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Abstract Lateral inhibitory effect is a well-known feature of information processing in
neural systems. This paper presents a neural array model with simple lateral inhibitory
connections. After detailed examining into the dynamics of this kind of neural array, the
author gives the sufficient conditions under which the outputs of the network will tend to a
special stable pattern called spatial sparse pattern in which if the output of a neuron is 1,
then the outputs of the neurons in its neighborhood are 0. This ability called spatial sparse
coding plays an important role in self-coding, self-organization and associative memory for
patterns and pattern sequences. The main conclusions about the dynamics of this kind of
neural array which is related to spatial sparse coding are introduced.
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1 Introduction

Lateral inhibitory effect is an important feature of information processing in neural systems.
Lots of early researches were done. Many researchers presented homogeneous neural field models
and examined their dynamics of pattern formation and propagation. For example, Amari
[1] studied the formation and the interaction of patterns in a homogeneous neural field by
mathematical analysis and provided a good example of non-homogeneous pattern formation
in a homogeneous neural field (see also [2–7]). Lots of attentions were paid on the dynamical
pattern progressing and propagation by various computer stimulations. Inspired by the early
researchers, we study the static pattern formation of a discrete neural array called simple lateral
inhibitory neural array. For each neuron in this array, we define a neighborhood. Each neuron
has an excitatory feedback from itself and has inhibitory connections with the neurons in its
neighborhood. We call this kind of structure the simple lateral inhibitory connection. The
dynamics of this kind network is very complex. However, the research interests of this paper is
to find sufficient conditions under which the outputs of the neural array will tend to a stable
pattern called spatial sparse pattern in which if the output of a neuron is 1, then the outputs of
the neurons in its neighborhood are 0. The spatial sparse patterns play an important role in the
self-organization, the self-coding and associative memory for patterns and pattern sequences
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that will be introduced in other papers (see [8–11]) and neural networks presented in these
papers can also be used for secrete communication and information security. So this research
is very important from the mathematical point of view. Here we give the sufficient conditions
that make the neural array tend to spatial sparse patterns and introduce the main conclusions
that characterize this dynamical process. It should be mentioned that the network presented in
this paper is very similar to the cellular neural network (see [12, 13]) which is deeply researched
and widely used in image processing in the last twenty years. However, the dynamics of the
two networks that we expect are quite different. The former is a competitive network that if a
neuron excites, the neurons in its neighborhood are inhibited and the later plays a role of high
pass filters. In addition, the neural array model with simple lateral inhibitory connections has
also the ability of short term memory which will be introduced in [10] and plays an important
role in the associative memory for pattern sequences in [10].

2 Simple Lateral Inhibitory Neural Array

We first introduce the concept of a neural array. A neural array is a set of neurons with
2-dimensional index, such as

AN = {nij; (i, j) ∈ ID}, ID ⊂ {1, 2, · · · , Na} × {1, 2, · · · , Na}.

For simplicity, a neural array can be denoted in the form

AN = {(i, j) ∈ ID}.

For each neuron (i, j), we define a neighborhood

N(i, j) ⊂ AN, (i, j) ∈ AN.

There are many methods to define a neighborhood. The simplest way is using distance. For
example, we define

d((s, t), (i, j)) = max{|s − i|, |t − j|},
N(i, j) = {(s, t); d((s, t), (i, j)) ≤ dn, (s, t) ∈ AN} ⊂ AN,

where dn is a constant. Obviously, this kind of neighborhoods have the property that if (s, t) ∈
N(i, j) then (i, j) ∈ N(s, t).

For each neuron (i, j), we define three variables. They are the state variables uij(t), the input
signals sij(t) and the output zij(t). The following difference equations give the relationship of
these variables⎧⎪⎪⎨

⎪⎪⎩
uij(t + 1) = (1 − a)uij(t) + awezij(t) − awi

∑
(s,t)�=(i,j)

(s,t)∈N(i,j)

zst(t) + asij(t),

zij(t) = g(uij(t)), (i, j) ∈ AN,
uij(t0) = u0

ij ,

(2.1)

where g( · ) is a sigmoid function. Thus we defined a neural network called simple lateral
inhibitory network.
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Proposition 2.1 Let the input signals in difference equations (2.1) be constants s =
{sij , (i, j) ∈ AN}. Denote all the equilibrium points corresponding to s by Ue(s). Then Ue(s)
�= ∅, and

Ue(s) ⊂ [−Kf , Kf ]|AN|,

where

Kf = we + wi(Nn − 1) + sm, Nn = max{|N(i, j)|, (i, j) ∈ AN},
sm = max{|sij |, (i, j) ∈ AN}.

We first divide the neural array into three parts

AN = AN0 ∪ AN1 ∪ AN2, ANi ∩ ANj = ∅, i �= j.

The set of all the divisions is denoted by

D(AN) = {(AN0, AN1, AN2); AN = AN0 ∪ AN1 ∪ AN2, ANi ∩ ANj = ∅, i �= j}.

