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Abstract The author first introduces the notion of affine structures on a ringed space
and then obtains several related properties. Affine structures on a ringed space, arising
from complex analytical spaces of algebraic schemes, behave like differential structures on
a smooth manifold.

As one does for differential manifolds, pseudogroups of affine transformations are used
to define affine atlases on a ringed space. An atlas on a space is said to be an affine
structure if it is maximal. An affine structure is said to be admissible if there is a sheaf on
the underlying space such that they are coincide on all affine charts, which are in deed affine
open sets of a scheme. In a rigour manner, a scheme is defined to be a ringed space with
a specified affine structure if the affine structures make a contribution to the cases such as
analytical spaces of algebraic schemes. Particularly, by the whole of affine structures on a
space, two necessary and sufficient conditions, that two spaces are homeomorphic and that
two schemes are isomorphic, coming from the main theorems of the paper, are obtained
respectively. A conclusion is drawn that the whole of affine structures on a space and a
scheme, as local data, encode and reflect the global properties of the space and the scheme,
respectively.
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1 Introduction

1.1 Background and motivation

As one studies differential structures on a manifold such as Milnor [11], affine structures on
a scheme, taken as counterparts, will be introduced and discussed in this paper. Here, we will
obtain several properties on affine structures in a rigour and systematic manner. These results
in fact can be applied to the complex analytical space of an algebraic scheme over a number
field.

1.1.1 An affine covering of a scheme

As well-known, a scheme (or a projective scheme, respectively) is defined to be a ringed
space that can be covered by a family of affine (or projective, respectively) schemes, namely an
affine covering of the scheme. An affine scheme is the spectrum of a commutative ring equipped
with the sheaf (see [4, 7]). In the paper, it will be seen that such a family of affine schemes
determines a unique affine structure on the underlying space of the scheme.
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1.1.2 Each affine covering produces a complex analytical space

Fixed an algebraic scheme X over a number field K. Let {Aα}α∈Γ be a family of finitely
generated algebras over K such that their spectra SpecAα cover X , i.e.,

⋃
α

SpecAα ⊇ X

holds. Here, each Aα is isomorphic to the quotient of some polynomial ring K[t1, t2, · · · , tnα ]
by a finite number of polynomials

f1, f2, · · · , frα

over K in the variables.
By Serre’s GAGA (see [5, 12]), each open subscheme SpecAα has an analytical space Xan

α

that is defined by the common zeros of the polynomials

f1, f2, · · · , frα

mentioned above. Gluing these analytical spaces Xan
α , we will obtain an analytical space Xan,

called the complex analytical space of X . Likewise, we have a complex space for a projective
scheme over a number field of finite type. It has been seen that such a process has several
functorial properties with respect to X (see [5, 12]).

Hence, every affine covering of X produces a complex analytical space Xan of X .
However, in general, an algebraic scheme X can have many affine coverings. Then what

about the complex analytical spaces of X produced by different affine coverings of X?

1.1.3 Different affine coverings can produce different complex analytical spaces

Let us take an example raised by Serre [13]:

Let V be the nonsingular projective variety over a number field K as defined in [13]. Suppose
that Vφ is a conjugate variety of V defined by an isomorphism φ. Then there is such an
isomorphism φ that the complex analytic spaces V an and V anφ are not of the same homotopy
type.

Denote by A and Aφ the homogeneous coordinate rings of V and Vφ, respectively. Then we
have two isomorphic projective schemes

X = ProjA and Xφ = ProjAφ

with two different complex analytical spaces

Xan = V an and Xan
φ = V anφ

respectively.
This shows that different affine coverings of the same projective scheme can produce different

complex analytical spaces.
For this phenomenon, there are also some more examples arising from abelian varieties and

Shimura varieties (see [2, 10]).
Now we come to a conclusion that there do exist evidences, such as related examples in

[2, 5, 10, 13], that different affine coverings can produce different complex analytical spaces for
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a fixed algebraic scheme. For instance, for the case of algebraic schemes, consider the cones
of the complex spaces, contained in the complex projective space, defined by the homogeneous
rings mentioned above.

Why does there exist such a phenomena? It is an interesting problem. Such related topics
will be discussed in our subsequent papers.

1.1.4 Several problems

In the above, it has been seen that different affine coverings of an algebraic scheme can
produce different complex analytical spaces. Then it is natural for one to have several questions
(similarly for projective schemes) such as the following:

(1) How can we give a restrictive definition that a family of affine schemes patch a scheme?
(2) Does there exist another family of affine schemes covering the fixed scheme and making

it into a scheme?
(3) Given another family of affine schemes which cover the fixed scheme. Will we obtain

the same scheme?
(4) Given a ringed space. How many families of affine schemes do patch it? How many

schemes do there exist on the same underlying topological space?
(5) In particular, given an algebraic scheme X over a number field. There can be many

families of affine schemes covering X . Each such a family produces an analytical space Xan of
X . When are these analytical spaces Xan either diffeomorphic to each other or of the same
homotopy types?

Several questions related to the above are in part discussed in the paper.
At the same time, affine structures have also been encountered by us during the discussions

on a type of Galois covers of algebraic and arithmetic schemes, where such a scheme is said to
be Galois closed if it has only one affine structure.

The Galois closed schemes have several nice properties with applications to class fields, for
example, their Galois groups of rational fields are isomorphic to their groups of automorphisms
(for instance, see [1]).

1.2 Techniques

As a counterpart, an affine structure on a scheme behaves exactly like a differential structure
on a manifold.

1.2.1 A smooth manifold can have many differential structures

In a classical way, a differential manifold is a topological space covered by a family of open
subsets in some Euclidean space, which is obtained by glueing such a family of open sets as
patches. Under some technical conditions, such a family of open sets is called a differential
structure on the manifold.

Nowadays, there have been many well-known facts about manifolds and their differential
structures:

(1) There exist differential manifolds which have many differential structures on them and
the differential structures produce many manifolds that are not diffeomorphic to each other,
respectively (see [11]).

(2) There exist topological spaces that have no differential structures on them.
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(3) There exist differential manifolds such that they will be of different properties if we
establish different differential structures on the (same) underlying spaces.

1.2.2 Affine structure v.s. differential structure

Many approaches and skills in topology can be applied here to schemes. The techniques
in the present paper, which we borrowed from differential topology, are thus not new to some
certain degree.

