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Abstract By using the solution to the Helmholtz equation �u − λu = 0 (λ ≥ 0),
the explicit forms of the so-called kernel functions and the higher order kernel functions
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1 Introduction and Preliminaries

Integral representation formulas in complex analysis and Clifford analysis have been well-
developed in [2–9, 11–21, 24–32], etc. These integral representation formulas are powerful tools.
In [24], E. Obolashvilli obtained some generalized Cauchy-Pompeiu representation formulas. In
[25–26], higher order Cauchy-Pompeiu type representation formulas related to the factors and
powers of the Helmholtz operator were given in quaternionic analysis in case of taking λ = |h|2
with a complex or real number h. In [8], in case of taking λ = |h|2 with a hyper-complex number
h, we constructed the kernel functions and then got the higher order integral representation
formulas for functions with values in a universal Clifford algebra C(Vn,n). In this paper, by
using the idea in [8, 24, 28], we get the explicit expressions of the kernel functions and then
get the explicit integral representation formulas for functions with values in C(V3,3). These
explicit integral representation formulas will play an important role in studying the further
properties of the functions with values in C(V3,3). In the last section, as application of the
integral representations, we give the maximum modulus theorem for function u which satisfies
Hu = 0.

Let Vn,s (0 ≤ s ≤ n) be an n-dimensional (n ≥ 1) real linear space with basis {e1, e2, · · · , en},
C(Vn,s) be the 2n-dimensional real linear space with basis

{eA, A = {h1, · · · , hr}∈PN, 1 ≤ h1 < · · · < hr ≤ n},
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where N stands for the set {1, · · · , n} and PN denotes the family of all order-preserving subsets
of N in the above way. we denote e∅ as e0 and eA as eh1···hr for A = {h1, · · · , hr} ∈ PN . The
product on C(Vn,s) is defined by⎧⎨⎩eAeB = (−1)#((A∩B)\S)(−1)P (A,B)eA�B, if A, B ∈ PN,

λμ =
∑

A∈PN

∑
B∈PN

λAμBeAeB, if λ =
∑

A∈PN

λAeA, μ=
∑

B∈PN

μBeB, (1.1)

where S stands for the set {1, · · · , s}, #(A) is the cardinal number of the set A, the number
P (A, B) =

∑
j∈B

P (A, j), P (A, j) = #{i, i ∈ A, i > j}, the symmetric difference set A�B

is also order-preserving in the above way, and λA ∈ R is the coefficient of the eA-component
of the Clifford number λ. We also denote λA as [λ]A, λ{i} as [λ]i and λ0 as Re λ. It follows
immediately from the multiplication rule (1.1) that e0 is the identity element written now as 1
and in particular, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

e2
i = 1, if i = 1, · · · , s,

e2
j = −1, if j = s + 1, · · · , n,

eiej = −ejei, if 1 ≤ i < j ≤ n,

eh1eh2 · · · ehr = eh1h2···hr , if 1 ≤ h1 < h2 · · · < hr ≤ n.

(1.2)

Thus C(Vn,s) is a real linear, associative, but non-commutative algebra and it is called the
universal Clifford algebra over Vn,s. In particular, suppose n = s = 3. Then C(Vn,s) is just the
universal Clifford algebra C(V3,3).

An involution is defined by⎧⎪⎨⎪⎩
eA = (−1)σ(A)+#(A∩S)eA, if A ∈ PN,

λ =
∑

A∈PN

λAeA, if λ =
∑

A∈PN

λAeA,
(1.3)

where σ(A) = #(A)(#(A)+1)
2 . From (1.1) and (1.3), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

ei = ei, if i = 0, 1, · · · , s,

ej = −ej, if j = s + 1, · · · , n,

λμ = μλ, for any λ, μ ∈ C(Vn,s).

(1.4)

The C (Vn.n)-valued (n − 1)-differential form

dσ =
n∑

k=1

(−1)k−1ekdx̂N

k

is exact, where
dx̂N

k = dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn.

In this paper, we shall only consider the special case s = n = 3. Let Ω be an open non-
empty subset of R3. Functions f defined in Ω and with values in C(V3,3) will be considered,
i.e., f : Ω → C(V3,3). f ∈ C(r)(Ω, C(V3,3)) is clear that all the component functions of f(x)
possess the cited property. The operator D which is written as

D =
3∑

k=1

ek
∂

∂xk
: C(r)(Ω, C(V3,3)) → C(r−1)(Ω, C(V3,3)).



Generalized Integral Representations for Functions with Values in C(V3,3) 125

The operator D acts on the function f from the left and from the right being governed by the
rule

D[f ] =
3∑

k=1

∑
A

ekeA
∂fA

∂xk
, [f ]D =

3∑
k=1

∑
A

eAek
∂fA

∂xk
.