For each division, the set of all the corresponding equilibrium points under the input s is denoted
by

Ue(s)(AN0, AN1, AN2) = {u; uij ≤ 0, (i, j) ∈ AN0; 0 < uij < h, (i, j) ∈ AN1;

uij ≥ h, (i, j) ∈ AN2}.

It can be shown that if −(we − h) < sij < h < 1, (i, j) ∈ AN, then⋃
(AN0,AN1,AN2)∈D(AN)

AN1 �=∅

Ue(s)(AN0, AN1, AN2) �= ∅.

But we hope that the network will tend to the following equilibrium points:⋃
(AN0,AN1,AN2)∈D(AN)

AN1=∅

Ue(s)(AN0, AN1, AN2).

For examining into the dynamics of the neural array, we define vectors and matrixes whose
indexes are pairs of integers. For example, a matrix A is defined as

A = {aijst; (i, j) ∈ AN1, (s, t) ∈ AN2},

and a vector x is defined as
x = {xij ; (i, j) ∈ AN}.

Obviously, the theories about matrixes and vectors are suitable to our case.
At time t, the neural array can be derived into three parts as follows:

AN0(t) = {(i, j); uij(t) ≤ 0, (i, j) ∈ AN},
AN1(t) = {(i, j); 0 < uij(t) < h, (i, j) ∈ AN},
AN2(t) = {(i, j); uij(t) ≥ h, (i, j) ∈ AN}.
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So the state vector u(t) = {uij(t); (i, j) ∈ AN} can be derived into three parts

u0(t) = {uij(t); (i, j) ∈ AN0(t)},
u1(t) = {uij(t); (i, j) ∈ AN1(t)},
u2(t) = {uij(t); (i, j) ∈ AN2(t)}.

The input vector s = {sij; (i, j) ∈ AN} can also be divided into three parts

s0t = {sij ; (i, j) ∈ AN0(t)}, s1t = {sij ; (i, j) ∈ AN1(t)}, s2t = {sij ; (i, j) ∈ AN2(t)}.

Let the output function of a simple lateral inhibitory neural array be

g(u) =

⎧⎪⎪⎨
⎪⎪⎩

0, u ≤ 0,

1
h

u, 0 < u < h,

1, u ≥ h.

Then difference equations (2.1) can be described by the matrixes in the following way:

(1) u(t + 1) = A(t)x(t) + ab(t) + as,

where

(a) A(t) = {aijst; ((i, j), (s, t)) ∈ AN × AN}

for (i, j) ∈ AN0(t) ∪ AN2(t). We have

aijst =

⎧⎪⎪⎨
⎪⎪⎩

1 − a, (i, j) = (s, t),

−awi

h
, (s, t) ∈ AN1(t) ∩ N(i, j) − {(i, j)},

0, otherwise

for (i, j) ∈ AN1(t). We have

aijst =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + a
(we

h
− 1

)
, (i, j) = (s, t),

−awi

h
, (s, t) ∈ AN1(t) ∩ N(i, j) − {(i, j)},

0, otherwise.

(b) b(t) = {bij ; (i, j) ∈ AN(i, j)},

where

bij = −wi|AN2(t) ∩ N(i, j)|, (i, j) ∈ AN0(t) ∩ AN1(t),

bij = −wi(|AN2(t) ∩ N(i, j)| − 1) + we, (i, j) ∈ AN2(t).

(2) {uij(t + 1); (i, j) ∈ AN1(t)} = A1(t)u1(t) + ab1(t) + as1t,
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where

(a) A1(t) = {a1
ijst(t); ((i, j), (s, t)) ∈ AN1(t) × AN1(t)},

where

aijst =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + a
(we

h
− 1

)
, (i, j) = (s, t),

−awi

h
, (s, t) ∈ AN1(t) ∩ N(i, j) − {(i, j)},

0, otherwise.

(b) b1(t) = {b1
ij(t); (i, j) ∈ AN1(t)},

where

bij = −wi|AN2(t) ∩ N(i, j)|, (i, j) ∈ AN0(t) ∪ AN1(t),

bij = −wi(|AN2(t) ∩ N(i, j)| − 1) + we, (i, j) ∈ AN2(t).

If AN1(t) = AN1(t0) (t0 ≤ t ≤ t1), then

u1(t + 1) = A1(t0)u1(t) + ab1(t0) + as1t, t0 ≤ t ≤ t1 − 1. (2.2)

(3) u(t + 1) = A(0 ≤ t′ ≤ t)u(0) + aB(0 ≤ t′ ≤ t)s + ad(0 ≤ t′ ≤ t), t > 0, (2.3)

where

A(0 ≤ t′ ≤ t) =
t∏

t′=0

A(t′), (2.4)

B(0 ≤ t′ ≤ t) = I +
t∑

i=1

t∏
t′=i

A(t′), B(t′ = 0) = I, (2.5)

d(0 ≤ t′ ≤ t) = b(t) +
t∑

i=1

b(i − 1)
t∏

t′=i

A(t′), d(t′ = 0) = I. (2.6)

Proposition 2.2 Suppose that the neighborhoods of a simple lateral inhibitory neural array
satisfy the condition (s, t) ∈ N(i, j) ⇒ (i, j) ∈ N(s, t). Then we have

(1) A(t) and A1(t) are symmetry.

