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Abstract The authors study the compressible limit of the nonlinear Schrödinger equa-
tion with different-degree small parameter nonlinearities in small time for initial data with
Sobolev regularity before the formation of singularities in the limit system. On the one
hand, the existence and uniqueness of the classical solution are proved for the dispersive
perturbation of the quasi-linear symmetric system corresponding to the initial value prob-
lem of the above nonlinear Schrödinger equation. On the other hand, in the limit system,
it is shown that the density converges to the solution of the compressible Euler equation
and the validity of the WKB expansion is justified.
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1 Introduction

In this paper, we study the compressible limit of the Cauchy problem with rapidly oscillat-
ing initial data for the nonlinear Schrödinger equation with different-degree small parameter
nonlinearities:

iε∂tψ
ε +

ε2

2
Δxψ

ε + aε2ψε|ψε|2 = f(|ψε|2)ψε, t ∈ R
+, x ∈ R

m, (1.1)

ψε(0, x) = ψε
0(x) = Aε

0(x) exp
( i
ε
S0(x)

)
, (1.2)

where ψε denotes the condensate wave function in the quantum mechanics, ε denotes the Planck
constant, i is the imaginary unit, Δx denotes the Laplace operator, a ∈ R, f ∈ C∞(R+,R),
S0(x) is a function of Hs(Rm) for s large enough, and Aε

0(x) is a function, polynomial in ε, with
coefficients of Sobolev regularity in x. The study of compressible limit is realized by studying
the behaviour of solutions to the Cauchy problem (1.1)–(1.2) as ε→ 0, x ∈ R

m and 0 ≤ t ≤ T,

i.e., within an arbitrary finite time T .
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When a = 0, equation (1.1) reduces to the classical nonlinear Schrödinger equation

iε∂tψ
ε +

ε2

2
Δxψ

ε = f(|ψε|2)ψε, t ∈ R
+, x ∈ R

m. (1.3)

For equation (1.3), the compressible limit for initial data with Sobolev regularity in short time
was obtained by Grenier [1, 2]. Especially, for one space dimension and f(ρ) = ρ, Jin, Levermore
and Mc Laughlin [3] used the integrability of the cubic nonlinear Schrödinger equation to
establish the compressible limit of the one-dimensional defocusing cubic nonlinear Schrödinger
equation. In addition, with particular assumptions on m and f , Ginibre and Velo [4] proved
that equation (1.3) without small parameter ε has global smooth solutions.

Since (1.1) has different-order small parameter nonlinearities which causes that the singu-
lar perturbation can also create energy, we must make some energy estimates for this term
since it does not vanish in the energy estimates. According to Schrödinger’s original idea on
reformulation of the quantum mechanics in terms of the pair time reflection invariant diffusion
equations (see [5]), the Schrödinger type equations can represent as a dispersive perturbation
of a symmetric quasilinear hyperbolic system (see [1, 2, 6]).

Like the usual WKB method, we introduce the complex-valued wave function

ψε(t, x) = Aε(t, x) exp
( i
ε
S(t, x)

)
. (1.4)

Here, Aε and S are real-valued functions, Aε is called the amplitude and S the classical action
(phase). The motivation of this transformation comes from the semiclassical limit of the non-
linear Schrödinger equation where a short wave limit is considered. Plugging (1.4) into (1.1),
we obtain

− iε∂tA
ε +Aε∂tS − ε2

2
�xA

ε − iε∇xS∇xA
ε − iε

2
Aε�xS

+
1
2
Aε|∇xS|2 − aε2|Aε|2Aε + f(|Aε|2)Aε = 0. (1.5)

Taking real part and imaginary part in (1.5), respectively, we obtain

∂tA
ε + ∇xS∇xA

ε +
1
2
Aε�xS = 0, (1.6)

∂tS +
1
2
|∇xS|2 + f(|Aε|2) = aε2|Aε|2 +

ε2

2
�xA

ε

Aε
. (1.7)

Let

ρ = |Aε|2 = |ψε|2, u = ∇xS. (1.8)

Then multiplying (1.6) by 2Aε and differentiating (1.7) with respect to the space variable x, we
have

∂tρ+ ∇x · (ρu) = 0, (1.9)

∂tu+ ∇x

( |u|2
2

+ f(ρ)
)

= aε2∇xρ+
ε2

2
∇x

(�x
√
ρ√

ρ

)
. (1.10)

System (1.9)–(1.10) is a perturbation of the Euler equations of compressible isentropic fluid
mechanics

∂tρ+ ∇x · (ρu) = 0, (1.11)

∂tu+ ∇x

( |u|2
2

+ f(ρ)
)

= 0. (1.12)
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For system (1.11)–(1.12), Majda [7] proved that if f ′ > 0, the system has smooth solutions on
a time interval [0, T ] for initial data with Sobolev regularity. The case of initial data Aε

0 and
S0 with analytic regularity, Gérard [8] proved the existence of smooth solutions ψε of (1.3) on
a time interval [0, T ] independent of ε, and justified the WKB expansion on the same interval
of time T being linked to the existence time of smooth solution to (1.11)–(1.12). System (1.9)–
(1.10) comprise a closed system governing ρ and u which has the form of a perturbation of the
modified Euler equations. Therefore, we can conclude as follows.

Proposition 1.1. Equation (1.1) is equivalent to the dispersive perturbation of the hyper-
bolic system (1.9)–(1.10). The density ρ is the conservative quantities of the equation (1.1), that
is, ∫

Rm

ρdx = C =
∫

Rm

|ψε|2dx =
∫

Rm

|Aε|2dx.

This paper proceeds as follows. In Section 2, the local existence and uniqueness of the
smooth solutions of equation (1.1) are obtained by employing the classical quasilinear hyperbolic
system theory. Section 3 is devoted to studying the semiclassical limit of equation (1.1) with ε
small enough. In Section 4, the validity of the WKB expansion for equation (1.1) is justified in
detail.