The classical Riemann boundary value problems and singular integral equations are widely
used for the solution to a great field of problems in applied mechanics theory (see [22, 23] etc.).
Naturally, it is interesting to generalize the theory of holomorphic functions in the plane to
higher dimensions. Especially, it has practical meaning to generalize the classical theory in the
plane to the theory of k-regular functions defined in R3 with values in C(V3,3). For example,
Rm (m > 0) Riemann boundary value problem for bi-harmonic function was studied in [20],
as for the Rm (m > 0) Riemann boundary value problem for bi-harmonic functions, and even
more general Rm (m > 0) Riemann boundary value problem for k-regular functions, the higher
order integral representation formulas play a very important role. The higher order integral
representation formulas provide a special solution to the Rm (m > 0) Riemann boundary value
problem. The importance is similar to the classical Cauchy type integral in complex plane. On
the other hand, the generalized Liouville theorem for k-regular functions is very important for
solving the Rm (m > 0) Riemann boundary value problem. In [1, 10], the generalized Liouville
theorem for k-regular functions in Clifford analysis was solved under some growth conditons at
infinity. It is a very important result, while it is also valuable to refine the too many growth
conditions at infinity especially for Riemann boundary value problems. But how to refine the
conditions is difficult. For harmonic functions and bi-harmonic functions defined in R3 and with
values in C(V3,3), we know that the growth conditions at infinity of the generalized Liouville
theorem can be refined to one of the conditions in [1, 10], and the method depends on the higher
order integral representation formulas (see [20]). In view of the above reasons, we are interested
in the different types of higher order integral representation formulas in Clifford analysis. As
is well-known that the kernel functions play the most important role in obtaining the higher
order integral representation formulas. While in many cases, the explicit expressions of the
kernel functions are important to study the further properties of functions, for example, the
generalized Liouville theorem of k-regular functions in Clifford analysis.

As for the above purposes, we keep our study in the framework of universal Clifford algebra
C(V3,3) in this paper. On one hand, it has practical meaning in applied mechanics theory; on
the other hand, it provides a foundation to study the more general theory of functions with
values in C(Vn,n).

We consider the following operators:

Lλu = Du + λu, L∗λu = uD − λu, (1.5)

Lu = Du + uh, L∗u = uD − hu (1.6)

and the Helmholtz operator

Hu = (�− |h|2)u, (1.7)

where

h =
3∑

i=1

hiei. (1.8)
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2 Generalized Integral Representations

Denote the Helmholtz equation as

�u − |h|2u = 0. (2.1)

Lemma 2.1 Let g3(|x|, |h|) = 1
|x|e

−|h||x|. Then g3(|x|, |h|) is the fundamental solution to
(2.1) in R3 .

Lemma 2.2 Let g3(|x|, |h|) be defined as in Lemma 2.1. Then
( i ) D[g3](|x|, |h|)eA − g3(|x|, |h|)eAh is the fundamental solution to equation

Lu = Du + uh = 0, h =
3∑

i=1

hiei, (2.2)

(ii) eAD[g3](|x|, |h|) + heAg3(|x|, |h|) is the fundamental solution to equation

L∗u = uD − hu = 0, h =
3∑

i=1

hiei. (2.3)

In the following, Ω is supposed to be an open bounded non-empty subset of R3 with a
Liapunov boundary ∂Ω.

Lemma 2.3 (see [8]) Let u, v ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)). Then

Re
{ ∫

Ω

(vL[u] + L∗[v]u)dy
}

= Re
{∫

∂Ω

vdσyu
}
. (2.4)

Lemma 2.4 Let u, v ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)). Then∫
Ω

(vLλ[u] + L∗λ[v]u)dy =
∫

∂Ω

vdσyu. (2.5)

Denote

KA
1 (r, h) =

1
ω3

((y − x)eA

r3
+

|h|(y − x)eA

r2
+

eAh

r

)
e−|h|r, (2.6)

K∗A
1 (r, h) =

1
ω3

(eA(y − x)
r3

+
eA|h|(y − x)

r2
− heA

r

)
e−|h|r, (2.7)

K1(r, λ) =
1
ω3

(y − x
r3

+
λ(y − x)

r2
+

λ

r

)
e−λr, (2.8)

K∗1(r, λ) =
1
ω3

(y − x
r3

+
λ(y − x)

r2
− λ

r

)
e−λr, (2.9)

where y − x =
3∑

i=1

(yi − xi)ei, r = |y − x| and ω3 denotes the area of the unit sphere in R3.

Lemma 2.5 Let KA
1 (r, h) and K∗A

1 (r, h) be as in (2.6) and (2.7), where r = |y − x|. Then{
L[KA

1 (r, h)] = 0, y ∈ R3
x = R3 \ {x},

L∗[K∗A
1 (r, h)] = 0, y ∈ R3

x = R3 \ {x}. (2.10)



Generalized Integral Representations for Functions with Values in C(V3,3) 127

Lemma 2.6 Let K1(r, λ) and K∗1(r, λ) be as in (2.8) and (2.9), where r = |y − x|. Then{
Lλ[K1(r, λ)] = L∗−λ[K1(r, λ)] = 0, y ∈ R3

x = R3 \ {x},
L−λ[K∗1(r, λ)] = L∗λ[K∗1(r, λ)] = 0, y ∈ R3

x = R3 \ {x}. (2.11)

Remark 2.1 By Lemmas 2.5 and 2.6, KA
1 (r, 0)eA, eAK∗A

1 (r, 0), K1(r, 0) and K∗1(r, 0) are
the classical kernel functions.