(2) Let the maximum value of the eigenvalues of A1(t) be λ1
max. Then λ1

max > 1+a(we

h −1).

(3) If a < h
[h+wi(Nn−1)] , then |A(0 ≤ t′ ≤ t)| > 0.

Note 2.1 Suppose that the neighborhoods of a simple lateral inhibitory neural array satisfy
the condition (s, t) ∈ N(i, j) ⇒ (i, j) ∈ N(s, t). When t0 ≤ t ≤ t1, we suppose

AN0(t) = AN0(t0), AN1(t) = AN1(t0), AN2(t) = AN2(t0).
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Then ∀(k, l) ∈ AN1(t0), when t0 ≤ t ≤ t1 + 1, we have

ukl(t) =
∑

(i,j)∈AN1(t0)

pijkl(t0)λt−t0
ij ·

( ∑
(s,t)∈AN

a∗
ijst(t0)ust(0) +

∑
(s,t)∈AN

b∗ijst(t0)sst + ac∗ij(t0)
)

+
∑

(s,t)∈AN

d∗klst(t0)sst + e∗kl(t0).

Here
(a) λij , (i, j) ∈ AN1(t0) are eigenvalues of A1(t0).
(b) {pijkl(t0); {(i, j), (k, l)} ∈ AN1(t0) × AN1(t0)} ≡ P1(t0), which satisfies

P1(t0)A1(t0)PT
1 (t0) = Λ1 = {λijst; ((i, j), (s, t)) ∈ AN1(t0) × AN1(t0)},

where
λijst =

{
λij , (s, t) = (i, j),
0, (s, t) �= (i, j).

(c) {a∗
ijst(t0); ((i, j), (s, t)) ∈ AN1(t0) × AN(t0)}

≡ A∗(t0) = P1(t0)T1(t0)A(0 ≤ t′ ≤ t0 − 1),

{b∗ijst(t0); ((i, j), (s, t)) ∈ AN1(t0) × AN1(t0)}
≡ B∗(t0) = P1(t0)T1(t0)B(0 ≤ t′ ≤ t0 − 1) − (I − Λ1)−1P1(t0)T1(t0),

{d∗ijst(t0); ((i, j), (s, t)) ∈ AN1(t0) × AN} ≡ D∗(t0) = PT
1 (t0)(I − Λ1)−1P1(t0)T1(t0),

{c∗ij(t0); (i, j) ∈ AN1(t0)}
≡ c∗(t0) = P1(t0)T1(t0)d(0 ≤ t′ ≤ t0 − 1) − (I − Λ1)−1P1(t0)b1(t0)

{e∗kl(t0); (k, l) ∈ AN1(t0)} ≡ e∗(t0) = PT
1 (t0)(I − Λ1)−1P1(t0)b1(t0),

where

T1(t0) = {tijst(t0); ((i, j), (s, t)) ∈ AN1(t0) × AN},

tijst =
{

1, (s, t) = (i, j),
0, (s, t) �= (i, j).

Denote Nn = max{|N(i, j)|; (i, j) ∈ AN1(t)}. If a < h
[h+wi(Nn−1)] , then |A(0 ≤ t ≤

t0 − 1)| �= 0. Since |P1| �= 0, rank(T1) = |AN1(t0)|. So rank(A∗) = |AN1(t0)|. Therefore,
∀(i, j) ∈ AN1(t0), ∃(k1, l1) ∈ AN1(t0), s.t. pijk1l1(t0) �= 0, and ∃(s1, t1) ∈ AN, s.t. a∗

ijs1t1
(t0) �=

0.

Note 2.2 From Note 2.1, we know that as long as∑
(s,t)∈AN

a∗
ijst(t0)ust(0) +

∑
(s,t)∈AN

b∗ijst(t0)sst + ac∗ij(t0) �= 0,

the component of the state ukl(t) corresponding to eigenvalue λij

ukl(t)(λij) = pijkl(t0)λt−t0
ij

( ∑
(s,t)∈AN

a∗
ijst(t0)ust(0) +

∑
(s,t)∈AN

b∗ijst(t0)sst + ac∗ij(t0)
)
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will not be zero.