1.2.3 Known related results on affine coverings

For affine coverings, there are several informal discussions, for example, see [7, 14], on how
to patch a scheme, that is, how to glue a given family of affine schemes into a scheme; for a
more abstract case of categories, there are fibered categories and groupoids (see [3, 5]) which
can be used to discuss such coverings.

However, all those discussions involved in [3, 5, 7, 14] deal only with coverings, that is, a
family of abstract objects over a fixed object.

1.2.4 Further results obtained in the paper

In the paper, we will have further discussions on such affine coverings and several related
results will be obtained. We will introduce and discuss affine structures in a rigor and systematic
manner, where an affine structure is an affine covering that is taken as maximal families of
objects covering a given object and satisfying the certain properties.

In fact, the affine structures afford a platform to us to discuss the problems mentioned in
Section 1.1. In particular, an algebraic scheme over C can have a unique associative analytical
space if there exists only one affine structure on its underlying space.

Furthermore, in a rigor manner, a scheme is a locally ringed space with a specified affine
structure on it. It follows that in such a case, an algebraic scheme over a number field can be
associated exactly with a unique complex analytical space.

The main results obtained in the paper are that by the whole of affine structures on a space,
it will be seen whether two spaces are homeomorphic and whether two schemes are isomorphic.
In other words, the whole of affine structures on a space and a scheme, as local data, encode
and reflect the global properties of the space and the scheme, respectively.

Such results can be applied to complex analytical spaces of algebraic schemes and arithmetic
schemes.

1.3 Outline of the paper

At last, we give an outline of the paper. In Section 2, we use pseudogroups Γ of affine
transformations to define an affine Γ-atlas on a topological space, which consists of a family
of affine charts. An affine Γ-structure on a space is an affine Γ-atlas which is maximal. Our
discussion can be regarded as an algebraic version of differential structures (see [6, 8]).

In Section 3, an affine Γ-structure on a space is said to be admissible if there is a sheaf on
the space such that they are coincide with each other on each affine chart. Here, such a sheaf
is called an extension of the given affine structure.

An affine structure which is not admissible will be of no practical use.
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Given a scheme (X,OX) in the usual manner (see [4, 7]). In Section 4, we discuss the
special types of affine structures on the space X , called the canonical and the relative canonical
affine structures in the scheme (X,OX) respectively. Their extensions are called the associate
schemes of (X,OX).

Every scheme has an associate scheme. In particular, a scheme itself is an associate scheme
of it. As schemes, a fixed scheme and their associate schemes are isomorphic with each other.

Now put
(1) A(X) � the set of all admissible affine structures on a topological space X ;
(2) A0(X,OX) � the set of all the relative canonical affine structures in a scheme (X,OX).
Using the set of affine structures on a space, in Section 5, we give the statements of the two

main theorems, that is, Theorems 5.1 and 5.2.
The two theorems are proved in Sections 7 and 8, respectively.
As a conclusion, in Section 6, we give several concluding remarks. Particularly, we come to

a conclusion that to be precisely defined, a scheme should be a locally ringed space together
with a given admissible affine structure on it if the affine structures in deed make a contribution
to a particular case.

2 Definitions for Affine Structures

In this Section, we introduce affine structures on a space in a evident manner as one does
for differential structures on a space (for instance, see [6, 8]).

2.1 Pseudogroup of affine transformations

Let Comm be the category of commutative rings with identities, and Comm/k the category of
finitely generated algebras over a field k. Here, a pseudogroup (or groupoid) is a small category
in which every morphism is invertible (see [9]).

Definition 2.1 A pseudogroup Γ of affine transformations, as a subcategory of Comm, is
a pseudogroup of isomorphisms between commutative rings satisfying the conditions (1)–(5) :

(1) Each σ ∈ Γ is an isomorphism from a ring dom(σ) onto a ring rang(σ) contained in Γ,
called the domain and range of σ, respectively.

(2) If σ ∈ Γ, the inverse σ−1 is contained in Γ.
(3) The identity map idA on A is contained in Γ if there is some δ ∈ Γ with dom(δ) = A.

(4) If σ ∈ Γ, the isomorphism induced by σ defined on the localization dom(σ)f of the ring
dom(σ) at any 0 �= f ∈ dom(σ) is contained in Γ.

(5) Given any σ, δ ∈ Γ. Then the isomorphism factorized by dom(τ) from dom(σ)f onto
rang(δ)g is contained in Γ if for some τ ∈ Γ there are isomorphisms dom(τ) ∼= dom(σ)f and
dom(τ) ∼= rang(δ)g with 0 �= f ∈ dom(σ) and 0 �= g ∈ rang(δ).

Such a pseudogroup Γ is said to be a pseudogroup of k-affine transformation if Γ is contained
in the category Comm/k, or equivalently, if each isomorphism in Γ is an isomorphism of finitely
generated algebras over a field k.

2.2 Affine charts and affine atlas

For a topological space, we give the notions of affine charts and affine atlas.
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Definition 2.2 Let X be a topological space and Γ a pseudogroup of affine transformations.
Then an affine Γ-atlas A(X,Γ) on X is a collection of pairs (Uj , ϕj) with j ∈ Δ, called affine
charts, satisfying the conditions (1)–(3) :

(1) For every pair (Uj , ϕj) ∈ A(X,Γ), Uj is an open subset of X and ϕj is a homeomorphism
of Uj onto Spec(Aj), where Aj is a commutative ring contained in Γ.

(2)
⋃
j∈Δ

Uj ⊇ X is an open covering of X.

(3) Given any (Ui, ϕi), (Uj , ϕj) ∈ A(X,Γ) with Ui∩Uj �= ∅. There exists a pair (Wij , ϕij) ∈
A(X,Γ) such that Wij ⊆ Ui ∩ Uj and that the isomorphism from the localization (Aj)fj onto
the localization (Ai)fi that is induced by the restriction

ϕj ◦ ϕ−1
i |Wij : ϕi(Wij) → ϕj(Wij)

is also contained in Γ. Here Ai and Aj are commutative rings contained in Γ such that

ϕi(Ui) = SpecAi and ϕj(Uj) = SpecAj

hold and that there are homeomorphisms

ϕi(Wij) ∼= Spec(Ai)fi and ϕj(Wij) ∼= Spec(Aj)fj

for some fi ∈ Ai and fj ∈ Aj .