Lemma 2.7 Let KA
1 (r, h) be as in (2.6). Then∫

∂B(x,δ)

dσyKA
1 (r, h) = (1 + δ|h|)eAe−δ|h|, (2.12)

where B(x, δ) =
{
y,

3∑
i=1

(yi − xi)2 ≤ δ2
}

and ∂B(x, δ) is given the induced orientation.

Proof By Stokes formula, we have∫
∂B(x,δ)

dσyKA
1 (r, h) =

1
ω3

∫
∂B(x,δ)

dσy

( (y − x)eA

δ3
+

|h|(y − x)eA

δ2
+

eAh

δ

)
e−δ|h|

=
1
ω3

∫
B(x,δ)

( 3
δ3

+
3|h|
δ2

)
eAe−δ|h|dy

= (1 + δ|h|)eAe−δ|h|.

Thus, the result follows.

Lemma 2.8 Let K∗A
1 (r, h) be as in (2.7). Then∫

∂B(x,δ)

K∗A
1 (r, h)dσy = eA(1 + δ|h|)e−δ|h|, (2.13)

where B(x, δ) =
{
y,

3∑
i=1

(yi − xi)2 ≤ δ2
}

and ∂B(x, δ) is given the induced orientation.

Theorem 2.1 (Generalized Cauchy-Pompeiu Formula) Let Ω be an open bounded non-
empty subset of R3 with a Liapunov boundary ∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)). Then
for x ∈ Ω,

u(x) =
1
ω3

∫
∂Ω

(y − x
r3

+
|h|(y − x)

r2

)
e−|h|rdσyu(y) − 1

ω3

∫
∂Ω

e−|h|r

r
dσyu(y)h

− 1
ω3

∫
Ω

{(y − x
r3

+
|h|(y − x)

r2

)
e−|h|rL[u](y) − e−|h|r

r
L[u](y)h

}
dy. (2.14)

Proof For x ∈ Ω, by Lemmas 2.3 and 2.5, we have

Re
∫

∂Ω\∂B(x,ε)

K∗A
1 (r, h)dσyu(y) = Re

∫
Ω\B(x,ε)

K∗A
1 (r, h)L[u]dy. (2.15)

Obviously,

Re
∫

∂B(x,ε)

K∗A
1 (r, h)dσyu(y)
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= Re
∫

∂B(x,ε)

K∗A
1 (r, h)dσy(u(y) − u(x)) + Re

∫
∂B(x,ε)

K∗A
1 (r, h)dσyu(x). (2.16)

By Lemma 2.8, it can be proved that

lim
ε→0

Re
∫

∂B(x,ε)

K∗A
1 (r, h)dσyu(x) = uA(x)e2

A. (2.17)

In view of u ∈ C1(Ω, C(V3,3))∩C(Ω, C(V3,3)), by Stokes formula, it can be similarly proved
as Lemma 2.8 that

lim
ε→0

Re
∫

∂B(x,ε)

K∗A
1 (r, h)dσy(u(y) − u(x)) = 0. (2.18)

Taking limit ε → 0 in (2.15), in view of the weak singularity of K∗A
1 (r, h) and (2.16)–(2.18),

we have

uA(x)e2
A = Re

∫
∂Ω

K∗A
1 (r, h)dσyu(y) − Re

∫
Ω

K∗A
1 (r, h)L[u]dy. (2.19)

Thus

uA(x) =
e2

A

ω3
Re

∫
∂Ω

eA

(y − x
r3

+
|h|(y − x)

r2

)
e−|h|rdσyu(y) − e2

A

ω3
Re

∫
∂Ω

heA
e−|h|r

r
dσyu(y)

− e2
A

ω3
Re

∫
Ω

{
eA

(y − x
r3

+
|h|(y − x)

r2

)
e−|h|rL[u]− heA

e−|h|r

r
L[u]

}
dy. (2.20)

From (2.20), it is easy to check that

uA(x) =
e2

A

ω3
Re

∫
∂Ω

eA

(y − x
r3

+
|h|(y − x)

r2

)
e−|h|rdσyu(y) − e2

A

ω3
Re

∫
∂Ω

eA
e−|h|r

r
dσyu(y)h

− e2
A

ω3
Re

∫
Ω

{
eA

(y − x
r3

+
|h|(y − x)

r2

)
e−|h|rL[u]− eA

e−|h|r

r
L[u]h

}
dy. (2.21)

Then the result follows.

Theorem 2.2 (Generalized Cauchy-Pompeiu Formula) Let Ω be an open bounded non-
empty subset of R3 with a Liapunov boundary ∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)). Then
for x ∈ Ω,

u(x) =
1
ω3

∫
∂Ω

u(y)dσy

(y − x
r3

+
|h|(y − x)

r2

)
e−|h|r +

1
ω3

∫
∂Ω

hu(y)dσy
e−|h|r

r

− 1
ω3

∫
Ω

{
L∗[u](y)

(y − x
r3

+
|h|(y − x)

r2

)
e−|h|r + hL∗[u](y)

e−|h|r

r

}
dy. (2.22)

By Theorems 2.1 and 2.2, we can deduce the following result.