Let (Ω, F,P) be a probability space. The initial value is a random vector u(0)(ω). Therefore,
the state vector is also random and is denoted by u(t)(ω). Then the division of a neural array
is also random and can be denoted by

AN0(t)(ω) = {(i, j); uij(t)(ω) ≤ 0, (i, j) ∈ AN},
AN1(t)(ω) = {(i, j); 0 < uij(t)(ω) < h, (i, j) ∈ AN},
AN2(t)(ω) = {(i, j); uij(t)(ω) ≥ h, (i, j) ∈ AN}.

The set of all the division of AN is denoted by D(AN). For the given

(AN0, AN1, AN2) ∈ D(AN)

and the time t, the following subset of Ω can be obtained:

W (AN0, AN1, AN2)(t)

= {ω; uij(t)(ω) ≤ 0, (i, j) ∈ AN0; 0 < uij(t)(ω) < h, (i, j) ∈ AN1, uij(t)(ω) ≥ h, (i, j) ∈ AN2}

which satisfies the following conditions:
(a) W (AN0, AN1, AN2)(t) ∈ �,

(b) If (AN0, , AN1, AN2) �= (AN′
0, , AN′

1, AN′
2), then

W (AN0, AN1, AN2)(t) ∩ W (AN′
0, AN′

1, AN′
2)(t) = ∅,

(c)
⋃

(AN0,AN1,AN2)∈D(AN)

W (AN0, AN1, AN2)(t) = Ω.

For simplicity, W (AN0, AN1, AN2)(t) is denoted by W (t). The set of all the subset W (t) is
denoted by

W (t) = {W (AN0, AN1, AN2)(t); (AN0, AN1, AN2) ∈ D(AN)}.
Furthermore, we define

W (0 ≤ t ≤ t0) =
⋂

0≤t≤t0

W (AN0t, AN1t, AN2t)(t)

and denote

W (0 ≤ t ≤ t0) = {W (0 ≤ t ≤ t0); W (0 ≤ t ≤ t0) =
t0⋂

t=0

W (t), W (t) ∈ W (t)}.

Obviously, W (0 ≤ t ≤ t0) is also a division of Ω.
Let ω0 ∈ W (0 ≤ t ≤ t0) �= ∅. ∀w ∈ W (0 ≤ t ≤ t0), since

ω, ω0 ∈ W (AN0t, AN1t, AN2t)(t), 0 ≤ t ≤ t0,

we know

AN0(t)(ω) = AN0(t)(ω0) ≡ AN0t, AN1(t)(ω) = AN1(t)(ω0) ≡ AN1t,

AN2(t)(ω) = AN2(t)(ω0) ≡ AN2t, 0 ≤ t ≤ t0.
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Therefore, ∀ω ∈ W (0 ≤ t ≤ t0), ∀ 0 ≤ t ≤ t0, we have

A1(t)(ω) = A1(t)(ω0) ≡ A1(t)W , A(t)(ω) = A(t)(ω0) ≡ A(t)W ,

b1(t)(ω) = b1(t)(ω0) ≡ b1(t)W , b(t)(ω) = b(t)(ω0) ≡ b(t)W ,

c(t)(ω) = c(t)(ω0) ≡ c(t)W , d(t)(ω) = d(t)(ω0) ≡ d(t)W ,

e(t)(ω) = e(t)(ω0) ≡ e(t)W .

Here
A1(t)W , A(t)W , b1(t)W , b(t)W , c(t)W , d(t)W , e(t)W

can be obtained based on Note 2.1. Thus we get

a∗
ijst(t, ω) = a∗

ijst(t, ω0) ≡ a∗
ijst(t)W , b∗ijst(t, ω) = b∗ijst(t, ω0) ≡ b∗ijst(t)W ,

c∗ij(t, ω) = c∗ij(t, ω0) ≡ c∗ij(t)W , d∗klst(t, ω) = d∗klst(t, ω0) ≡ d∗klst(t)W ,

e∗kl(t, ω) = e∗kl(t, ω0) ≡ e∗kl(t)W .

If
AN0(t) = AN0(t0), AN1(t) = AN1(t0), AN2(t) = AN2(t0), t0 ≤ t ≤ t1,

then according to Note 2.1, ∀(k, l) ∈ AN1(t0), if t0 ≤ t ≤ t1 + 1, we have

ukl(t)(ω) =
∑

(i,j)∈AN1(t0)

pijkl(t0)W λt−t0
ij ·

( ∑
(s,t)∈AN

a∗
ijst(t0)W ust(0)(ω)

+
∑

(s,t)∈AN

b∗ijst(t0)W sst + ac∗ij(t0)W

)

+
∑

(s,t)∈AN

d∗klst(t0)W sst + e∗kl(t0)W .

This means that on

W (0 ≤ t ≤ t0) =
⋂

0≤t≤t0

W (AN0t, AN1t, AN2t)(t),

though u(0)(ω) is random, the coefficients are constants.

Lemma 2.1 The simple lateral inhibitory network is given by difference equations (2.1).
The following conditions are satisfied:

(C1) The neighborhoods satisfy (s, t) ∈ N(i, j) ⇒ (i, j) ∈ N(s, t).