2 Existence of Smooth Solutions to the Nonlinear
Schrödinger Equation

In order to study the semiclassical limit of equation (1.1), we must show the existence of the
smooth solutions ψε to (1.1) on a finite time interval [0, T ] independent of ε, for initial data Aε

0

and S0 with Sobolev regularity. According to the idea of Grenier [1, 2] and Schochet-Weinstein
[6], we transform equation (1.1) into a dispersive perturbation of a symmetric hyperbolic system.
As suggested by Grenier [1, 2], instead of looking as usual at solutions ψε of the form

ψε(t, x) = Aε(t, x) exp
( i
ε
S(t, x)

)
,

where S is independent of ε, we allow S to depend on ε in order to get better equations for Aε

and Sε. We search for solutions ψε of the form

ψε(t, x) = Aε(t, x) exp
( i
ε
Sε(t, x)

)
, (2.1)

where complex-valued function Aε = Aε
1 + iAε

2 (Aε
1, A

ε
2 ∈ R) represents the amplitude and

real-valued function Sε represents the phase.
Putting (2.1) into equation (1.1), we obtain

− iε∂tA
ε +Aε∂tS

ε − ε2

2
�xA

ε − iε∇xS
ε∇xA

ε − iε
2
Aε�xS

ε

+
1
2
Aε|∇xS

ε|2 − aε2|Aε|2Aε + f(|Aε|2)Aε = 0,

which can be split into

∂tA
ε + ∇xS

ε∇xA
ε +

1
2
Aε�xS

ε = iaε|Aε|2Aε +
iε
2
�xA

ε,

∂tS
ε +

1
2
|∇xS

ε|2 + f(|Aε|2) = 0.
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Let wε = ∇xS
ε. Then one has

∂tA
ε + (wε · ∇x)Aε +

1
2
Aε∇x · wε = iaε|Aε|2Aε +

iε
2
�xA

ε, (2.2)

∂tw
ε + (wε · ∇x)wε + f ′(|Aε|2)∇x|Aε|2 = 0. (2.3)

Using the fact that Aε = Aε
1 + iAε

2, taking real part and imaginary part in (2.2), respectively,
we have the equivalent form of (2.2)–(2.3)

∂tA
ε
1 +

m∑
j=1

wε
j∂jA

ε
1 +

1
2
Aε

1

m∑
j=1

∂jw
ε
j = − ε

2
�xA

ε
2 − aε(|Aε

1|2 + |Aε
2|2)Aε

2, (2.4)

∂tA
ε
2 +

m∑
j=1

wε
j∂jA

ε
2 +

1
2
Aε

2

m∑
j=1

∂jw
ε
j =

ε

2
�xA

ε
1 + aε(|Aε

1|2 + |Aε
2|2)Aε

1, (2.5)

∂tw
ε
i + f ′(|Aε

1|2 + |Aε
2|2)(2Aε

1∂iA
ε
1 + 2Aε

2∂iA
ε
2) +

m∑
j=1

wε
j∂jw

ε
i = 0 (2.6)

with initial data

Aε
1(0, x) = Aε

10(x), Aε
2(0, x) = Aε

20(x), wε(0, x) = wε
0(x) (2.7)

satisfying

|Aε
10(x)|2 + |Aε

20(x)|2 = |Aε
0(x)|2, wε

0(x) = ∇xS
ε
0(x), (2.8)

where i = 1, 2, · · · ,m, wε
i is the ith component of wε and ∂i = ∂

∂xi
. The Cauchy problem

(2.4)–(2.7) can be written in the form

∂tU
ε +

m∑
i=1

Bi(U ε)∂iU
ε = εL(U ε) + aεN(U ε), (2.9)

U ε = (Aε
1, A

ε
2, w

ε
1, · · ·, wε

m)T ,

U ε
0 = U ε(0, x) = (Aε

10, A
ε
20, w

ε
10, · · ·, wε

m0)
T
,

(2.10)

where

B(U ε, η) =
m∑

j=1

ηjB
j(U ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
i=1

ηiw
ε
i 0 η1Aε

1
2

η2Aε
1

2 · · ·

0
m∑

i=1

ηiw
ε
i

η1Aε
2

2
η2Aε

2
2 · · ·

2η1Aε
1f

′ 2η1Aε
2f

′ m∑
i=1

ηiw
ε
i 0 · · ·

2η2Aε
1f

′ 2η2Aε
2f

′ 0
m∑

i=1

ηiw
ε
i · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

εL(U ε) + aεN(U ε) = ε

⎛
⎜⎜⎜⎝

0 − 1
2�x 0 · · ·

1
2�x 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Aε
1

Aε
2

wε
1
...
wε

m

⎞
⎟⎟⎟⎟⎟⎠
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+ aε

⎛
⎜⎜⎜⎝

0 −(|Aε
1|2 + |Aε

2|2) 0 · · ·
(|Aε

1|2 + |Aε
2|2) 0 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Aε
1

Aε
2

wε
1
...
wε

m

⎞
⎟⎟⎟⎟⎟⎠

=
ε

2

⎛
⎜⎜⎜⎜⎜⎝

−�xA
ε
2

�xA
ε
1

0
...
0

⎞
⎟⎟⎟⎟⎟⎠ + aε

⎛
⎜⎜⎜⎜⎜⎝

− (|Aε
1|2 + |Aε

2|2
)
Aε

2(|Aε
1|2 + |Aε

2|2
)
Aε

1

0
...
0

⎞
⎟⎟⎟⎟⎟⎠ .

The matrix B(U ε, η) can be symmetrized by

S(U ε) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1

4f ′ · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
4f ′

⎞
⎟⎟⎟⎟⎟⎠ ,

which is symmetric and positive since f ′ > 0. Thus we write (1.1) as a dispersive perturbation
of a quasilinear symmetric hyperbolic system

S(U ε)∂tU
ε + S(U ε)

m∑
i=1

Bi(U ε)∂iU
ε = εL∗(U ε) + aεN∗(U ε), (2.11)

where L∗(U ε) = S(U ε)L(U ε), N∗(U ε) = S(U ε)N(U ε). The importance of symmetry is that
it leads to simple L2 and more generally Hs estimates which are often related to physical
quantities like energy or entropy. The antisymmetric operator L∗ = SL reflects the dispersive
nature of the equations. In the following, we prove the local existence in time of (2.9) by using
the iteration scheme.

Define

U ε(0, x) = (Aε
1(0, x), A

ε
2(0, x), w

ε
1(0, x), · · · , wε

m(0, x))

= U ε
0(x) = (Aε

10(x), A
ε
20(x), w

ε
10(x), · · · , wε

m0(x)),

where U ε
0(x) denotes the initial data and define U ε

p+1(t, x) inductively as the solution of the
linear equation (p = 0, 1, 2, 3, · · · ).

S(U ε
p)∂tU

ε
p+1 + S(U ε

p)
m∑

i=1

Bi(U ε
p)∂iU

ε
p+1 = εL∗(U ε

p+1) + aεN∗(U ε
p+1),

U ε
p+1(0, x) = U ε

0(x).