Theorem 2.3 (Generalized Cauchy Integral Formula) Let Ω be an open bounded non-
empty subset of R3 with a Liapunov boundary ∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)), and
Lu = 0 in Ω. Then for x ∈ Ω,

u(x) =
1
ω3

∫
∂Ω

(y − x
r3

+
|h|(y − x)

r2

)
e−|h|rdσyu(y) − 1

ω3

∫
∂Ω

e−|h|r

r
dσyu(y)h. (2.23)
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Theorem 2.4 (Generalized Cauchy Integral Formula) Let Ω be an open bounded non-
empty subset of R3 with a Liapunov boundary ∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)), and
L∗u = 0 in Ω. Then for x ∈ Ω,

u(x) =
1
ω3

∫
∂Ω

u(y)dσy

(y − x
r3

+
|h|(y − x)

r2

)
e−|h|r +

1
ω3

∫
∂Ω

hu(y)dσy
e−|h|r

r
. (2.24)

Remark 2.2 In case of h = 0, Theorems 2.1–2.4 are respectively the classical Cauchy-
Pompeiu formula and Cauchy integral formula in Clifford analysis.

By Lemmas 2.4 and 2.6, the following theorems can be similarly proved as Theorem 2.1.

Theorem 2.5 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)), K∗1(r, λ) be as in (2.9). Then∫

∂Ω

K∗1(r, λ)dσyu(y) −
∫

Ω

K∗1(r, λ)Lλ[u](y)dy =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(2.25)

Theorem 2.6 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)), K1(r, λ) be as in (2.8). Then∫

∂Ω

K1(r, λ)dσyu(y) −
∫

Ω

K1(r, λ)L−λ[u](y)dy =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(2.26)

Theorem 2.7 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)), K∗1(r, λ) be as in (2.9). Then∫

∂Ω

u(y)dσyK∗1(r, λ) −
∫

Ω

L∗−λ[u](y)K∗1(r, λ)dy =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(2.27)

Theorem 2.8 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)), K1(r, λ) be as in (2.8). Then∫

∂Ω

u(y)dσyK1(r, λ) −
∫

Ω

L∗λ[u](y)K1(r, λ)dy =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(2.28)

Remark 2.3 In case of λ = 0, Theorems 2.5–2.8 are respectively the classical Cauchy-
Pompeiu formula in Clifford analysis.

From Theorems 2.5–2.8, the following results can be directly proved.

Theorem 2.9 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)), K∗1(r, λ) be as in (2.9), and Lλ[u] = 0 in Ω. Then∫

∂Ω

K∗1(r, λ)dσyu(y) =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(2.29)
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Theorem 2.10 Let Ω be an open bounded non-empty subset of R3 with a Liapunov bound-
ary ∂Ω, u ∈ C1(Ω, C(V3,3))∩C(Ω, C(V3,3)), K1(r, λ) be as in (2.8), and L−λ[u] = 0 in Ω. Then

∫
∂Ω

K1(r, λ)dσyu(y) =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(2.30)

Theorem 2.11 Let Ω be an open bounded non-empty subset of R3 with a Liapunov bound-
ary ∂Ω, u ∈ C1(Ω, C(V3,3)) ∩ C(Ω, C(V3,3)), K∗1(r, λ) be as in (2.9), and L∗−λ[u] = 0 in Ω.
Then ∫

∂Ω

u(y)dσyK∗1(r, λ) =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(2.31)

Theorem 2.12 Let Ω be an open bounded non empty subset of R3 with a Liapunov
boundary ∂Ω, u ∈ C1(Ω, C(V3,3))

⋂
C(Ω, C(V3,3)), K1(r, λ) be as in (2.8), and L∗λ[u] = 0 in Ω,

then ∫
∂Ω

u(y)dσyK1(r, λ) =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(2.32)

Remark 2.4 In case of λ = 0, Theorems 2.9–2.12 are respectively the classical Cauchy
integral formula in Clifford analysis.

Corollary 2.1 Suppose ‖u‖ = O(eθ‖y‖) (‖y‖ → +∞, y ∈ R3), 0 < θ < |h| and denote
the conditions as follows: (I) Lu = 0 in R3; (II) L∗u = 0 in R3; (III) Lλ[u] = 0 in R3; (IV)
L−λ[u] = 0 in R3; (V) L∗−λ[u] = 0 in R3; (VI) L∗λ[u] = 0 in R3. If any of the above conditions
is satisfied, then u ≡ 0 in R3.

Proof By Theorems 2.3, 2.4, 2.9–2.12, for any x ∈ R3, replacing ∂Ω by ∂B(x, R) in the
integral representations, taking limit R → ∞, the result follows.