(C2) g(u) =

⎧⎪⎪⎨
⎪⎪⎩

0, u ≤ 0,

1
h

u, 0 < u < h,

1, u ≥ h.

(C3) we > h, 0 < a < h
[h+wi(Nn−1)] .

(C4) Initial value u(0)(ω) is a continuous random vector on a complete probability space
(Ω,�, P ).

(C5) Input is a constant vector s = {sij , (i, j) ∈ AN} satisfying sij ≤ h, (i, j) ∈ AN.
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Suppose AN1(t0) �= ∅. Then

P (AN1(t) = AN1(t0), t ≥ t0) = 0.

Furthermore, ∃(k1, l1) ∈ AN1(t0), if we suppose

AN1(t) = AN1(t0) �= ∅, t ≥ t0,

then it will lead lim
t→∞ |uk1l1(t)(ω)| = ∞.

Note 2.3 From Lemma 2.1, we know that as long as AN1(t0) �= ∅, the neurons in AN1(t0)
will leave AN1(t0) with the time. That is ∃(k1, l1) ∈ AN1(t0) and ∃ t1 > t0, such that uk1l1(t1−
1) < h, uk1l1(t1) > h or uk1l1(t1 − 1) > 0, uk1l1(t1) < 0.

Lemma 2.2 The simple lateral inhibitory neural array is given by difference equations (2.1),
and conditions (C1), (C2), (C4) and (C5) are satisfied. Furthermore, the following condition
is satisfied too:

(C6) wi > (1 + δ)we, wi > (1 + δ)h, we > h, h < 1, a < h
[h+wi(Nn−1)] .

Then if uij(t0) − uij(t0 − 1) > 0, uij(t0 − 1) > h
(1+δ) , ∃ t1 > t0, when t ≥ t1, uij(t) > h,

ust(t) < −aδh, (s, t) ∈ N(i, j) − {(i, j)}, lim
t→∞ uij(t) = we + wij > h.

Note 2.4 From Lemmas 2.1 and 2.2, we have a perceived understanding about dynamics
of the simple lateral inhibitory neural array. At first, some of the neurons in AN1(0) enter into
AN2(t0). Then the neurons in the neighborhoods of these neurons enter into AN0(t1) due to
the inhibitory reaction. In this way, at last AN1(tn) = ∅, and

z(t)(ω) = z(ω), u(t)(ω) → u(ω), t → ∞.

Theorem 2.1 The simple lateral inhibitory neural array is given by difference
equations (2.1), and conditions (C1), (C2), (C4)–(C6) are satisfied. Then ∃N ∈ �, P (N) = 0,
for arbitrary input s = {sij , (i, j) ∈ AN}, as long as ω ∈ Ω− N , there exists T (s, ω) > 0, such
that

z(t)(ω) = z(ω) ∈ Z, t > T (s, ω), u(t)(ω) → u(ω) ∈ Ue, t → ∞.

Note 2.5 The output z(ω) = {zij ; (i, j) ∈ AN} has the following properties:
(1) zij = 1 ⇒ zst = 0, (s, t) ∈ N(i, j) − {(i, j)},
(2) zij = 0 ⇒ sij ≤ 0 or ∃(s, t) ∈ N(i, j) − {(i, j)}, zst = 1.

The output z(ω) is called spatial sparse pattern if it has these two properties. The set of
all the spatial sparse patterns is denoted by Z, and the set of the corresponding equilibrium
points is denoted by Ue.

Theorem 2.2 The simple lateral inhibitory neural array is given by difference equations
(2.1). Conditions (C1), (C2), (C5) and (C6) are satisfied. Then ∃B ∈ B(R|AN|), λ(B) =
0 (λ( · ) is Lebesgue measure), ∀ s, as long as u(0) �∈ B, there exists T (u(0), s) > 0, such that

z(t) = z ∈ Z, t > T (u(0), s), u(t) → u ∈ Ue, t → ∞.
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Corollary 2.1 The simple lateral inhibitory neural array is given by difference equations
(2.1). Conditions (C1), (C2), (C5) and (C6) are satisfied. Then for arbitrary input s, the
equilibrium point

ue ∈
⋃

(AN0,AN1,AN2)∈D(AN)
AN1 �=∅

Ue(s)(AN0, AN1, AN2)

is unstable, and the Lebesgue measure of the set of the initial points that make the neural array
tend to these unstable equilibrium points is zero.

Proposition 2.3 The simple lateral inhibitory neural array is given by difference equations
(2.1). Conditions (C1), (C2), (C5) and (C6) are satisfied. Further more, the following condition
is satisfied too.

(C7) Input is a constant vector s satisfying

−(1 − α)(we − h) < sij < h, 0 < α ≤ 1.