(2.12)

For further reference, we ignore the subscripts p and consider U ε ∈ C∞, V ε ∈ C∞ satisfying

S(V ε)∂tU
ε + S(V ε)

m∑
i=1

Bi(V ε)∂iU
ε = εL∗(U ε) + aεN∗(U ε),

U ε(0, x) = U ε
0(x).

(2.13)



110 Z. H. Gan and B. L. Guo

For a certain T , let the function U ε(t, x) be a solution to (2.13) of class C2([0, T ] × Ω)
which is of compact support in x for each t ∈ [0, T ]. The canonical energy associated with
the dispersive perturbation of the symmetric hyperbolic system (2.13) is defined by the scalar
product

‖U ε(t)‖2
E =

∫
Rm

〈S∂α
xU

ε, ∂α
xU

ε〉dx, (2.14)

where α is a multi-index of length |α| ≤ s and α = 0, 1, · · · , s. By (2.11), using the symmetry
of S and integrating by parts, we obtain

d
dt

‖U ε(t)‖2
E =

d
dt

∫
Rm

〈S∂α
xU

ε, ∂α
xU

ε〉dx

=
∫

Rm

〈∂tS∂
α
xU

ε, ∂α
xU

ε〉dx + 2
∫

Rm

〈S∂t∂
α
xU

ε, ∂α
xU

ε〉dx

=
∫

Rm

〈∂tS∂
α
xU

ε, ∂α
xU

ε〉dx + 2ε
∫

Rm

〈S∂α
xL(U ε), ∂α

xU
ε〉dx

+ 2aε
∫

Rm

〈S∂α
xN(U ε), ∂α

xU
ε〉dx

− 2
∫

Rm

〈
S∂α

x

( m∑
i=1

Bi(U ε)∂iU
ε
)
, ∂α

xU
ε
〉
dx. (2.15)

Unlike the usual singular perturbation which does not create energy by the choice of S, the
singular perturbation N∗ = SN can create energy except the case |α| = 0 in which N∗ = SN

does not produce energy.
The first term in (2.15) can be bounded by

∫
Rm

〈∂tS∂
α
xU

ε, ∂α
xU

ε〉dx ≤ |∂tS|L∞‖∂α
xU

ε‖2
L2 .

From Sobolev injections and equation (2.9), it follows that

|∂tS|L∞ ≤ C
∣∣∣ f ′′

f ′2 (Aε
1∂tA

ε
1 +Aε

2∂tA
ε
2)

∣∣∣
L∞

≤ C(|U ε|L∞)|∂tU
ε|L∞

≤ C(|U ε|L∞)
(
|εL(U ε)|L∞ + |aεN(U ε)|L∞ +

∣∣∣ m∑
i=1

Bi(U ε)∂iU
ε
∣∣∣
L∞

)
≤ C(‖U ε‖Hs)‖U ε‖Hs ,

where s > m
2 + 2 and

‖U ε‖2
Hs =

∑
|α|≤s

‖∂α
xU

ε‖2
L2.

Thus

∑
|α|≤s

∫
Rm

〈∂tS∂
α
xU

ε, ∂α
xU

ε〉dx ≤ C(‖U ε‖Hs)‖U ε‖2
Hs . (2.16)
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The second term and the third term in (2.15) can be bounded by

2ε
∫

Rm

〈S∂α
xL(U ε), ∂α

xU
ε〉dx

= 2ε
∫

Rm

〈SL(∂α
xU

ε), ∂α
xU

ε〉dx

= ε

∫
Rm

(−∂α
x (�xA

ε
2) · ∂α

xA
ε
1 + ∂α

x (�xA
ε
1) · ∂α

xA
ε
2)dx

= 0, (2.17)

2aε
∫

Rm

〈S∂α
xN(U ε), ∂α

xU
ε〉dx

= 2aε
∫

Rm

{−∂α
x [(|Aε

1|2 + |Aε
2|2)Aε

2] · ∂α
xA

ε
1 + ∂α

x [(|Aε
1|2 + |Aε

2|2)Aε
1] · ∂α

xA
ε
2}dx

=

⎧⎨
⎩

0, |α| = 0,

2ε
∫

Rm

{−∂α
x [(|Aε

1|2 + |Aε
2|2)Aε

2] · ∂α
xA

ε
1 + ∂α

x [(|Aε
1|2 + |Aε

2|2)Aε
1] · ∂α

xA
ε
2}dx, 0 < |α| ≤ s

≤ C(‖∂α
x ((|Aε

1|2 + |Aε
2|2)Aε

2)‖L2 · ‖∂α
xA

ε
1‖L2 + ‖∂α

x ((|Aε
1|2 + |Aε

2|2)Aε
1)‖L2 · ‖∂α

xA
ε
2‖L2)

≤ C‖∂α
x (|Aε

1|2 + |Aε
2|2)‖L2 · ‖∂α

xA
ε
1‖L2 · ‖∂α

xA
ε
2‖L2 .

Thus ∑
|α|≤s

∫
Rm

〈S∂α
xN(U ε), ∂α

xU
ε〉dx ≤ C(‖U ε‖Hs)‖U ε‖2

Hs . (2.18)

The fourth term in (2.15) can be bounded by

− 2
∫

Rm

〈
S∂α

x

( m∑
i=1

Bi(U ε)∂iU
ε
)
, ∂α

xU
ε
〉
dx

= −2
∫

Rm

〈
S

m∑
i=1

Bi(U ε)∂i(∂α
xU

ε), ∂α
xU

ε
〉
dx

= −2
∫

Rm

〈
S

[
∂α

x

( m∑
i=1

Bi(U ε)∂iU
ε
)
−

m∑
i=1

Bi(U ε)∂i(∂α
xU

ε)
]
, ∂α

xU
ε
〉
dx. (2.19)

Since SBi(U ε) is a symmetric matrix, we get by integration by parts

− 2
∫

Rm

〈
S

m∑
i=1

Bi(U ε)∂i(∂α
xU

ε), ∂α
xU

ε
〉
dx− 2

m∑
i=1

∫
Rm

〈SBi(U ε)∂i(∂α
xU

ε), ∂α
xU

ε〉dx

= 2
m∑

i=1

∫
Rm

〈∂i(SBi(U ε))∂α
xU

ε, ∂α
xU

ε〉dx+ 2
m∑

i=1

∫
Rm

〈SBi(U ε)∂i(∂α
xU

ε), ∂α
xU

ε〉dx.