3 Generalized Higher Order Integral Representations

Denote

KA
m+1(r, h) =

1
m!ω3

((1 − m)(y − x)eA

r3−m
+

|h|(y − x)eA

r2−m
− meA�

r2−m
+

eAh

r1−m

)
e−|h|r

�
m, (3.1)

K∗A
m+1(r, h) =

(−1)m
�

m

m!ω3

((1 − m)eA(y − x)
r3−m

+
eA|h|(y − x)

r2−m
+

m�eA

r2−m
− heA

r1−m

)
e−|h|r, (3.2)

Km+1(r, λ) =
1

m!ω3

((1 − m)(y − x)
r3−m

+
λ(y − x)

r2−m
− m

r2−m
+

λ

r1−m

)
e−λr, (3.3)

K∗m+1(r, λ) =
(−1)m

m!ω3

((1 − m)(y − x)
r3−m

+
λ(y − x)

r2−m
+

m

r2−m
− λ

r1−m

)
e−λr, (3.4)

where y − x =
3∑

i=1

(yi − xi)ei, |h| = λ, h = |h|�, r = |y − x|, m ≥ 0 and ω3 denotes the area of

the unit sphere in R3.
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Lemma 3.1 Let KA
m+1(r, h) and K∗A

m+1(r, h) be as in (3.1) and (3.2), m ≥ 0. Then{
L[KA

m+1(r, h)] = KA
m(r, h), y ∈ R3

x = R3 \ {x},
L∗[K∗A

m+1(r, h)] = K∗A
m(r, h), y ∈ R3

x = R3 \ {x}.
(3.5)

Lemma 3.2 Let KA
m+1(r, h) and K∗A

m+1(r, h) be as in (3.1) and (3.2), m ≥ 0. Then{
Lm+1[KA

m+1(r, h)] = 0, y ∈ R3
x = R3 \ {x},

Lm+1
∗ [K∗A

m+1(r, h)] = 0, y ∈ R3
x = R3 \ {x}.

(3.6)

Lemma 3.3 Let Km+1(r, λ) and K∗m+1(r, λ) be as in (3.3) and (3.4), m ≥ 0. Then{
Lλ[Km+1(r, λ)] = L∗−λ[Km+1(r, λ)] = Km(r, λ), y ∈ R3

x = R3 \ {x},
L−λ[K∗m+1(r, λ)] = L∗λ[K∗m+1(r, λ)] = K∗m(r, λ), y ∈ R3

x = R3 \ {x}. (3.7)

Lemma 3.4 Let Km+1(r, λ) and K∗m+1(r, λ) be as in (3.3) and (3.4), m ≥ 0. Then{
Lm+1

λ [Km+1(r, λ)] = L∗m+1
−λ [Km+1(r, λ)] = 0, y ∈ R3

x = R3 \ {x},
Lm+1
−λ [K∗m+1(r, λ)] = L∗m+1

λ [K∗m+1(r, λ)] = 0, y ∈ R3
x = R3 \ {x}. (3.8)

Suppose λ = 0, then (3.3) and (3.4) can be rewritten as

Km+1(r, 0) =
1

m!ω3

( (1 − m)(y − x)
r3−m

− m

r2−m

)
, (3.9)

K∗m+1(r, 0) =
(−1)m

m!ω3

( (1 − m)(y − x)
r3−m

+
m

r2−m

)
. (3.10)

Lemma 3.5 Let Km+1(r, 0) and K∗m+1(r, 0) be as in (3.9) and (3.10), m ≥ 0. Then{
D[Km+1(r, 0)] = [Km+1(r, 0)]D = Km(r, 0), y ∈ R3

x = R3 \ {x},
D[K∗m+1(r, 0)] = [K∗m+1(r, 0)]D = K∗m(r, 0), y ∈ R3

x = R3 \ {x}.
(3.11)

Lemma 3.6 Let Km+1(r, 0) and K∗m+1(r, 0) be as in (3.9) and (3.10), m ≥ 0. Then{
Dm+1[Km+1(r, 0)] = [Km+1(r, 0)]Dm+1 = 0, y ∈ R3

x = R3 \ {x},
Dm+1[K∗m+1(r, 0)] = [K∗m+1(r, 0)]Dm+1 = 0, y ∈ R3

x = R3 \ {x}.
(3.12)

Remark 3.1 By Lemma 3.6, Km+1(r, 0) and K∗m+1(r, 0) are the higher order kernel func-
tions. Comparing the forms with the results in [7, 29–31], these kernel functions are different.
In case of m = 0, Km+1(r, 0) and K∗m+1(r, 0) are the classical kernel functions in Clifford anal-
ysis. Thus, (3.3) and (3.4) also provide a way to find the kernel functions for (m + 1)-regular
functions.

Remark 3.2 Denote H∗
j (x), j ≥ 1 as in [7, 29–31]. Then we have

H∗
j (y − x) =

Kj(r, 0) + K∗j(r, 0)
2

, j ≥ 1. (3.13)



132 K. Gürlebeck and Z. X. Zhang

Theorem 3.1 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)). Then for x ∈ Ω,

u(x) =
1
ω3

[ k∑
j=1

1
(j − 1)!

∫
∂Ω

[ (2 − j)(y − x)
r4−j

+
|h|(y − x)

r3−j

]
e−|h|rdσyLj−1[u](y)�j−1

+
k∑

j=1

1
(j − 1)!