Denote

Nn = max{|N(i, j)|; (i, j) ∈ AN},

ε1 ≡ (we − h)h
(Nn − 1)wi

α, ε2 ≡ wi − (1 + δ)h
we − h

h, ε3 ≡ wi − h
(we−h)

h2 + wi

h

,

ε4 ≡ we − (1 + δ)h
we − h + (Nn − 1)wi

αh, ε ≡ min{ε1, ε2, ε3, ε4}.

For u = {uij} ∈ Ue, let

[u]2 ≡ {(i, j); uij > h, (i, j) ∈ AN}, [u]0 ≡ {(i, j); N(i, j) ∩ [u]2 = ∅, (i, j) ∈ AN}.

We define a neighborhood of u as follows

N(u, ε) = {u; uij > h−ε, ust < ε, (i, j) ∈ [u]2, (s, t) ∈ N(i, j)−{(i, j)}, uij < 0, (i, j) ∈ [u]0}.

Then ∀u(0) ∈ N(u, ε), ∃T (u(0), s), when t > T (u(0), s), we have

z(t) = z, lim
t→∞u(t) = u.

Note 2.6 From Proposition 2.3, we know that the spatial sparse patterns are local stable.

3 Conclusion

In this paper, we have given the sufficient conditions that ensure the neural array with
simple lateral inhibitory connections tending to spatial sparse patterns. We have also given
the conclusions that characterize this dynamical process under these conditions. The Lebesgue
measure of the set of the initial states which lead the array to other equilibrium points is zero
and these points are unstable. We also prove that the spatial sparse patterns are locally stable.



Dynamics about Neural Array with Simple Lateral Inhibitory Connections 171

Appendix Proofs of Main Results

Proof of Proposition 2.1 Denote

u = {uij, (i, j) ∈ AN}, Fij(u) = weg(uij) − wi

∑
(s,t)∈N(i,j)
(s,t)�=(i,j)

g(ust) + sij ,

F = {Fij(u); (i, j) ∈ AN}, f(u) = (1 − a)u + aF(u).

Let uf be a fixed point of f(•). Then

uf = (1 − a)uf + aF(uf ), uf = F(uf ).

So the fixed point of f(•) is also the fixed point of F(•). If uf is the fixed point of F(•), then

uf = F(uf ), uf = (1 − a)uf + aF(uf ).

So the fixed point of F(•) is the fixed point of f(•) too. Let

F(u) = y = {yij ; (i, j) ∈ AN}, yij = weg(uij) − wi

∑
(s,t)∈N(i,j)
(s,t)�=(i,j)

g(ust) + si.

Since
|yij | ≤ we + wi(|N(i, j)| − 1) + sm = Kf ,

we know ∀u ∈ [−Kf , Kf ]|AN|, F(u) ∈ [−Kf , Kf ]|AN|. Since F(•) is a continuous map from
[−Kf , Kf ]|AN| to [−Kf , Kf ]|AN|, F(•) and f(•) have fixed points on [−Kf , Kf ]|AN|. Hence
Ue(s) �= ∅.

Now we prove Ue(s) ⊂ [−Kf , Kf ]|AN|. Since |uij(t+1)| ≤ (1−a)|uij(t)|+aKf , we consider
the difference equation {

xij(t + 1) = (1 − a)xij(t) + aKf ,

xij(t0) = |uij(t0)|.
Thus we know

|uij(t)| ≤ xij(t) → Kf , t → ∞.

Therefore u ∈ [−Kf , Kf ]|AN|.

Proof of Proposition 2.2 First, we prove (1). Consider A1(t). Suppose (s, t) �= (i, j).
Then

a1
ijst =

{
−awi

h
, (s, t) ∈ AN1(t) ∩ N(i, j) − {(i, j)},

0, (s, t) �∈ AN1(t) ∩ N(i, j) − {(i, j)},

∀(i, j), (s, t) ∈ AN1(t),

(i, j) ∈ AN1(t) ∩ N(s, t) − {(s, t)} ⇔ (s, t) ∈ AN1(t) ∩ N(i, j) − {(i, j)},
(i, j) �∈ AN1(t) ∩ N(s, t) − {(s, t)} ⇔ (s, t) �∈ AN1(t) ∩ N(i, j) − {(i, j)}.
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Thus we know

a1
ijst = −awi

h
⇔ a1

stij = −awi

h
, a1

ijst = 0 ⇔ a1
stij = 0.

So A1(t) is symmetry. In the same way, we can prove that A(t) is symmetry too.

Next, let us prove (2). Take (i1, j1) ∈ AN1(t) and let the vector x1 be

x1 = {x1
ij ; (i, j) ∈ AN1(t)},

where

x1
ij =

{
1, (i, j) = (i1, j1),
0, (i, j) �= (i1, j1).