So

−2
∫

Rm

〈
S

m∑
i=1

Bi(U ε)∂i(∂α
xU

ε), ∂α
xU

ε
〉
dx =

m∑
i=1

∫
Rm

〈∂i(SBi(U ε))∂α
xU

ε, ∂α
xU

ε〉dx

≤ C
∣∣∣ m∑

i=1

∂i(SBi(U ε))
∣∣∣
L∞

· ‖∂α
xU

ε‖2
L2

≤ C(|U ε|L∞) · |∇xU
ε|L∞ · ‖∂α

xU
ε‖2

L2 .
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Thus from the Sobolev embedding and s > m
2 + 2, we get

∑
|α|≤s

(
− 2

∫
Rm

〈
S

m∑
i=1

Bi(U ε)∂i(∂α
xU

ε), ∂α
xU

ε
〉
dx

)
≤ C(‖U ε‖Hs)‖U ε‖2

Hs . (2.20)

For the second term in (2.19), using the symmetry of SBi(U ε) and the usual estimates on
commutators, we obtain

− 2
∫

Rm

〈
S

[
∂α

x

( m∑
i=1

Bi(U ε)∂iU
ε
)
−

m∑
i=1

Bi(U ε)∂i(∂α
xU

ε)
]
, ∂α

xU
ε
〉
dx

= −2
∫

Rm

〈
S

m∑
i=1

(∂α
x (Bi(U ε)∂iU

ε) −Bi(U ε)∂α
x ∂iU

ε), ∂α
xU

ε
〉
dx

= −2
∫

Rm

〈
S

m∑
i=1

[∂α
x , B

i(U ε)]∂iU
ε, ∂α

xU
ε
〉
dx

≤ C(|∂α
xU

ε|L∞) · |∇xU
ε|L∞ · ‖∂α

xU
ε‖2

L2 ,

thus

∑
|α|≤s

(
− 2

∫
Rm

〈
S

[
∂α

x

( m∑
i=1

Bi(U ε)∂iU
ε
)
−

m∑
i=1

Bi(U ε)∂i(∂α
xU

ε)
]
, ∂α

xU
ε
〉
dx

)

≤ C‖U ε‖Hs)‖U ε‖2
Hs . (2.21)

So from (2.15)–(2.21), we get for s > m
2 + 2,

d
dt

∑
|α|≤s

∫
Rm

〈S∂α
xU

ε, ∂α
xU

ε〉dx ≤ C(‖U ε‖Hs)‖U ε‖2
Hs . (2.22)

This energy estimate is independent of ε. According to Gronwall Lemma along with a continuity
argument and (2.22), we get

‖U ε‖2
Hs ≤ C(T )‖U ε

0‖2
Hs .

Thus we obtain

‖U ε
p‖2

Hs ≤ C (2.23)

as soon as U ε
0 ∈ Hs. It implies the convergence of the iteration {U ε

p}∞p=1 to a unique classical
solution of system (2.9) or (2.11). It follows from (2.11) and (2.23) that

‖∂tA
ε
1‖Hs−2 ≤ C, ‖∂tA

ε
2‖Hs−2 ≤ C, ‖∂tw

ε
i‖Hs−1 ≤ C.

From the Sobolev embedding Hs−1 ↪→ Hs−2, we get

‖U ε
p‖Hs−2 ≤ C. (2.24)

This ensures that for any fixed ε, we can construct a sequence {U ε
p}∞p=0 belonging to C([0, T ];Hs)

∩C1([0, T ];Hs−2) satisfying (2.12) as well as the uniform estimates

max
0≤t≤T

(‖∂tU
ε
p(t)‖Hs−2 + ‖U ε

p(t)‖Hs) ≤ C,
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where the constant C is independent of t. It follows by Ascoli-Arzelà Theorem (see [9]) that
there exists

U ε ∈ L∞([0, T ];Hs) ∧ Lip([0, T ];Hs−2) (2.25)

such that

max
0≤t≤T

‖U ε
p − U ε‖Hs−2 → 0, as p→ ∞.

Therefore, by the standard interpolation inequality, we have the convergence

U ε
p → U ε, in C([0, T ];Hs−θ) (2.26)

for an appropriate θ with 0 < θ < 2. Choose s such that s − θ − 2 > 1
2 . Then the space Hs

becomes an algebra, thus we can overcome the difficulty of the nonlinearity. From [7, 10–12],
we can prove that

U ε ∈ C([0, T ];Hs) ∧ C1([0, T ];Hs−2) (2.27)

and U ε is a solution of (2.9)–(2.10). The transition from estimates for integral of square to
pointwise estimates is furnished by one of the Sobolev inequalities. By Sobolev’s embedding
theorem, we have

C([0, T ];Hs) ∧ C1([0, T ];Hs−2) ↪→ C1([0, T ] × Ω) (2.28)

and hence the constructed solutions are classical.
In the following, we prove the uniqueness of solution of (2.4)–(2.8) or (2.9)–(2.10). Suppose

that there exist two solutions U ε
1(t, x) and U ε

2(t, x) to the initial value problem (2.9)–(2.10) on
[0, T ]. Let V ε = U ε

1 − U ε
2 . Then V ε(0) = 0,

∂tV
ε = ∂tU

ε
1 − ∂tU

ε
2

= εL(U ε
1) + εN(U ε

1) −
m∑

i=1

Bi(U ε
1)∂iU

ε
1 −

(
εL(U ε

2) + εN(U ε
2) −

m∑
i=1

Bi(U ε
2)∂iU

ε
2

)

= εL(U ε
1 − U ε

2) + εN(U ε
1) − εN(U ε

2) −
m∑

i=1

(Bi(U ε
1)∂iU

ε
1 − Bi(U ε

2)∂iU
ε
2). (2.29)

Define

‖V ε(t)‖2
E =

∫
Rm

〈S∂α
xV

ε, ∂α
xV

ε〉dx, (2.30)

where α is a multi-index of |α| ≤ s. Thus making the same energy estimates as before, we
obtain

‖V ε‖2
Hs ≤ C(T ) ‖V ε(0)‖2

Hs .