∫
∂Ω

[j − 1
r3−j

− |h|
r2−j

]
e−|h|rdσyLj−1[u](y)�j

]
− 1

(k − 1)!ω3

∫
Ω

[ (2 − k)(y − x)
r4−k

+
|h|(y − x)

r3−k

]
e−|h|rLk[u](y)�k−1dy

− 1
(k − 1)!ω3

∫
Ω

[k − 1
r3−k

− |h|
r2−k

]
e−|h|rLk[u](y)�kdy. (3.14)

Proof For x ∈ Ω, by Lemmas 2.3, 3.1 and 3.2, we have

Re
{ k∑

j=1

(−1)j−1

∫
∂Ω\∂B(x,ε)

K∗A
j (r, h)dσyLj−1[u](y)

}
= Re

{
(−1)k−1

∫
Ω\B(x,ε)

K∗A
k (r, h)Lk[u]dy

}
. (3.15)

In view of u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)), by Stokes formula, it can be proved that

lim
ε→0

Re
{∫

∂B(x,ε)

K∗A
j (r, h)dσyLj−1[u](y)

}
= 0, 2 ≤ j ≤ k. (3.16)

Taking limit ε → 0 in (3.15), in view of the weak singularity of K∗A
j (r, h) (j = 1, · · · , k), by

(2.16)–(2.18) and (3.16), we have

Re
{ k∑

j=1

(−1)j−1

∫
∂Ω

K∗A
j (r, h)dσyLj−1[u](y)

}
= uA(x)e2

A + Re(−1)k−1

∫
Ω

K∗A
k (r, h)Lk[u]dy. (3.17)

Combining (3.2) with (3.17), by the same technique as in (2.21), (3.14) holds.

By Lemmas 2.3, 3.1 and 3.2, similarly, we have the following theorem.

Theorem 3.2 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)). Then for x ∈ Ω,

u(x) =
1
ω3

[ k∑
j=1

(−1)j−1

(j − 1)!

∫
∂Ω

�
j−1Lj−1

∗ [u](y)dσy

[ (2 − j)(y − x)
r4−j

+
|h|(y − x)

r3−j

]
e−|h|r

−
k∑

j=1

(−1)j−1

(j − 1)!

∫
∂Ω

�
jLj−1

∗ [u](y)dσy

[j − 1
r3−j

− |h|
r2−j

]
e−|h|r

]
− (−1)k−1

(k − 1)!ω3

∫
Ω

�
k−1Lk

∗[u](y)
[ (2 − k)(y − x)

r4−k
+

|h|(y − x)
r3−k

]
e−|h|rdy
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− (−1)k−1

(k − 1)!ω3

∫
Ω

�
kLk

∗[u](y)
[1 − k

r3−k
+

|h|
r2−k

]
e−|h|rdy. (3.18)

Remark 3.3 In case of k = 1, Theorems 3.1 and 3.2 are just Theorems 2.1 and 2.2. Thus
we also call Theorems 3.1 and 3.2 the generalized higher order Cauchy-Pompeiu formulas.

By Theorems 3.1 and 3.2, we have the following result.

Theorem 3.3 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)), Lku = 0 in Ω. Then for x ∈ Ω,

u(x) =
1
ω3

[ k∑
j=1

1
(j − 1)!

∫
∂Ω

[ (2 − j)(y − x)
r4−j

+
|h|(y − x)

r3−j

]
e−|h|rdσyLj−1[u](y)�j−1

+
k∑

j=1

1
(j − 1)!

∫
∂Ω

[j − 1
r3−j

− |h|
r2−j

]
e−|h|rdσyLj−1[u](y)�j

]
. (3.19)

Theorem 3.4 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)), Lk

∗u = 0 in Ω. Then for x ∈ Ω,

u(x) =
1
ω3

[ k∑
j=1

(−1)j−1

(j − 1)!

∫
∂Ω

�
j−1Lj−1

∗ [u](y)dσy

[ (2 − j)(y − x)
r4−j

+
|h|(y − x)

r3−j

]
e−|h|r

−
k∑

j=1

(−1)j−1

(j − 1)!

∫
∂Ω

�
jLj−1

∗ [u](y)dσy

[j − 1
r3−j

− |h|
r2−j

]
e−|h|r

]
. (3.20)

Remark 3.4 In case of k = 1, Theorems 3.3 and 3.4 are just Theorems 2.3 and 2.4. Thus
we also call Theorems 3.3 and 3.4 the generalized higher order Cauchy integral formulas.

By Lemmas 2.4, 3.3 and 3.4, we have the following result.