Moreover, A(X,Γ) is said to be a k-affine Γ-atlas on X if Γ is a subcategory of Comm/k.

An affine Γ-atlas A(X,Γ) on X is said to be complete (or maximal) if it can not be contained
properly in any other affine Γ-atlas of X.

Remark 2.1 The above construction in Definition 2.2 is well-defined since the open covering
{Uj} such that (Uj , ϕj) ∈ A(X,Γ) is a base for the topology on X.

Let A(X,Γ) and A(X,Γ′) be atlases on a spaceX. Then Γ ⊇ Γ′ holds if A(X,Γ) ⊇ A(X,Γ′).

2.3 Affine structures

As one has differential structures on a manifold, here we have affine structures on a space
such as the following.

Definition 2.3 Let X be a topological space and Γ a pseudogroup of affine transformations.
Then two affine Γ-atlases A and A′ on X are said to be Γ-compatible if the condition below is
satisfied:

For any (U,ϕ) ∈ A and (U ′, ϕ′) ∈ A′ with U ∩U ′ �= ∅ there exists an affine chart (W,ϕ′′) ∈
A ∩ A′ such that W ⊆ U ∩ U ′ and that the isomorphism from the localization (A)f onto the
localization (A′)f ′ induced by the restriction ϕ′ ◦ϕ−1 |W is also contained in Γ. Here A and A′

are commutative rings contained in Γ such that ϕ(U) = SpecA and ϕ′(U ′) = SpecA′ hold and
that there are homeomorphisms ϕ(W ) ∼= Spec(A)f and ϕ′(W ) ∼= Spec(A′)f ′ for some f ∈ A

and f ′ ∈ A′.

Proposition 2.1 Let X be a topological space and Γ be a pseudogroup of affine transfor-
mations. Then for any given affine Γ-atlas A on X, there is a unique complete affine Γ-atlas
Am on X such that

(1) A ⊆ Am;
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(2) A and Am are Γ-compatible.

In such a case, we say that A is a base for Am and Am is the complete affine Γ-atlas
determined by A.

Proof Prove the existence. Let Σ be the collection of affine Γ-atlases Aα on X such that
A ⊆ Aα and that A and Aα are Γ-compatible.

Then Σ is a partially ordered set together with the inclusions of sets Aα ⊆ Aβ for any
Aα,Aβ ∈ Σ. It is clear that every totally ordered subset of Σ has a upper bound in Σ. By
Zorn’s Lemma, Σ has maximal elements.

Prove the uniqueness. Let Am and A′
m be two maximal elements of Σ. Then we must have

Am = A′
m. Otherwise, hypothesize Am �= A′

m. It is seen that Am and A′
m are Γ-compatible

since they are Γ-compatible respectively with A. Then the union Am ∪ A′
m is contained in Σ,

where we obtain a contradiction.

Definition 2.4 Let X be a topological space. An affine Γ-structure on X is a complete
affine Γ-atlas A(Γ) on X, where Γ is a given pseudogroup of affine transformations.

Likewise, we define a k-affine Γ-structure if Γ ⊆ Comm/k.

3 Admissible Affine Structures

By Proposition 2.1, it is seen that an affine atlas on a topological space X determines a
unique affine structure on it. From this view of point, we sometimes identify an affine atlas on
X with its determined complete affine structure on X. In this section, we discuss admissible
affine structures on a space. On a given space, only admissible affine structures are interesting
and are of the practical uses.

Definition 3.1 Let A(Γ) be an affine Γ-structure on a topological space X. Suppose that
there exists a locally ringed space (X,F) such that ϕα∗F |Uα (SpecAα) = Aα holds for each
(Uα, ϕα) ∈A(Γ), where Aα is a commutative ring contained in Γ with ϕα(Uα) = SpecAα.

Then A(Γ) is said to be an admissible affine structure on X and (X,F) is said to be an
extension of the affine Γ-structure A(Γ).

Proposition 3.1 All extensions of an admissible affine structure on a topological space
are schemes which are isomorphic with each other.

Proof Let A be an admissible affine structure on a topological space X . It is evident that
each extension of A on X is a scheme.

Now fixed any extensions (X,F) and (X,G) of A on X . We prove F ∼= G.
In deed, let Uα be an open subset of X contained in A. From the assumption, we have

Γ(F , Uα) = Γ(G, Uα).

Take any open subset U of X . We have

U =
⋃
α

Uα

with Uα ∈ A. Define a map

φ : Γ(F , U) = Γ(G, U), t �→ φ(t),
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where φ(t) ∈ Γ(G, U) is the section on U determined by

t |Uα= φ(t) |Uα .

Then φ is an isomorphism for every open subset U of X .
By φ, we obtain an isomorphism Fx ∼= Gx at every x ∈ X , and hence F ∼= G holds.

Corollary 3.1 For affine structures, there are the following statements:
(1) Let (X,F) be an extension of the affine Γ-structure A(Γ) on a space X. Then we have

(U,F |U ) ∼= (SpecA, Ã) and F |U= ϕ−1
∗ Ã

for every affine chart (U,ϕ) ∈A(Γ) with ϕ(U) = Spec(A), where A is a commutative ring
contained in Γ.

(2) An affine structure A on a space X is admissible if and only if A can be extended to be
a sheaf F on X such that (X,F) is a locally ringed space.

Proof It is immediate from Definition 3.1 and Proposition 3.1.

4 Canonical Affine Structures

In this section, it is seen that for a given scheme there can be many different admissible
affine structures on the underlying topological space of the scheme. That is, a given scheme
can have many associate schemes. All associate schemes of a given scheme are isomorphic as
schemes but have different affine structures so that their complex analytical spaces can be very
different for the case of algebraic schemes over a number field.

4.1 Canonical pseudogroups of affine transformations

To start with, let us consider an example.

Example 4.1 (Different Affine Structures) Let k be a field.
(1) Put

Γ1 = {the identity 1k : k → k},
Γ2 = {the identity 1k : k → k} ∪ {a field isomorphism σ : k → k′}

∪ {the inverse σ−1 : k′ → k}.