Therefore, from V ε(0) = 0, we get U ε
1 = U ε

2 on t ∈ [0, T ]. Namely, the solution of the initial
value problem (2.9)–(2.10) is unique. Using the above argument, we prove the existence and
uniqueness of the classical solution to the dispersive perturbation of the quasi-linear symmetric
system (2.4)–(2.8). That is as follows.
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Theorem 2.1 Let f ∈ C∞(R+,R) with f ′ > 0 and s > m
2 + 2. Assume that the initial

data U ε
0 = (Aε

10, A
ε
20, w

ε
10, · · ·, wε

m0)
T ∈ Hs(Rm) ×Hs(Rm) ×Hs(Rm) × · · · ×Hs(Rm) satisfies

the uniform bound

‖U ε
0‖Hs(Rm) = ‖Aε

10‖Hs(Rm) + ‖Aε
20‖Hs(Rm) + ‖wε

10‖Hs(Rm) + · · · + ‖wε
m0‖Hs(Rm) < C1. (2.31)

Then there exists a time interval [0, T ] with T > 0, so that the initial value problem (2.4)–(2.8)
has a unique classical solution U ε = (Aε

1, A
ε
2, w

ε
1, · · · , wε

m)T ,

(Aε
1(t, x), A

ε
2(t, x)) ∈ (C1([0, T ]× Ω) ∧ C1([0, T ];C2))2

wε
i (t, x) ∈ C1([0, T ]× Ω).

(2.32)

Furthermore,

U ε ∈ C([0, T ];Hs) ∧ C1([0, T ];Hs−2) (2.33)

and T depends on the bound C1 in (2.31) and in particular not on ε. In addition, the solution
U ε = (Aε

1, A
ε
2, w

ε
1, · · ·, wε

m)T satisfies the estimate

‖U ε‖Hs = ‖Aε
1‖Hs + ‖Aε

2‖Hs + ‖wε
1‖Hs + · · · + ‖wε

m‖Hs < C2 (2.34)

for all t ∈ [0, T ], and the constant C2 is also independent of ε.

For equation (1.1), we have the following equivalent result.

Theorem 2.2 Assume that Theorem 2.1 holds. In addition, suppose (Aε
0, S

ε
0) ∈ Hs ×

Hs+1. Then the initial value problem (1.1)–(1.2) has a unique classical solution in C1([0, T ]×
Ω) ∧ C1([0, T ];C2) of the form ψε(t, x) = Aε(t, x) exp( i

εS
ε(t, x)) on the time interval [0, T ].

Moreover, Aε and ∇xS
ε are bounded in L∞([0, T ];Hs).

Proof Since Aε = Aε
1 + iAε

2 and wε = ∇xS
ε, it follows from (2.32)–(2.34) that

Aε ∈ C([0, T ];Hs) ∧ C1([0, T ];Hs−2),

Sε ∈ C([0, T ];Hs+1) ∧ C1([0, T ];Hs).

Thus by Sobolev embedding theorem, we get

Aε ∈ C1([0, T ]× Ω) ∧ C1([0, T ];C2),

Sε ∈ C1([0, T ];C2).

Due to the expression of ψε in the short wave form (2.1), ψε has the same regularity as Aε, and

ψε ∈ C([0, T ];Hs) ∧ C1([0, T ];Hs−2),

thus
ψε ∈ C1([0, T ] × Ω) ∧ C1([0, T ];C2).

For classical solution, equation (1.1) is equivalent to the dispersive quasi-linear hyperbolic
system (2.9). Using this equivalent relation and Theorem 2.1, we can get the result of Theorem
2.2.
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3 Existence of Solution with ε Small Enough

In this section, we link T in Theorem 2.1 and Theorem 2.2 to the existence time of a smooth
solution to (1.11)–(1.12).

Theorem 3.1 Let f ∈ C∞(R+,R) with f ′ > 0, s > m
2 + 2, S0(x) ∈ Hs(Rm), Aε

0(x) be
a sequence of functions uniformly bounded in Hs(Rm) and Aε

0(x) converges to A0 in Hs(Rm)
as ε goes to 0. Moreover, if system (1.11)–(1.12) with initial data ρ(0, x) = |A0(x)|2 and
v(0, x) = ∇xS0(x) has a solution in L∞([0, T ], Hs+2(Rm)), then for ε small enough, there exist
solutions to equation (1.1) of the form ψε(t, x) = Aε(t, x) exp( i

εS
ε(t, x)) on [0, T ], where Aε and

∇xS
ε are bounded in L∞([0, T ], Hs(Rm)) uniformly in ε.

Proof According to the assumptions of this theorem, there exists a solution (ρ, v) in
L∞([0, T ], Hs+2(Rm)) to system (1.11)–(1.12) on a time interval [0, T ] with s > m

2 + 2 for the
initial data

ρ =
∣∣∣ lim

ε→0
Aε

0

∣∣∣2, v = ∇xS0. (3.1)

Let U = (A1, A2, w). The limit system of (2.9) is

∂tU +
m∑

i=1

Bi(U)∂iU = 0, (3.2)

which admits a solution on a maximal time interval [0, T ′]. In the following, we prove that
T ′ > T by contradiction. Assume that T ′ ≤ T . Let ρ = |A1|2 + |A2|2 and v = w. Then (ρ, v)
satisfy (1.11)–(1.12) with initial data (3.1) and ρ and v are in L∞([0, T ′], Hs(Rm)). Thus w ∈
L∞([0, T ′], Hs(Rm)). Using (2.4) and (2.5), we get that A1 and A2 are in L∞([0,T ′], Hs−1(Rm)),
which is impossible since T ′ is assumed to be the maximal existence time. Therefore, T ′ > T

and system (3.2) has a smooth solution on the time interval [0, T ].
Setting V ε = U ε − U , we obtain from (2.9) and (3.2) that

∂tV
ε = ∂tU

ε − ∂tU

= εL(U ε) + εN(U ε) −
m∑

i=1

Bi(U ε)∂iU
ε −

(
−

m∑
i=1

Bi(U)∂iU
)

= εL(U ε) + εN(U ε) −
m∑

i=1

Bi(U + V ε)∂iV
ε −

m∑
i=1

(Bi(U + V ε) −Bi(U))∂iU,

namely,

∂tV
ε +

m∑
i=1

Bi(U + V ε)∂iV
ε +

m∑
i=1

(Bi(U + V ε) −Bi(U))∂iU

= εL(U) + εL(V ε) + εN(U + V ε). (3.3)

The matrix
m∑

i=1

Bi(U + V ε)ηi is symmetrisable. We can make the same energy estimates as

those in Section 2. Because S is symmetric, we get for |α| ≤ s and s > m
2 + 2,

∂t

∫
Rm

〈S∂α
xV

ε, ∂α
xV

ε〉dx =
∫

Rm

〈∂tS∂
α
xV

ε, ∂α
xV

ε〉dx+ 2
∫

Rm

〈S∂t∂
α
xV

ε, ∂α
xV

ε〉dx. (3.4)
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The first term can be bounded by