Theorem 3.5 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)), K∗j(r, λ), j = 1, · · · , k be as in (3.4). Then

k∑
j=1

(−1)j−1

∫
∂Ω

K∗j(r, λ)dσyLj−1
λ [u](y) + (−1)k

∫
Ω

K∗k(r, λ)Lk
λ[u](y)dy

=

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(3.21)

Theorem 3.6 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)), Kj(r, λ), j = 1, · · · , k be as in (3.3). Then

k∑
j=1

(−1)j−1

∫
∂Ω

Kj(r, λ)dσyLj−1
−λ [u](y) + (−1)k

∫
Ω

Kk(r, λ)Lk
−λ[u](y)dy

=

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(3.22)
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Theorem 3.7 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)), K∗j(r, λ), j = 1, · · · , k be as in (3.4). Then

k∑
j=1

(−1)j−1

∫
∂Ω

L∗
j−1
−λ [u](y)dσyK∗j(r, λ) + (−1)k

∫
Ω

L∗k
−λ[u](y)K∗k(r, λ)dy

=

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(3.23)

Theorem 3.8 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)), Kj(r, λ) , j = 1, · · · , k be as in (3.3). Then

k∑
j=1

(−1)j−1

∫
∂Ω

L∗
j−1
λ [u](y)dσyKj(r, λ) + (−1)k

∫
Ω

L∗k
λ[u](y)Kk(r, λ)dy

=

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(3.24)

Remark 3.5 In case of k = 1, Theorems 3.5–3.8 are just Theorems 2.5–2.8.

Remark 3.6 In case of λ = 0, Theorems 3.5–3.8 are the other expressions of the higher
order Cauchy-Pompeiu formulas which are different from the results in [7, 29–31].

By Theorems 3.5–3.8, we have the following results.

Theorem 3.9 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)), K∗j(r, λ), j = 1, · · · , k be as in (3.4), Lk

λu = 0 in
Ω. Then

k∑
j=1

(−1)j−1

∫
∂Ω

K∗j(r, λ)dσyLj−1
λ [u](y) =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(3.25)

Theorem 3.10 Let Ω be an open bounded non-empty subset of R3 with a Liapunov bound-
ary ∂Ω, u ∈ Ck(Ω, C(V3,3))∩Ck−1(Ω, C(V3,3)), Kj(r, λ), j = 1, · · · , k be as in (3.3), Lk

−λu = 0
in Ω. Then

k∑
j=1

(−1)j−1

∫
∂Ω

Kj(r, λ)dσyLj−1
−λ [u](y) =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(3.26)

Theorem 3.11 Let Ω be an open bounded non-empty subset of R3 with a Liapunov
boundary ∂Ω, u ∈ Ck(Ω, C(V3,3)) ∩ Ck−1(Ω, C(V3,3)), K∗j(r, λ), j = 1, · · · , k be as in (3.4),
L∗k

−λu = 0 in Ω. Then

k∑
j=1

(−1)j−1

∫
∂Ω

L∗
j−1
−λ [u](y)dσyK∗j(r, λ) =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(3.27)
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Theorem 3.12 Let Ω be an open bounded non-empty subset of R3 with a Liapunov bound-
ary ∂Ω, u ∈ Ck(Ω, C(V3,3))∩Ck−1(Ω, C(V3,3)), Kj(r, λ) , j = 1, · · · , k be as in (3.3), L∗k

λu = 0.
Then

k∑
j=1

(−1)j−1

∫
∂Ω

L∗
j−1
λ [u](y)dσyKj(r, λ) =

{
u(x), x ∈ Ω,

0, x ∈ R3 \ Ω.
(3.28)

Remark 3.7 In case of k = 1, Theorems 3.9–3.12 are just Theorems 2.9–2.12.

Remark 3.8 In case of λ = 0, Theorems 3.9–3.12 are the other expressions of the higher
order Cauchy integral formulas which are different from the results in [7, 29–31].

4 Maximum Modulus Theorem

In this section, suppose that Ω is a bounded domain in R3, Hu = 0 in Ω. We shall give the
Maximum Modulus Theorem for u.

Lemma 4.1 Let u, v ∈ C2(Ω, C(V3,3)) ∩ C1(Ω, C(V3,3)). Then∫
Ω

(vH [u] − H [v]u)dy =
∫

∂Ω

vdσyLλ[u] −
∫

∂Ω

L∗−λ[v]dσyu. (4.1)

Remark 4.1 In case of λ = 0, Lemma 4.1 is just the following well-known Green formula
in Clifford analysis: ∫

Ω

(vΔ[u] − Δ[v]u)dy =
∫

∂Ω

vdσyD[u] −
∫

∂Ω

[v]Ddσyu. (4.2)

Lemma 4.2 Let Ω be a bounded domain in R3, u ∈ C2(Ω, C(V3,3)), Hu = 0 in Ω and
|u(x)| = constant in Ω. We have

( I ) If λ > 0, then u(x) ≡ 0 in Ω,
(II) If λ = 0, then u(x) must be constant.

Proof Denote u(x) =
∑
A

uA(x)eA. Then
∑
A

u2
A(x) ≡ C, from which we have

3∑
i=1

∑
A

(∂uA

∂xi

)2

+
∑
A

uA(x)Δ[uA] = 0. (4.3)

In view of Hu = 0 in Ω, thus HuA = 0 in Ω. Then more clearly,

Δ[uA] = λ2uA. (4.4)

Combining (4.3) with (4.4), we have

3∑
i=1

∑
A

(∂uA

∂xi

)2

+
∑
A

λ2u2
A(x) = 0. (4.5)

Obviously, if λ > 0, then uA(x) ≡ 0. Thus u(x) ≡ 0.