Then Γ1 and Γ2 are both pseudogroups of affine transformations.
(2) Let

A(Γ1) = {(U,ϕ)}, A(Γ2) = {(U,ϕ), (V, η)},

where U = V = Spec (k), ϕ(U) = Spec (k) and η(V ) = Spec (k′). Then Spec (k) is an extension
of the affine structure A(Γ1). In general, it is not true that Spec(k) is an extension of A(Γ2). For
example, let 3

√
2, ξ, ξ be the roots of the equation X3 − 2 = 0 in C. Consider k = Q( 3

√
2), k′ =

Q(ξ).
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Definition 4.1 Let (X,OX) be a scheme. Denote by Γ0 (respectively, Γmax) the union of
the set of some (respectively, all) identities of commutative rings

idAα : Aα → Aα

and the set of some (respectively, all) isomorphisms of commutative rings

σαβ : (Aα)fα → (Aβ)fβ
,

satisfying the conditions (1)–(2) :
(1) Each Aα, Aβ , Aγ ∈ Comm are commutative rings such that there are affine open subsets

Uα, Uβ and Uγ ⊆ Uα ∩ Uβ

of X satisfying the conditions

ϕα(Uα) = SpecAα, ϕβ(Uβ) = SpecAβ and ϕγ(Uγ) = SpecAγ .

(2) Each σαβ : (Aα)fα → (Aβ)fβ
is induced from the homeomorphism

ϕα ◦ ϕ−1
β |Uγ : ϕβ(Uγ) → ϕα(Uγ)

such that
ϕα(Uγ) ∼= Spec(Aα)fα and ϕβ(Uγ) ∼= Spec(Aβ)fβ

hold for some fα ∈ Aα and fβ ∈ Aβ .

Then the pseudogroup generated by Γ0 in Comm, denoted by ΓX,OX , which is the small-
est pseudogroup containing Γ0 in Comm, is called a pseudogroup of affine transformations in
(X,OX).

The pseudogroup generated by Γmax in Comm, denoted by Γmax
X,OX

, is called the maximal
pseudogroup of affine transformations in (X,OX).

For any given ΓX,OX , define

A∗(ΓX,OX ) = {(Uα, ϕα) : ϕα(Uα) = SpecAα and Aα ∈ ΓX,OX},

where each Uα is an affine open subset in the scheme X.

Definition 4.2 Let (X,OX) be a scheme. Given such a pseudogroup ΓX,OX in (X,OX).
Suppose that A∗(ΓX,OX ) is an affine ΓX,OX -atlas on the space X. Then ΓX,OX is said to be a
canonical pseudogroup of affine transformations in the scheme (X,OX) and A∗(ΓX,OX ) is said
to be an affine atlas in the scheme (X,OX).

It is immediate that ΓX,OX is a sub-pseudogroup of Γmax
X,OX

. There can be many canonical
pseudogroups of affine transformations in the scheme (X,OX). By Zorn’s Lemma, it is seen
that Γmax

X,OX
is maximal among these pseudogroups.

Take an example. Let X = Spec (Z) and Y be the disjoint union of X . Then there are
three canonical pseudogroups of affine transformations in the scheme Y , which are generated
respectively by Z and its localisations, by Z ⊕ Z and its localisations, and by Z and Z ⊕ Z and
their localisations.
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4.2 Canonical affine structures

In general, the underlying space of a scheme can have many affine structures on it.

Definition 4.3 Let Γ be a canonical pseudogroup of affine transformations in a scheme
(X,OX).

An affine Γ-atlas A on the space X is said to be a canonical affine structure in the scheme
(X,OX) if A is the affine Γ-structure on X determined by the affine Γ-atlas A∗(Γ).

An affine Γ-atlas A on the space X is said to be a relative canonical affine structure in the
scheme (X,OX) if A is maximal among all the affine Γ-atlases in (X,OX) which contain the
affine Γ-atlas A∗(Γ) and are Γ-compatible.

A scheme is said to have a unique (respectively, relative) canonical affine structure if there
exists only one (respectively, relative) canonical affine structure in it.

Proposition 4.1 Let Γ be the maximal pseudogroup of affine transformations in a scheme
(X,OX). Then A∗(Γ) is a relative canonical affine Γ-structure in (X,OX).

Proof Prove that A∗(Γ) is a Γ-atlas of the space X. In fact, it is clear that A∗(Γ) is
Γ-compatible. Hence, it suffices to prove that A∗(Γ) affords us a base for the topology on the
space X.

Fixed any point x ∈ X . Take any affine open subset U � x in (X,OX) such that there is
an isomorphism

(ϕ, ϕ̃) : (U,OX |U ) ∼= (SpecA, Ã),

where A ∈ Comm.

There is some f ∈ A such that Af is contained in Γ. Hypothesize that Af �∈ Γ holds for any
f ∈ A. Then {(U,ϕ)} and A∗(Γ) are Γ-compatible; it follows that {idA} ∪ Γ is a pseudogroup
of affine transformations in (X,OX), where idA : A→ A is the identity map; hence, we have

Γ � {idA} ∪ Γ,

which is in contradiction with the assumption.
Now take any f ∈ A such that Af ∈ Γ. Let SpecA be irreducible without loss of generality.

We have
Spec(Af ) ∼= D(f) ⊆ SpecA.

Then {(U,ϕ)} and A∗(Γ) are Γ-compatible.
As U is an affine open subset in X , we have (U,ϕ) ∈ A∗(Γ); as Γ is maximal in (X,OX), it

is seen that A is contained in Γ.
This proves that for any x ∈ X there is an affine chart (U,ϕ) ∈ A∗(Γ) such that x ∈ U .

Remark 4.1 Let (X,OX) be a scheme. Then A∗(ΓX,OX ) ⊆ A∗(ΓmX,OX
). In particular, each

relative canonical affine ΓX,OX -structure in (X,OX) is contained in A∗(ΓmX,OX
). In general,

there can be different relative canonical affine structures in a scheme.
Furthermore, we have the following conclusions:

Proposition 4.2 Let (X,OX) be a scheme. There are the following statements:
(1) Let Γ be a canonical pseudogroup of affine transformations in (X,OX). Then there is a

unique (respectively, relative) canonical affine Γ-structure in (X,OX).