Since for 〈x1,x1〉 = 1,

〈A1(t)x1,x1〉 =
( ∑

(i,j)∈AN1(t)

a1
iji1j1x

1
ij ; (i, j) ∈ AN1(t)

)
= a1

i1j1i1j1 = 1 + a
( 1

h
we − 1

)
,

we know

λ1
max = sup

|x|�=0

〈A1(t)x,x〉
〈x,x〉 ≥ 〈A1(t)x,x〉

〈x1,x1〉 = 1 + a
( 1

h
we − 1

)
.

On the other hand,

λmin ∈
⋃

(i,j)∈AN1(t)

{
λ; |λ − aijij | ≤

∑
(s,t)∈AN1(t)−{(i,j)}

|aijst|
}

.

Since aijij = 1 + a( 1
hwe − 1) or aijij = 1 − a, we have

∑
(s,t)∈AN1(t)−{(i,j)}

|aijst| ≤ a
wi

h
(Nn − 1).

We know

λmin > 1 − a − awi
(Nn − 1)

h
.

Finally, we prove (3). Since a < h
[h+wi(Nn−1)] , we have

λmin > 1 − a − awi
(Nn − 1)

h
> 0, |A(t)| > 0.

Hence |A(0 ≤ t′ ≤ t)| =
∣∣∣ t∏

t′=0

A(t′)
∣∣∣ > 0.

Proof of Lemma 2.1 We take

(AN0, AN1, AN2) ∈ D(AN), AN1 �= ∅,
W (0 ≤ t ≤ t0) =

⋂
0≤t≤t0

W (AN0t, AN1t, AN2t)(t) ∈ W (0 ≤ t ≤ t0).

Here (AN0t0 , AN1t0 , AN2t0) = (AN0, AN1, AN2).
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Furthermore, suppose AN1(t) = AN1 (t ≥ t0). According to Note 2.1, ∀ω ∈ W (0 ≤ t ≤ t0),

u1(t) = PT
1 Λt−t0

1 [A∗(t0)u(0)(ω) + aB∗(t0)s + ac∗(t0)] + aD∗(t0)s + ae∗(t0).

Since u(0)(ω) is continuous, |A∗(t0)| �= 0, we know that

A∗(t0)u(0)(ω) + aB∗(t0)s + ac∗(t0)

is also continuous. Therefore

P
( ∑

(s,t)∈AN

a∗
ijst(t0)ust(0)(ω) +

∑
(s,t)∈AN

b∗ijst(t0)sst + ac∗ij(t0) = 0
∣∣∣W (0 ≤ t ≤ t0)

)

= 0, (i, j) ∈ AN1.

Let

NW (0≤t≤t0) =
⋃

(i,j)∈AN1t0

(
ω;

∑
(s,t)∈AN

a∗
ijst(t0)ust(0)(ω)

+
∑

(s,t)∈AN

b∗ijst(t0)sst + ac∗ij(t0) = 0 ∧ W (0 ≤ t ≤ t0)
)
.

Then

P (NW (0≤t≤t0)) =
∑

(i,j)∈AN1t0

P
(
ω;

∑
(s,t)∈AN

a∗
ijst(t0)ust(0)(ω)

+
∑

(s,t)∈AN

b∗ijst(t0)sst + ac∗ij(t0) = 0|W (0 ≤ t ≤ t0)
)

× P (W (0 ≤ t ≤ t0)) = 0.

Define

ΩW (0≤t≤t0) = {ω; ANkt0(t)(ω) = ANk, k = 0, 1, 2, t ≥ t0, ω ∈ W (0 ≤ t ≤ t0)}.

Suppose ΩW (0≤t≤t0) − NW (0≤t≤t0) �= ∅. Then, ∀ω ∈ ΩW (0≤t≤t0) − NW (0≤t≤t0),

AN1(t)(ω) = AN1t0 , t ≥ t0,∑
(s,t)∈AN

a∗
ijst(t0)ust(0)(ω) +

∑
(s,t)∈AN

b∗ijst(t0)sst + ac∗ij(t0) �= 0, (i, j) ∈ AN1.

Denote the maximum eigenvalue of A1(t0) by λi1j1 . Since we > h, according to Proposition
2.2, λi1j1 > 1. For this (i1, j1), we know from Note 2.1,

∃(k1, l1) ∈ AN1(t0), s.t. p1
i1j1k1l1(t0) �= 0, ∃(s1, t1) ∈ AN, s.t. a∗

i1j1s1t1(t0) �= 0,

the component of the state variable uk1l1(t)(ω) corresponding to λi1j1 is

uk1l1(t)(ω)(λi1j1) = pi1j1k1l1(t0)λ
t−t0
i1j1

( ∑
(s,t)∈AN

a∗
i1j1st(t0)ust(0)(ω)

+
∑

(s,t)∈AN

b∗i1j1st(t0)sst + ac∗i1j1(t0)
)
.
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Obviously,

lim
t→∞ |uk1l1(t)(ω)(λi1j1)| = ∞, lim

t→∞ |uk1l1(t)(ω)| = ∞.