∑
|α|≤s

∫
Rm

〈∂tS∂
α
xV

ε, ∂α
xV

ε〉dx ≤ C(‖V ε‖Hs , ‖U‖2
Hs+2)‖V ε‖2

Hs . (3.5)

For the second term of (3.4), from (3.3) we get

∫
Rm

〈S∂t∂
α
xV

ε, ∂α
xV

ε〉dx = ε

∫
Rm

〈SL(∂α
xV

ε) + SL(∂α
xU), ∂α

xV
ε〉dx

+ ε

∫
Rm

〈S∂α
xN(U + V ε), ∂α

xV
ε〉dx

−
∫

Rm

〈
S∂α

x

( m∑
i=1

Bi(U + V ε)∂iV
ε
)
, ∂α

xV
ε
〉
dx

−
∫

Rm

〈
S∂α

x

( m∑
i=1

(Bi(U + V ε) −Bi(U))∂iU
)
, ∂α

xV
ε
〉
dx. (3.6)

For the first term in (3.6), using integration by parts we obtain

ε

∫
Rm

〈SL(∂α
xV

ε) + SL(∂α
xU), ∂α

xV
ε〉dx

= ε

∫
Rm

〈SL(∂α
xV

ε), ∂α
xV

ε〉dx+ ε

∫
Rm

〈SL(∂α
xU), ∂α

xV
ε〉dx

= ε

∫
Rm

〈L(∂α
xV

ε), ∂α
xV

ε〉dx+ ε

∫
Rm

〈L(∂α
xU), ∂α

xV
ε〉dx

= 0 + ε

∫
Rm

〈L(∂α
xU), ∂α

xV
ε〉dx

= ε

∫
Rm

(
− 1

2
�x∂

α
xA2 · ∂α

xV
ε
1 +

1
2
�x∂

α
xA1 · ∂α

xV
ε
2

)
dx

≤ εC‖∂α
xU‖L2‖∂α

xV
ε‖L2 .

Thus

∑
|α|≤s

ε

∫
Rm

〈SL(∂α
xV

ε) + SL(∂α
xU), ∂α

xV
ε〉dx ≤ εC‖U‖Hs+2‖V ε‖Hs . (3.7)

For the second term in (3.6), we can make the following estimates:

ε

∫
Rm

〈S∂α
xN(U + V ε), ∂α

xV
ε〉dx = ε

∫
Rm

(−∂α
x ((|A1 + V ε

1 |2 + |A2 + V ε
2 |2)(A2 + V ε

2 ))∂α
xV

ε
1

+ ∂α
x ((|A1 + V ε

1 |2 + |A2 + V ε
2 |2)(A1 + V ε

1 ))∂α
xV

ε
2 )dx

≤ εC(‖∂α
x (U2U)‖L2 + ‖∂α

x (V ε2U)‖L2)‖∂α
xV

ε‖L2 . (3.8)

Thus

∑
|α|≤s

ε

∫
Rm

〈S∂α
xN(U + V ε), ∂α

xV
ε〉dx ≤ εC(‖U‖3

Hs + ‖V ε‖Hs)‖V ε‖Hs . (3.9)
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For the third term in (3.6), since SBi(U + V ε) is a symmetric matrix, we obtain

−
∫

Rm

〈
S∂α

x

( m∑
i=1

Bi(U + V ε)∂iV
ε
)
, ∂α

xV
ε
〉
dx

= −
∫

Rm

〈
S

m∑
i=1

Bi(U + V ε)∂i∂
α
xV

ε, ∂α
xV

ε
〉
dx

−
∫

Rm

〈
S

(
∂α

x

( m∑
i=1

Bi(U + V ε)∂iV
ε
)
−

m∑
i=1

Bi(U + V ε)∂i∂
α
xV

ε
)
, ∂α

xV
ε
〉
dx. (3.10)

But

−
∫

Rm

〈
S

m∑
i=1

Bi(U + V ε)∂i∂
α
xV

ε, ∂α
xV

ε
〉
dx

= −
m∑

i=1

∫
Rm

〈SBi(U + V ε)∂i∂
α
xV

ε, ∂α
xV

ε〉dx

=
m∑

i=1

∫
Rm

〈∂i(SBi(U + V ε))∂α
x V

ε, ∂α
xV

ε〉dx+
m∑

i=1

∫
Rm

〈SBi(U + V ε)∂i∂
α
xV

ε, ∂α
xV

ε〉dx,

thus

−
∫

Rm

〈
S

m∑
i=1

Bi(U + V ε)∂i∂
α
xV

ε, ∂α
xV

ε
〉
dx

=
1
2

m∑
i=1

∫
Rm

〈∂i(SBi(U + V ε))∂α
x V

ε, ∂α
xV

ε〉dx

≤ C(|U + V ε|L∞)‖∂α
xV

ε‖2
L2 |∇x(U + V ε)|L∞ . (3.11)

Therefore by s > m
2 + 2, we get

∑
|α|≤s

−
∫

Rm

〈
S

m∑
i=1

Bi(U + V ε)∂i∂
α
xV

ε, ∂α
xV

ε
〉
dx ≤ C(‖U‖Hs+2 , ‖V ε‖Hs)‖V ε‖2

Hs . (3.12)

For the last term in (3.10), applying (3.11) and the usual estimates on communicators, we
obtain

−
∫

Rm

〈
S

(
∂α

x

( m∑
i=1

Bi(U + V ε)∂iV
ε
)
−

m∑
i=1

Bi(U + V ε)∂i∂
α
xV

ε
)
, ∂α

xV
ε
〉
dx

= −
∫

Rm

〈
S

m∑
i=1

(∂α
x (Bi(U + V ε)∂iV

ε) −Bi(U + V ε)∂α
x (∂iV

ε)), ∂α
xV

ε
〉
dx

= −
∫

Rm

〈
S

m∑
i=1

(∂α
x (Bi(U + V ε))∂iV

ε), ∂α
xV

ε
〉
dx

≤ C(‖∂α
xU‖L2, ‖∂α

xV
ε‖L2)‖∂α

xV
ε‖L2‖∇xV

ε‖L2 ,

so ∑
|α|≤s

−
∫

Rm

〈
S

(
∂α

x

( m∑
i=1

Bi(U + V ε)∂iV
ε
)
−

m∑
i=1

Bi(U + V ε)∂i∂
α
xV

ε
)
, ∂α

xV
ε
〉
dx

≤ C(‖U‖Hs , ‖V ε‖Hs)‖V ε‖2
Hs . (3.13)
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For the last term in (3.6), we get