Affine Structures and Schemes 149

Furthermore, given any affine open subset U in (X,OX). Then U is contained in the
canonical affine Γ-structure in (X,OX) if and only if U is contained in the relative canonical
affine Γ-structure in (X,OX).

(2) The scheme (X,OX) has a unique affine structure if and only if (X,OX) has a unique
relative affine structure.

Proof (1) It is immediate from definition.

(2) Assume that (X,OX) has a unique affine structure. Hypothesize that A(Γ1) and A(Γ2)
are two distinct relative canonical affine structures in (X,OX) together with the canonical
pseudogroups Γ1 and Γ2 respectively.

From Γ1 and Γ2, we obtain two canonical affine structures B(Γ1) and B(Γ2) in (X,OX).
Then B(Γ1) and B(Γ2) are neither Γ1-compatible nor Γ2-compatible. Otherwise, if they are
Γ1-compatible, by (1) it will be seen that A(Γ1) and A(Γ2) are Γ1-compatible.

Hence, there are two distinct canonical affine structures in (X,OX), which is a contradiction
to the assumption.

Conversely, assume that (X,OX) has a unique relative affine structure. If (X,OX) has two
distinct canonical affine structures B(Γ1) and B(Γ2), by (1) we obtain two relative canonical
affine structures in (X,OX) which are neither Γ1-compatible nor Γ2-compatible in virtue of the
property of a base for the topology on X , which is a contradiction.

4.3 Associate schemes

In the following, it is seen that a scheme can have many associate schemes.

Proposition 4.3 All (respectively, relative) canonical affine structures in a scheme (X,OX)
are admissible; moreover, their extensions are all isomorphic to (X,OX) as schemes.

Proof Let A∗(X,OX) be a (respectively, relative) canonical affine structure on X. Take
any (Uα, ϕα) ∈ A∗(X,OX). There is the isomorphism

(τα, τ̃α) : (Uα,OX |Uα) ∼= (SpecAα, Ãα),

where ϕα(Uα) = τα(Uα), τ̃α(Ãα) = τα∗OX |Uα .

This proves that the scheme (X,OX) is at least an extension of A∗(X,OX). It follows that
A∗(X,OX) is admissible.

Take any extension (X,F) of A∗(X,OX). By considering sections, it is seen that (X,F)
and (X,OX) are isomorphic schemes.

Definition 4.4 An associate scheme of a given scheme (X,OX) is an extension on the
space X of a canonical affine structure or a relative canonical affine structure in (X,OX).

Remark 4.2 By Proposition 4.3, we have the following statements:

(1) Every scheme has an associate scheme. In particular, a scheme is an associate scheme
of itself.

(2) All associate schemes of a given scheme are isomorphic as schemes. However, their
complex analytical spaces can be very different for the case of algebraic schemes.
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5 Statements of the Main Theorems

In this section, we give the statements of the main theorems in the paper.

5.1 Definitions and notations

Let us fix notations and terminology.
For a topological space X , put
(1) A(X) � the set of all admissible affine structures on the space X .
For a scheme (X,OX), set
(2) A0(X,OX) � the set of all the relative canonical affine structures in the scheme (X,OX).
Likewise, we can define A(X ; k) and A0(X,OX ; k) for k-affine structures.

Definition 5.1 For two spaces X and Y , we say

A(X) ⊆ A(Y )

if the below condition is satisfied:
Given any affine chart (Uα, ϕα) contained in an affine structure A(X) belonging to A(X).

There is an affine chart (Vα, ψα) contained in an affine structure A(Y ) belonging to A(Y ) such
that Bα = Aα. Here Aα, Bα ∈ Comm, ϕa(Uα) = SpecAα, and ψα(Vα) = SpecBα.

Definition 5.2 For two spaces X and Y , we say

A(X) = A(Y )

if there are relations A(X) ⊆ A(Y ) and A(X) ⊇ A(Y ).

Likewise, replacing admissible by relative canonical, we define

A0(X,OX) = A0(Y,OY )

for two schemes (X,OX) and (Y,OY ).

Definition 5.3 For two spaces X and Y , we say

A(X) � A(Y )

if the below conditions (1)–(3) are satisfied:
(1) (Local Isomorphism) Given any affine chart (Uα, ϕα) contained in an affine structure

A(X) belonging to A(X).
Then there is an affine chart (Vα, ψα) contained in an affine structure A(Y ) belonging to

A(Y ) such that Aα and Bα are isomorphic rings. Here Aα, Bα ∈ Comm, ϕa(Uα) = SpecAα,
and ψα(Vα) = SpecBα.

(2) (Covering) Let {(Uα, ϕα)}α∈Γ be a family of affine charts (Uα, ϕα) contained in some
affine structures A(Γα) belonging to A(X) such that ϕa(Uα) = SpecAα and

⋃
α∈Γ

Uα ⊇ X.

Then
⋃
i,α

Vi,α ⊇ Y holds, where Vi,α runs through all the affine charts (Vi,α, ψi,α) contained in

any affine structures A(Γi,α) belonging to A(Y ) such that Bi,α ∼= Aα and ψi,α(Bi,α) = SpecBi,α.
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(3) (Filtering) Let (Uα, ϕα) and (Uβ, ϕβ) be two affine charts contained in some affine
structures A(Γα) and A(Γβ) belonging to A(X) respectively. Given any xα ∈ SpecAα and
xβ ∈ SpecAβ with ϕ−1

α (xα) = ϕ−1
β (xβ), where ϕα(Uα) = SpecAα and ϕβ(Uβ) = SpecAβ.

Then there exist affine charts (Vα, ψα) and (Vβ , ψβ) respectively contained in some affine
structures A′(Γ′

α) and A′(Γ′
β) belonging to A(Y ) such that ψ−1

α ◦ σα(xα) = ψ−1
β ◦ σβ(xβ) holds

and that there are ring isomorphisms δα : Bα ∼= Aα and δβ : Bβ ∼= Aβ , where ψα(Vα) =
SpecBα, ψβ(Vβ) = SpecBβ, and σα : SpecAα → SpecBα and σβ : SpecAβ → SpecBβ are the
isomorphisms induced from δα and δβ, respectively.

Likewise, replacing admissible by relative canonical, we define

A0(X,OX) � A0(Y,OY )

for two schemes (X,OX) and (Y,OY ).
Such an isomorphism δα : Aα ∼= Bα is called a deck transformation from X into Y.

