′, m) Boolean function f = (f1, · · · , fm). Here φi’s are mappings from GF(2)wn

to GF(2)w′n′
. The image of φi is the coset vi + Ci

2 for i = 1, · · · , m.
For any nonzero linear combination a1f1 + · · · + amfm, we set φ(y) =

∑
i

aiφi(y) +
∑
i

aivi.

Then it is clear that
∑
i

aiφi(y) is in the binary linear code B′(CL(P ′, max{U ′
1, · · · , U ′

m})) and
∑
i

aivi is in the binary linear code B′(CL(P ′, H)). Because max{U ′
1, · · · , U ′

m} and H are dis-

joint,
∑
i

aiφi(y)+
∑
i

aivi is not zero from Lemma 1.1. On the other hand, this is a nonzero code

word in B′(CL(P ′, max{U ′
1, · · · , U ′

m, H})), its weight is at least n′−deg(max{U ′
1, · · · , U ′

m, H}).
Hence f is t-resilient.

From the above argument, it is also known that φ(y) =
∑
i

aiφi(y) +
∑
i

aivi is in the coset

of the binary linear code B′(CL(P ′, max{U ′
1, · · · , U ′

m})), for any y ∈ GF(2)wn. Thus the sum
of arbitrary j (where, 1 ≤ j ≤ l) coordinates γ · φ(y) (here γ ∈ GF(2)w′n′

, 1 ≤ wt(γ) ≤ l)
of this function φ(y) is a nonzero function, since l is less than the Hamming distance of the
code B′(CΩ(P ′, max{U ′

1, · · · , U ′
m})) = (B′(CL(P ′, max{U ′

1, · · · , U ′
m})))⊥. On the other hand,

γ · φ(y) is of the form u · y + 1 or u · y
(
depending on γ ·

( ∑
i

aivi

)
= 1 or 0

)
, where u is a

nonzero codeword in B(CL(P, max{U1, · · · , Um})) with weight at least k + 1. Thus γ · φ(y) is
a k-resilient function. The 1st condition of the Carlet Theorem is satisfied.

For any b ∈ GF(2)wn, φ(y + b) + φ(y) =
∑
i

ai(Ri)τQib. If b has its weight smaller than or

equal to l, it is not in B(CΩ(P, max{U1, · · · , Um})), thus Qib can not be zero for all i = 1, · · · , m.
Thus at least one (Ri)τQib is not zero. From the conditions on U ′

1, · · · , U ′
m and Lemma 1.1, we

know that
∑
i

ai(Ri)τQib is a nonzero codeword in B(CL(P ′, max{U ′
1, · · · , U ′

m})). Thus φ(b) has

its weight at least k + 1. The 2nd condition of the Carlet Theorem is satisfied. The conclusion
is proved.

It is well-known that in the theory of algebraic curves over finite fields, there are many curves
over GF(2w) (see [12–14]) with various numbers of rational points and genuses. Thus when we
use Theorem 2.1 for constructing vectorial t-resilient PC(l) of order k functions, we have very
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flexible choices of parameters l, k, wn + w′n′. This is quite similar to the role of algebraic
curves in the theory of error-correcting codes. Therefore the algebraic-geometric method offer
us numerous vectorial t-resilient PC(l) of order k functions. Moreover, the supports of the
divisors U1, · · · , Um, U ′

1, · · · , U ′
m, H need not to be the GF(2w) (or GF(2w′

)) rational points
from Lemma 1.1. It is sufficient that the divisors are GF(2w) (or GF(2w′

) rational. Thus we
can easily choose the sets P and P ′ of points and the divisors to construct vectorial resilient
PC(l) of order k Boolean functions.

3 Constructions

In this section, some examples of vectorial t-resilient PC(l) of order k Boolean functions are
constructed from Theorem 2.1. Comparing our constructions with the previously known PC(l)
of order k functions in [1, 8], it seems that our constructed vectorial t-resilient PC(l) of order
k functions are quite good.