If λ = 0, then

∂uA(x)
∂xi

= 0, i = 1, 2, 3, A ∈PN, N = {1, · · · , 3}, x ∈ Ω. (4.6)

Consequently, u(x) is a constant.
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Remark 4.2 Lemma 4.2 is still valid in R3.

Remark 4.3 By Lemma 4.2, suppose that Ω is a bounded domain in R3, u ∈ C2(Ω,
C(V3,3)), |u(x)| = constant in Ω. Denote the conditions as follows: (I) Lu = 0 in Ω; (II)
L∗u = 0 in Ω; (III) Lλ[u] = 0 in Ω; (IV) L−λ[u] = 0 in Ω; (V) L∗−λ[u] = 0 in Ω; (VI)
L∗λ[u] = 0 in Ω, (VII) D[u] = 0 in Ω, (VIII) [u]D = 0 in Ω. If any of the above conditions is
satisfied, then u(x) ≡ C.

Theorem 4.1 Let Ω be an open bounded non-empty subset of R3 with a Liapunov boundary
∂Ω, u ∈ C2(Ω, C(V3,3)) ∩ C1(Ω, C(V3,3)), and Hu = 0 in Ω. Then for x ∈ Ω,

u(x) =
1
ω3

∫
∂Ω

(y − x
r3

+
λ(y − x)

r2
− λ

r

)
e−λrdσyu(y) +

1
ω3

∫
∂Ω

e−λr

r
dσyLλ[u](y). (4.7)

Proof By Lemma 4.1, taking v = − 1
ω3

e−λr

r in (4.1), obviously, we get L∗−λ[v] = K∗1(r, λ).
Thus for x ∈ Ω, we have

− 1
ω3

∫
∂(Ω\B(x,δ))

e−λr

r
dσyLλ[u](y) −

∫
∂(Ω\B(x,δ))

K∗1(r, λ)dσyu = 0. (4.8)

It is easy to check that

lim
δ→0

[
− 1

ω3

∫
∂B(x,δ)

e−λr

r
dσyLλ[u](y) −

∫
∂B(x,δ)

K∗1(r, λ)dσyu
]

= −u(x). (4.9)

Combining (4.8) with (4.9), (4.7) follows.

Corollary 4.1 Let Ω be a bounded domain in R3, u ∈ C2(Ω, C(V3,3)) and Hu = 0 in Ω.
Then for any x0 ∈ Ω,

u(x0) =
1
ω3

( 1
R2

+
λ

R

)
e−λR

∫
∂B(x0,R)

u(y)dS +
λ2e−λR

ω3R

∫
B(x0,R)

u(y)dy, (4.10)

where R is chosen such that B(x0, R) ⊂ Ω.

Remark 4.4 In case of λ = 0, Corollary 4.1 is just the mean value theorem for harmonic
funtions.

Remark 4.5 Corollary 4.1 is still valid for the functions satisfying any of the following
conditions: (I) Lu = 0 in Ω; (II) L∗u = 0 in Ω; (III) Lλ[u] = 0 in Ω; (IV) L−λ[u] = 0 in Ω; (V)
L∗−λ[u] = 0 in Ω; (VI) L∗λ[u] = 0 in Ω; (VII) D[u] = 0 in Ω; (VIII) [u]D = 0 in Ω.

Theorem 4.2 (Maximum Modulus Theorem) Suppose that Ω is a bounded domain in R3,
u ∈ C2(Ω, C(V3,3)) and Hu = 0 in Ω. If there exists an x0 ∈ Ω, such that

|u(x0)| ≥ |u(x)|, x ∈ Ω, (4.11)

then u(x) is a constant. Moreover, if λ > 0, then u(x) ≡ 0.

Proof (I) λ = 0, by the mean value theorem of harmonic functions and Lemma 4.2, the
result follows.

(II) λ > 0, suppose |u(x0)| > 0. Taking R > 0 such that B(x0, R) ⊂ Ω, by Corollary 4.1,
we have

|u(x0)| ≤ 1
ω3

( 1
R2

+
λ

R

)
e−λR|u(x0)|R2ω3 +

λ2e−λR

ω3R
|u(x0)|R3V3, (4.12)
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more clearly,

|u(x0)| ≤
1 + λR + (λR)2

3

eλR
|u(x0)| < |u(x0)|. (4.13)

(4.13) implies |u(x0)| = 0. Thus the result follows.

Corollary 4.2 Suppose that Ω is a bounded domain in R3, u ∈ C2(Ω, C(V3,3)), Hu = 0 in
Ω and continuous on Ω. Then

max{|u(x)|, x ∈ Ω} = max{|u(x)|, x ∈ ∂Ω}. (4.14)

Remark 4.6 Theorem 4.2 and Corollary 4.2 are still valid for the functions satisfying any
of the following conditions: (I) Lu = 0 in Ω; (II) L∗u = 0 in Ω; (III) Lλ[u] = 0 in Ω; (IV)
L−λ[u] = 0 in Ω; (V) L∗−λ[u] = 0 in Ω; (VI) L∗λ[u] = 0 in Ω; (VII) D[u] = 0 in Ω, (VIII)
[u]D = 0 in Ω.
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