Definition 5.4 For two spaces X and Y , we say

A(X) ∼= A(Y )

if there are relations A(X) � A(Y ) and A(X) � A(Y ).

Likewise, replacing admissible by relative canonical, we define

A0(X,OX) ∼= A0(Y,OY )

for two schemes (X,OX) and (Y,OY ).

5.2 Statements of the main theorems

Here there are the main theorems of the present paper.

Theorem 5.1 Let X and Y be two topological spaces such that either A(X) �= ∅ or A(Y ) �= ∅
holds. Then X and Y are homeomorphic if and only if there is

A(X) = A(Y ).

Theorem 5.2 Any two schemes (X,OX) and (Y,OY ) are isomorphic if and only if we
have

A0(X,OX) ∼= A0(Y,OY ).

We will prove Theorems 5.1 and 5.2 in Sections 7 and 8, respectively.

Remark 5.1 From the two main theorems above, it is seen that the whole of affine
structures on a space and the underlying space of a scheme, as local data of the space, encode
the global data of the space and the scheme, in particular, the global topology of the space and
the scheme, respectively.

Remark 5.2 In Theorem 5.2, the condition

A0(X,OX) ∼= A0(Y,OY )
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can not be replaced by
A(X,OX) = A(Y,OY ).

For example, consider X = Spec (Q) and Y = Spec (Q(
√

2)).

6 Concluding Remarks

From Remark 4.2 and Theorem 5.2, we have the following proposition, a comparison between
two schemes of the same underlying space.

Proposition 6.1 Let (X,OX) and (X,O′
X) be two schemes. The following statements are

equivalent:
(1) A0(X,OX) ∼= A0(X,O′

X) holds,
(2) (X,OX) and (X,O′

X) are isomorphic schemes,
(3) There is an isomorphism (X,OX̂) ∼= (X,O′

X̂) for any associate schemes (X,OX̂) of
(X,OX) and (X,O′

X̂) of (X,O′
X).

Example 6.1 Let K/k be a Galois extension. Then SpecK has a unique associate scheme
and there exists a unique admissible k-affine structure in the scheme SpecK.

Definition 6.1 A scheme (X,OX) is said to have a property P for an admissible affine
structures A on X if as a scheme any extension (X,OA(Γ)) of A has that property P .

Remark 6.1 There are the following conclusions.
(1) Fixed an associate scheme (X,OA) of a scheme (X,OX). In general, it is not true that

(X,OA) = (X,OX) although they are isomorphic.
(2) There exists a scheme (X,OX) and an admissible affine structure A on the space X

such that there is some property P that (X,OX) holds but an extension (X,OA) of A does not
hold.

(3) In general, one says that a scheme (X,OX) has a property P . But it is not specified
that the property P holds for some certain or all the admissible affine structures on the space
X .

This situation is very similar to that in differential topology. As usual, a differential manifold
is said to have some property if the property holds for all the differential structures until such
one is especially specified.

It has been known that there is some property P on some manifold X which does not hold
for any other differential structures on X .

Remark 6.2 In a precise and rigor manner, a scheme is defined to be a ringed space
together with a specified admissible affine structure on it if the affine structures make indeed a
particular contribution to the case.

Remark 6.3 Let (X,OX) be a scheme. For any A,B ∈ A(X), we say

A ∼ B

if and only if there is an isomorphism (X,OA) ∼= (X,OB).
Then the quotient set

A(X)/ ∼
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is the whole of the schemes on the space X upon isomorphisms.

7 Proof of the First Main Theorem

In this section, we give the proof of Theorem 5.1.

Proof of Theorem 5.1 As A(X) �= ∅ and A(Y ) �= ∅, we can choose two admissible affine
structures on X and Y respectively. Fixed their extensions (X,OX) and (Y,OY ), which form
respectively two schemes.

“⇒” Prove that A(X) ⊆ A(Y ) holds.
In deed, take any affine chart (Uα, ϕα) contained in an affine structure A(X) belonging to

A(X), where ϕa(Uα) = SpecAα and Aα ∈ Comm.

Then (τ(U), ϕα ◦ τ−1) is an affine chart contained in an affine structure

A(τ(X)) = A(Y )

belonging to A(Y ). Hence, we have
A(X) ⊆ A(Y ).

Similarly, we have
A(X) ⊇ A(Y ).

So
A(X) = A(Y ).

“⇐” Let A(X) = A(Y ). We prove that there exists a homeomorphism

τ : X → Y.

We proceed in several steps.
(i) Take an affine chart (Uα, ϕα) contained in an affine structure A(X) belonging to A(X),

where Aα ∈ Comm is a commutative ring and

ϕa(Uα) = SpecAα.

Then there is an affine chart (Vα, ψα) contained in an affine structure A(Y ) belonging to A(Y )
such that

ψα(Vα) = SpecAα.

The converse is true since we have A(X) = A(Y ).
Let Σ be the disjoint union of all such open sets SpecAα. Take any points x, y ∈ Σ.
We say x ∼X y if there exist admissible affine structures A(Γα) and A(Γβ) contained in

A(X) satisfying the condition:
There are affine charts (Uα, ϕα) ∈ A(Γα), (Uβ, ϕβ) ∈ A(Γβ) such that ϕ−1

α (x) = ϕ−1
β (y),

where x ∈ SpecAα = ϕα(Uα) and y ∈ SpecAβ = ϕβ(Uβ).
Likewise, we say x ∼Y y if there exist admissible affine structures A(Γα) and A(Γβ) con-

tained in A(Y ) satisfying the condition:
There are affine charts (Vα, ψα) ∈ A(Γα), (Vβ , ψβ) ∈ A(Γβ) such that ψ−1

α (x) = ψ−1
β (y),

where x ∈ SpecAα = ψα(Vα) and y ∈ SpecAβ = ψβ(Vβ).
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(ii) Let ΣX be the quotient of the set Σ by relation ∼X , and

πX : Σ → ΣX

be the canonical map.
Prove that there is a bijection ρX from the set ΣX onto the set X .
In deed, we have a mapping

ρ : Σ → X

given by
z �→ ϕ−1

α (z),

where (Uα, ϕα) is the affine chart contained in an affine structure belonging to A(X) such that

z ∈ SpecAα = ϕα(Uα).