−
∫

Rm

〈
S∂α

x

( m∑
i=1

(Bi(U + V ε) −Bi(U))∂iU
)
, ∂α

xV
ε
〉
dx

≤ C(‖∂α
xU‖L2, ‖∂α

xV
ε‖L2)‖∂α

xV
ε‖2

L2 ,

so

∑
|α|≤s

−
∫

Rm

〈
S∂α

x

( m∑
i=1

(Bi(U + V ε) −Bi(U))∂iU
)
, ∂α

xV
ε
〉
dx

≤ C(‖U‖Hs+1 , ‖V ε‖Hs)‖V ε‖2
Hs . (3.14)

Thus from (3.4)–(3.14), we get

∂t

∑
|α|≤s

∫
Rm

〈S∂α
xV

ε, ∂α
xV

ε〉dx

≤ εC‖U‖Hs+2‖V ε‖Hs + εC(‖U‖3
Hs + ‖V ε‖Hs)‖V ε‖Hs + C(‖U‖Hs+2 , ‖V ε‖Hs)‖V ε‖2

Hs (3.15)

for s > m
2 + 2. Moreover,

lim
ε→0

‖V ε(t = 0)‖Hs = lim
ε→0

‖U ε(t = 0) − U(t = 0)‖Hs = 0. (3.16)

Therefore Gronwall’s lemma along with a continuity argument and (3.15) show that for ε small,
there exists a constant C(ε) such that

‖V ε‖Hs ≤ C(ε), on [0, T ]

with C(ε) → 0 as ε→ 0. That is,

lim
ε→0

‖U ε − U‖Hs = 0.

Since U = (A1, A2, w) and w = ∇xS exist on [0, T ], U ε also exists on [0, T ]. Thus for ε small
enough, there exist solutions to equation (1.1) of the form

ψε(t, x) = Aε(t, x) exp
( iSε(t, x)

ε

)
, on [0, T ].

Making the same estimates as those in Theorem 2.2, we can obtain that Aε and ∇xS
ε are

bounded in L∞([0, T ], Hs) uniformly in ε.

4 WKB Expansion (Approximation)

In this section, we justify the WKB expansion.

Theorem 4.1 Under the assumptions of Theorem 3.1, suppose that the initial amplitude
Aε

0(x) admits the following expansion:

Aε
0(x) =

N∑
k=0

A
(k)
0 (x)εk + εNRN (x, ε), (4.1)
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where

lim
ε→0

‖RN (x, ε)‖Hs = 0 (4.2)

for N ∈ N and s > 2N + 2 + m
2 . Thus, on the time interval [0, T ] given by Theorem 3.1,

equation (1.1) can be represented as

ψε(t, x) = Aε(t, x) exp
( iSε(t, x)

ε

)
=

N∑
k=0

A(k)(t, x)εk exp
( iS(t, x)

ε

)
+ εNRN (t, x, ε) (4.3)

as ε goes to zero, where S(t, x) and A(k)(t, x) are given by WKB method, and

lim
ε→0

‖RN(t, x, ε)‖
C([0,T ];Hs−2N−2− m

2 (Rm))
= 0. (4.4)

Proof We look for formally asymptotic solutions of (2.9) in the form

U ε = U ′
0 + εU ′

1 + ε2U ′
2 + · · · + εNU ′

N + · · · , (4.5)

where U ε = (Aε
1, A

ε
2, w

ε
1, · · · , wε

m)T, Aε = Aε
1 + iAε

2 and wε = (wε
1, · · · , wε

m)T = ∇xS
ε. We first

consider the zeroth order.

4.1 Zeroth order approximation

From Theorem 3.1, we know that Aε and wε are bounded in L∞([0, T ], Hs(Rm)). Then from
(2.2) and (2.3) it follows that ∂tA

ε and ∂tw
ε are bounded in L∞([0, T ], Hs−2(Rm)). Therefore,

by using the classical compactness arguments, Ascoli-Arzelà Theorem (applied in the time
variable) and the Rellich Lemma (applied in the space variable), we deduce from (2.2) and
(2.3) that there exist subsequences of Aε and wε (always denoted by Aε and wε) such that Aε

and wε converge uniformly in L∞([0, T ], Hs−2(Rm)) to the functions A′
0 and w′

0, where A′
0 and

w′
0 satisfy the quasilinear hyperbolic system

∂tA
′
0 + (w′

0 · ∇x)A′
0 +

1
2
A′

0∇x · w′
0 = 0, (4.6)

∂tw
′
0 + (w′

0 · ∇x)w′
0 + f ′(|A′

0|2)∇x|A′
0|2 = 0 (4.7)

with the initial data complemented by

A′
0(0, x) = lim

ε→0
Aε

0(x), w′
0(0, x) = ∇xS0(x).

This system admits a unique solution, which implies in fact that all the sequences (Aε, wε)
converge.

4.2 First order approximation

For convenience, we set V ε
1 ≡ U ε − U ′

0, where U ′
0 = (A′

10, A
′
20, w

′
10, · · · , w′

m0), A′
0 = A′

10 +
iA′

20, w
′
0 = (w′

10, · · · , w′
m0). Then by using the same energy estimate as those in Section 3, we

obtain
‖V ε

1 ‖Hs−2(Rm) ≤ εC(‖U ′
0‖L∞([0,T ],Hs(Rm)))



120 Z. H. Gan and B. L. Guo

for all t ≤ T . Let Ṽ ε
1 = V ε

1
ε . Thus Ṽ ε

1 is bounded in L∞([0, T ], Hs−2(Rm)) and ∂tṼ
ε
1 is

bounded in L∞([0, T ], Hs−4(Rm)). Thus for a subsequence, Ṽ ε
1 converges strongly in L∞([0, T ],

Hs−4(Rm)) to a function U ′
1 and

∂tṼ
ε
1 =

1
ε
(∂tU

ε − ∂tU
′
0)

=
1
ε

[
εL(U ε) + εN(U ε) −

m∑
i=1

Bi(U ε)∂iU
ε −

(
−

m∑
i=1

Bi(U ′
0)∂iU

′
0

)]

= L(U ε) +N(U ε) − 1
ε

m∑
i=1

(Bi(U ε)∂iU
ε −Bi(U ′

0)∂iU
′
0)