When X = X ′ is the genus g curve which is defined over GF(2w), deg(Ui) = deg(U ′
i) = t

(i = 1, · · · , m) are m divisors with disjoint supports which are rational over GF(2w) and
satisfying the conditions in Theorem 2.1. From Lemma 1.1 we can find such divisors. In the
following example, P = P ′ are n GF(2w) points of X . So the only restriction is the upper
bound of n ≤ N(X), the number of GF(2w)-rational points of X . Set H another degree t′

divisor which is GF(2w)-rational divisor satisfying 2g− 2 < deg(H) < n, w(t′ − g +1) ≥ m and
the conditions in Theorem 2.1 (from Lemma 1.1). Moreover it is assumed that its support is
the set of GF(22w)-rational points and disjoint to the supports of U1, · · · , Um from Lemma 1.1.
In this construction, we have (2wn, m) vectorial (n − mt − t′ − 1)-resilient Boolean functions
satisfying PC(mt − 2g + 1) of order n − mt − 1.

Example 3.1 We use the genus 0 curve over GF(4) in the construction. Then (20, 2)
vectorial PC(5) function is constructed if we take m = 2, t = 2, n = 5.

Example 3.2 We use the genus 1 curve over GF(4) in the construction. Then n ≤ 9 (see [12,
14]). We have (4n, m) vectorial (n−mt−t′−1)-resilient PC(mt−1) of order n−mt−1 Boolean
functions, where 2t′ ≥ m. Thus (36, 4) vectorial PC(7) Boolean functions are constructed,
(36, 3) vectorial PC(5) of order 1 Boolean functions are constructed, (24, 2) vectorial PC(3) of
order 1 Boolean functions are constructed.

When m = 1, t = 2 we have (n − 5)-resilient SAC(n − 3) functions of 4n variables for
n = 5, 6, 7, 8, 9.

Example 3.3 We use the genus 4 curve over GF(4) in the construction. Then n ≤ 15 (see
[14]). Suppose t > 6, t′ > 6, then (4n, m) vectorial (n − mt − t′ − 1)-resilient PC(mt − 7) of
order n−mt− 1 Boolean functions are constructed, where 2(t′ − 3) ≥ m. Thus we have (60, 2)
vectorial PC(7) Boolean functions.

Example 3.4 We use the Klein quartic X , an algebraic curve over GF(8) of genus 3, then
n ≤ 24. Suppose t > 4, t′ > 4, from the construction (6n, m) vectorial (n−mt− t′− 1)-resilient
PC(mt − 5) of order n− mt − 1, Boolean functions are constructed for n = 7, 8, · · · , 24, where
3(t′ − 2) ≥ m. Thus we have (96, 3) vectorial PC(10) Boolean functions. When n = 16, · · · , 24,
we have (6n, 3) vectorial (n − 21)-resilient PC(10) of order n − 16 Boolean functions.

Corollary 3.1 Let X be an algebraic curve over GF(2w) with genus g and n GF(2w)
rational points, and there are at least 2g GF(22w)-rational points on X. Then we have (2wn, g)
vectorial (n − 
 7g

2 � − 1)-resilient SAC(n − 2g − 1) Boolean functions.

Applying Theorem 2.1 to Garcia-Stichtenoth curves [5] over GF(22w), we have the following
result.

Corollary 3.2 For positive integers w ≥ 2 and h ≥ 1, we have (4wn, m) vectorial Boolean
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functions satisfying PC(mt−22wh+1+1) of order (n−mt−1) for m and n satisfying 22wh+1+1 ≤
n ≤ (2w − 1)22wh and m ≤ n.

Comparing with the constructions in [1, 8], we can see that our method based on AG-codes
offers more flexibilities for the parameters wn + w′n′, m, t, k and l. The main result is more
suitable for constructing vectorial resilient Boolean functions satisfying propagation criteria,
because there are many GF(2w)-rational divisors on the algebraic curves.

4 Conclusion

In this paper, we present a method based on AG-codes for constructing (n, m) vectorial
t-resilient Boolean functions satisfying PC(l) of order k functions. The parameters n, m, t, k
and l in our constructions can be chosen quite flexibly. Many such functions of less than 100
variables have been given in our examples. The constructed Boolean functions in our paper can
be given explicitly and simply implemented.

Acknowledgement The authors are grateful to the anonymous referees for their helpful
comments.
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