Then we have a map
ρX : ΣX → X, πX(z) �→ ρ(z).

Evidently, ρX is a surjection. From the definition for ∼X , it is easily seen that ρX is an
injection. This proves that ρX is a bijection.

Hence, ΣX is a topological space together with the topology on the space X .
Similarly, let ΣY be the quotient of the set Σ by relation ∼Y , and

πY : Σ → ΣY

be the canonical map. As
A(X) = A(Y ),

it is clear that there is a bijection ρY from the set ΣY onto the set Y . Then ΣY is a topological
space together with the topology on the space Y .

(iii) Take any x, y ∈ Σ. Prove that x ∼X y holds if and only if x ∼Y y holds.
In deed, let x ∼X y, that is, we have

ϕ−1
α (x) = ϕ−1

β (y)

for some affine charts

(Uα, ϕα) ∈ A(Γα) and (Uβ , ϕβ) ∈ A(Γβ)

such that
x ∈ SpecAα = ϕα(Uα) and y ∈ SpecAβ = ϕβ(Uβ).

Let Γmax
X,OX

be the maximal pseudogroup of affine transformations in the scheme (X,OX).
We choose the above open sets Uα and Uβ to be affine open subsets of the scheme (X,OX).

That is, Uα and Uβ are contained in the pseudogroup Γmax
X,OX

.
Then there is an affine open subset Uαβ of (X,OX) contained in Γmax

X,OX
such that

ϕ−1
α (x) ∈ Uαβ ⊆ Uα ∩ Uβ, ϕα(Uαβ) = Spec (Aα)fα , ϕβ(Uαβ) = Spec (Aβ)fβ
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for some fα ∈ Aα and fβ ∈ Aβ , where the isomorphism σαβ from (Aα)fα onto (Aβ)fβ
is

contained in Γmax
X,OX

.
As

A(X) = A(Y ),

we have affine charts (Vα, ψα) and (Vβ , ψβ) respectively contained in some affine structures
belonging to A(Y ), where Vα = ψ−1

α (SpecAα) and Vβ = ψ−1
β (SpecAβ).

Set
Vαβ = ψ−1

α (Spec (Aα)fα), Vβα = ψ−1
β (Spec (Aβ)fβ

).

Denote by ψβα the homeomorphism of Vβα onto Vαβ which is induced from σαβ .
It is easily seen that (Vαβ , ψβ ◦ ψ−1

βα) is an affine chart contained in some admissible affine
structure belonging to A(Y ). In fact, fixed any admissible affine Γ0-structure A(Γ0) on the space
Y which contains the affine chart (Vα, ψα). Let Γ1 be the pseudogroup of affine transformations
in Comm generated by the union of Γ0 and the set of the identity on (Aβ)fβ

and all the possible
isomorphisms between the localisations of the rings. Then {(Vαβ , ψβ ◦ ψ−1

βα)} and A(Γ1) are
Γ1-compatible. Hence,

(Vαβ , ψβ ◦ ψ−1
βα) ∈ A(Γ1).

Consider
y ∈ Vβα, x ∈ Spec (Aα)fα ⊆ SpecAα.

It is evident that ψ−1
α (x) = ψβα◦ψ−1

β (y) holds since ψ−1
α (Spec (Aα)fα) = ψβα◦ψ−1

β (Spec (Aβ)fβ
)

= Vαβ . This proves that x ∼Y y holds.
In a similar manner, it is seen that the converse is true.
(iv) The map from ΣX into ΣY defined by

πX(z) �−→ πY (z)

for z ∈ Σ gives us a bijection
τ : X −→ Y,

which is well-defined from (iii).
All the open sets SpecAα determine a topology on the set Σ in such a manner:

A subset W of Σ is open if and only if πX(W ) is open in ΣX .

It follows that ΣX is the quotient space of Σ by πX . As A(X) = A(Y ), ΣY is the quotient
space of Σ by πY . Hence,

τ : X → Y

is a homeomorphism.
This completes the proof.

8 Proof of the Second Main Theorem

In this section, we give the proof of Theorem 5.2.

Proof of Theorem 5.2 “⇒” Let

τ : (X,OX) ∼= (Y,OY )
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be an isomorphism.
As τ∗OX

∼= OY , we have

(ϕ−1
α (SpecAα), (ϕ−1

α )∗Ãα) ∼= (Uα,OX |Uα)
∼= (τ(Uα), τ∗OX |Uα)
∼= (τ(Uα),OY |τ(Uα))
∼= (ψ−1

α (SpecBα), (ψ−1
α )∗B̃α)

for any affine open set Uα of X such that

ϕα(Uα) = SpecAα

and (Uα, ϕα) is contained in some canonical affine structure belonging to A0(X,OX).
Then (τ(Uα), ϕα) is an affine chart with

ψα(τ(Uα)) = SpecBα,

which is contained in some canonical affine structure belonging to A0(Y,OY ).
By the isomorphism τ , it is easily seen that the conditions (1)–(2) in Definition 5.3 are

satisfied.
Now let ΓX and ΓY be the maximal pseudogroups of affine transformations in the schemes

(X,OX) and (Y,OY ), respectively. Via the isomorphism τ , every affine chart in A∗(ΓX) is an
affine chart in the A∗(ΓY ); the converse is true.

Using the same procedure in proving Theorem 5.1, we can prove such a claim that “x ∼X y”
for X holds if and only if “x ∼Y y” for Y holds.

It follows that the condition (3) in Definition 5.3 is satisfied. Hence, we have

A0(X,OX) � A0(Y,OY ).

Similarly, we prove
A0(X,OX) � A0(Y,OY ).

This proves
A0(X,OX) ∼= A0(Y,OY ).

“⇒” Put
A0(X,OX) ∼= A0(Y,OY ).

We prove that there exists an isomorphism from (X,OX) onto (Y,OY ).
In the following, we proceed in several steps in a manner similar to the procedure in proving

Theorem 5.1.
(i) Let ΓY be the maximal pseudogroup of affine transformations in the scheme (Y,OY ).

We obtain a relative canonical affine ΓY -structure

A(ΓY ) � A∗(ΓY ), on Y.