= L(U ε) +N(U ε) −
m∑

i=1

Bi(U ′
0 + εṼ ε

1 )∂iṼ
ε
1 − 1

ε

m∑
i=1

[Bi(U ′
0 + εṼ ε

1 ) −Bi(U ′
0)]∂iU

′
0

= L(U ′
0 + εṼ ε

1 ) +N(U ′
0 + εṼ ε

1 ) −
m∑

i=1

Bi(U ′
0 + εṼ ε

1 )∂iṼ
ε
1

− 1
ε

m∑
i=1

[Bi(U ′
0 + εṼ ε

1 ) −Bi(U ′
0)]∂iU

′
0. (4.8)

Taking the limit of the equation (4.8), we obtain

lim
ε→0

∂tṼ
ε
1 + lim

ε→0

m∑
i=1

Bi(U ′
0 + εṼ ε

1 )∂iṼ
ε
1 + lim

ε→0

m∑
i=1

1
ε
[Bi(U ′

0 + εṼ ε
1 ) −Bi(U ′

0)]∂iU
′
0

= lim
ε→0

[L(U ′
0 + εṼ ε

1 ) +N(U ′
0 + εṼ ε

1 )]. (4.9)

From the definition of Frechét derivative, we get

lim
ε→0

m∑
i=1

1
ε
[Bi(U ′

0 + εṼ ε
1 ) −Bi(U ′

0)]∂iU
′
0 =

m∑
i=1

(∇Bi(U ′
0)U

′
1)∂iU

′
0.

Thus we obtain from (4.9) that

∂tU
′
1 +

m∑
i=1

Bi(U ′
0∂iU

′
1) +

m∑
i=1

(∇Bi(U ′
0)U

′
1)∂iU

′
0 = L(U ′

0) +N(U ′
0) (4.10)

with initial data

U ′
1(0, x) = lim

ε→0

1
ε
(U ε(0, x) − U ′

0(0, x)). (4.11)

As the solution to problem (4.10)–(4.11) is unique, we get that the whole sequence Ṽ ε
1 converges

to U ′
1.

Similarly, the higher order approximation can be obtained as follows.

4.3 Higher order approximation

Suppose that we have already obtained an asymptotic expansion to the order N

U ε =
N∑

j=0

U ′
jε

j + o(εN ), (4.12)
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where

f(εN ) = o(εN ) ⇐⇒
∣∣∣f(εN )
εN

∣∣∣ → 0, as εN → 0.

Firstly, let

U
ε
=

N∑
j=0

U ′
jε

j and V ε
N+1 = U ε −

N∑
j=0

U ′
jε

j , (4.13)

the functions U ′
j being in L∞([0, T ], Hs−2j(Rm)), j = 0, 1, 2, · · · , N.

Then, put

Ṽ ε
N+1 =

1
εN+1

[
U ε −

N∑
j=0

U ′
jε

j
]
. (4.14)

Since U ′
k ∈ L∞([0, T ], Hs−2k(Rm)), we get ∂tU

′
k ∈ L∞([0, T ], Hs−2k−2(Rm)). Moreover, by the

assumption on the initial data, Ṽ ε
N+1(0) is bounded in Hs(Rm). Making the similar energy

estimates to the previous section, we obtain Ṽ ε
N+1 is bounded in L∞([0, T ], Hs−2N−2(Rm)) and

∂tṼ
ε
N+1 is bounded in L∞([0, T ], Hs−2N−4(Rm)). Thus, for a subsequence, Ṽ ε

N+1 converges
strongly in L∞([0, T ], Hs−2N−4(Rm)) to a function U ′

N+1 as ε goes to 0.
From (4.12) and (4.13), in view of equation (2.9) for U ε, we get

∂tV
ε
N+1 = ∂tU

ε − ∂tU
ε
= εL(U ε) + εN(U ε) −

m∑
i=1

Bi(U ε)∂iU
ε − ∂tU

ε
. (4.15)

Then, making a Taylor expansion on Bi we obtain

∂tV
ε
N+1 +

m∑
i=1

Bi(U
ε
+ V ε

N+1)∂iV
ε
N+1 −

m∑
i=1

(Bi(U
ε
) −Bi(U

ε
+ V ε

N+1))∂iU
ε

= εL(V ε
N+1) + εN(V ε

N+1) + ε2N+1Cε
N + ε3N+1Dε

N + εN+1Bε
N ,

where Bε
N is a function depending on U

ε
and bounded in L∞ (

[0, T ], Hs−2N−2(Rm)
)

uniformly
in ε, Cε

N is a function depending on U
ε

and V ε
N+1, D

ε
N is a function depending on U

ε
.

To find the equation for U ′
N+1, write the term of order εN+1 as

∂t(U
ε
+ εN+1Ṽ ε

N+1) +
m∑

i=1

Bi(U
ε
+ εN+1Ṽ ε

N+1)∂i(U
ε
+ εN+1Ṽ ε

N+1)

− εL(U
ε
+ εN+1Ṽ ε

N+1) − εN(U
ε
+ εN+1Ṽ ε

N+1) = 0

and take limit with initial data as

U ′
N+1(0, x) = lim

ε→0

1
εN+1

(U ε(0, x) − U ′
0(0, x) − · · · − εNU ′

N (0, x)).

Since we have obtained the formal approximation expansion of Aε and of Sε to an arbitrarily
high order. Now we get back to the usual WKB expansion. The usual WKB method is to look
for solutions of (1.1) of the form

ψε(t, x) = A(t, x, ε) exp
( i
ε
S(t, x)

)
,
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where

A(t, x, ε) =
∞∑

j=0

Aj(t, x)εj .

In order to obtain Aj and S, we only write the identity of the two following formal series:

∞∑
j=0

Aj(t, x)εj exp
( i
ε
S(t, x)

)
=

( ∞∑
k=0

A′
kε

k
)

exp
( i
ε

∞∑
k=0

S′
kε

k
)
,

where

A′
k = A′

1k + iA′
2k, U ′

k = (A′
1k, A

′
2k, w

′
1k, · · · , w′

mk), w′
k = ∇xS

′
k = (w′

1k, · · · , w′
mk).

For instance, we can get

S = S′
0, A0 = A′

0e
iS′

1 , A1 = eiS′
1(A′

1 + iS′
2A

′
0),

A2 = eiS′
1

(
A′

2 + iS′
2A

′
1 +

(
iS′

3 −
S′

2
2

2

)
A′

0

)
, · · · .
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