Then Vα is an affine open set in the scheme (Y,OY ) for every (Vα, ψα) contained in A(ΓY ).
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For each (Vα, ψα) ∈ A(ΓY ), we put

ψα(Vα) = SpecBα,

where Bα is a commutative ring contained in the pseudogroup ΓY .
From Definition 4.1, we have

A(ΓY ) ⊇ A∗(ΓY ).

Then ⋃
(Vα,ψα)∈A(ΓY )

Vα ⊇ Y.

Let Σ be the disjoint union of all the open sets SpecBα such that

ψα(Vα) = SpecBα and (Vα, ψα) ∈ A(ΓY ).

Take any points x, y ∈ Σ.
We say x ∼Y y if there are affine charts (Vα, ψα), (Vβ , ψβ) ∈ A(ΓY ) such that

ψ−1
α (x) = ψ−1

β (y),

where
x ∈ SpecBα = ψα(Vα), y ∈ SpecBβ = ψβ(Vβ).

(ii) For each (Vα, ψα) ∈ A(ΓY ), define {(Ui,α, ϕi,α)}i∈Iα to be the set of all the affine charts
contained in each relative canonical affine structures in the scheme (X,OX) such that

ϕi,α(Ui,α) = SpecAi,α

and that there is an isomorphism
δi,α : Ai,α ∼= Bα.

Denote by ΔX the set of all such affine charts (Ui,α, ϕi,α), where i ∈ Iα and (Vα, ψα) ∈
A(ΓY ).

As A0(Y,OY ) � A0(X,OX), we have
⋃

(Ui,α,ϕi,α)∈ΔX

Ui,α ⊇ X.

Let Σ∗ be the disjoint union of all the open sets SpecAi,α such that

Ai,α ∼= Bα and (Ui,α, ϕi,α) ∈ ΔX .

Take any x, y ∈ Σ∗.
We say x ∼X y if there are affine charts (Ui,α, ϕi,α), (Uj,β , ϕj,β) ∈ ΔX such that

ϕ−1
i,α(x) = ϕ−1

j,β(y)

holds, where
x ∈ SpecAi,α = ϕi,α(Ui,α), y ∈ SpecAj,β = ϕj,β(Uj,β).
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We say x ∼Σ y if there are affine charts (Ui,α, ϕi,α), (Uj,β , ϕj,β) ∈ ΔX such that

σ−1
i,α(x) = σ−1

j,β(y)

holds, where
x ∈ SpecAi,α = ϕi,α(Ui,α), y ∈ SpecAj,β = ϕj,β(Uj,β),

and
σi,α : SpecBα → SpecAi,α and σj,β : SpecBβ → SpecAj,β

are the scheme isomorphisms induced from the ring isomorphisms

δi,α : Ai,α ∼= Bα and δj,β : Aj,β ∼= Bβ

respectively.
(iii) Let Σ∗

X be the quotient of the set Σ∗ by ∼X , and

πX : Σ∗ → Σ∗
X

be the canonical map. We get schemes Σ∗ and Σ∗
X in an evident manner. It is clear that πX is

a morphism of the schemes.
Prove that there is an isomorphism ρX from the scheme Σ∗

X onto the scheme X .
In deed, we have a mapping

ρ : Σ∗ → X

given by
z �−→ ϕ−1

i,α(z),

where (Ui,α, ϕi,α) ∈ ΔX such that

z ∈ SpecAi,α = ϕi,α(Ui,α).

Then we have a mapping
ρX : Σ∗

X → X, πX(z) �→ ρ(z).

Evidently, ρX is a surjection. From the definition for ∼X , it is seen that ρX is an injection.
Hence, ρX is a homeomorphism from the space Σ∗

X onto the space X . By the construction, it
is seen that ρX is an isomorphism of the schemes.

Similarly, let ΣY be the quotient of the set Σ by ∼Y , and

πY : Σ → ΣY

be the canonical map.
Then Σ and ΣY are schemes, and πY is a scheme morphism. There is an isomorphism ρY

from the scheme ΣY onto the scheme Y .
Let Σ∗

Σ be the quotient of the set Σ∗ by ∼Σ, and

πΣ : Σ∗ → Σ∗
Σ

be the canonical map.
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Then Σ∗
Σ is a scheme and πΣ is a morphism. There is an isomorphism ρΣ from the scheme

Σ∗
Σ onto the scheme Σ.

(iv) Take any x, y ∈ Σ∗. We prove

ρX ◦ πX(x) = ρX ◦ πX(y)

if and only if
ρY ◦ πY ◦ ρΣ ◦ πΣ(x) = ρY ◦ πY ◦ ρΣ ◦ πΣ(y).

In deed, let
ρX ◦ πX(x) = ρX ◦ πX(y).

We have
ϕ−1
i,α(x) = ϕ−1

j,β(y)

for some affine charts (Ui,α, ϕi,α), (Uj,β , ϕj,β) ∈ ΔX such that

x ∈ SpecAi,α = ϕi,α(Ui,α), y ∈ SpecAj,β = ϕj,β(Uj,β).

As A0(X,OX) � A0(Y,OY ), we have affine charts (Vi,α, ψi,α) and (Vj,β , ψj,β) contained in
A(ΓY ) such that

ψ−1
i,α ◦ σ−1

i,α(x) = ψ−1
j,β ◦ σ−1

j,β(y),

where
ψi,α(Vi,α) = SpecBi,α, ψj,β(Vj,β) = SpecBj,β

and
σi,α : SpecBi,α → SpecAi,α and σj,β : SpecBj,β → SpecAj,β

are the isomorphisms induced from the ring isomorphisms

δi,α : Ai,α ∼= Bi,α and δj,β : Aj,β ∼= Bj,β

respectively.
Hence, we have

ρY ◦ πY ◦ ρΣ ◦ πΣ(x) = ρY ◦ πY ◦ ρΣ ◦ πΣ(y).

In a similar manner, it is seen that the converse is true.
(v) Define a map τ : X → Y by

τ(ρX ◦ πX(z)) = ρY ◦ πY ◦ ρΣ ◦ πΣ(z)

for every z ∈ Σ∗.
By (iv), it is seen that τ is well-defined. It is immediate that τ is the desired scheme

isomorphism from (X,OX) onto (Y,OY ).
This completes the proof.
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