This contracts the definition of ΩW (0≤t≤t0). So

ΩW (0≤t≤t0) − NW (0≤t≤t0) = ∅, ΩW (0≤t≤t0) ⊂ NW (0≤t≤t0).

Let

Ω1 = {ω; AN1(t)(ω) = AN1t0 , t ≥ t0, ω ∈ Ω}.
Then

Ω1 =
⋃

W (0≤t≤t0)∈W (0≤t≤t0)

ΩW (0≤t≤t0) ⊂
⋃

W (0≤t≤t0)∈W (0≤t≤t0)

NW (0≤t≤t0), P (Ω1) = 0.

Now, we give some lemmas which will be used in the proof of Lemma 2.2.

Lemma A.1 The simple lateral inhibitory neural array is given by difference equations
(2.1). The following conditions are satisfied:

wi > we > h, sij < h, (i, j) ∈ AN.

If

Δuij(t) = uij(t) − uij(t − 1) > 0, uij(t − 1) ≥ 0,

then

(a)
∑

(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) <
we

wi
< 1,

(b) ust(t − 1) < h, (s, t) ∈ N(i, j) − {(i, j)}.

Proof We first consider the case 0 ≤ uij(t − 1) ≤ h. Since

uij(t) =
[
1 + a

(we

h
− 1

)]
uij(t − 1) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) + asij .

We have

Δuij(t) = uij(t) − uij(t − 1) = a
(we

h
− 1

)
uij(t − 1) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) + asij > 0,

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) <
1
wi

(( 1
h

we − 1
)
uij(t − 1) + sij

)
<

1
wi

(( 1
h

we − 1
)
h + h

)
=

we

wi
.

Now we consider the case uij(t − 1) > h. Since

uij(t) = (1 − a)uij(t − 1) + awe − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) + asij ,
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we have

Δuij(t) = uij(t) − uij(t − 1) = −auij(t − 1) + awe − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) + asij > 0,

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) <
we

wi
< 1,

zst(t − 1) < 1, ust(t − 1) < h, (s, t) ∈ N(i, j) − {(i, j)}.

Lemma A.2 The simple lateral inhibitory neural array is given by difference equations
(2.1). Its neighborhoods satisfy (s, t) ∈ N(i, j) ⇒ (i, j) ∈ N(s, t). And the following conditions
are satisfied:

wi > (1 + δ)h, sij ≤ h, (i, j) ∈ AN.

If uij(t) > h
(1+δ) , then AN0(t + 1) ∩ N(i, j) ⊃ AN0(t) ∩ N(i, j).

Proof Let (s, t) ∈ AN0(t) ∩ N(i, j). Since

(s, t) ∈ N(i, j) ⇒ (i, j) ∈ N(s, t),

and uij(t) > h
(1+δ) , we have 1

(1+δ) < zij(t) ≤ 1,

ust(t + 1) = (1 − a)ust(t) − awi

∑
(k,l)∈N(s,t)
(k,l)�=(s,t)

zkl(t) + asst

≤ −awizij(t) + asst < −a(1 + δ)
h

1 + δ
+ ah = 0.

Therefore

(s, t) ∈ AN0(t + 1) ∩ N(i, j), AN0(t + 1) ∩ N(i, j) ⊃ AN0 ∩ N(i, j).

Lemma A.3 The simple lateral inhibitory neural array is given by difference equations
(2.1). Its neighborhoods satisfy (s, t) ∈ N(i, j) ⇒ (i, j) ∈ N(s, t). And the following conditions
are satisfied:

wi > (1 + δ)we, wi > (1 + δ)h, we > h, sij < h, (i, j) ∈ AN.

If uij(t) > h
1+δ , ust(t) < h, (s, t) ∈ N(i, j) − {(i, j)}, then ust(t + 1) < h.

Proof The case that ust(t) < 0 has been discussed in the proof of Lemma A.2. So we just
consider the case 0 ≤ ust ≤ h. Since

zij(t) =

⎧⎨
⎩

uij(t)
h

>
1

(1 + δ)
,

h

(1 + δ)
< uij(t) ≤ h,

1, uij(t) > h,

(s, t) ∈ N(i, j) ⇒ (i, j) ∈ N(s, t),
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we have

ust(t + 1) =
[
1 + a

( we

h − 1

)]
ust(t) − awi

∑
(p,q)∈N(s,t)
(p,q) �=(s,t)

zpq(t) + asst

≤
[
1 + a

( we

h − 1

)]
ust(t) − awizij(t) + asst

<
[
1 + a

( we

h − 1

)]
h − a(1 + δ)

we

(1 + δ)
+ ah = h.

Lemma A.4 The simple lateral inhibitory neural array is given by difference equations
(2.1). Its neighborhoods satisfy

(s, t) ∈ N(i, j) ⇒ (i, j) ∈ N(s, t).

And the following conditions are satisfied:

wi > (1 + δ)we, wi > (1 + δ)h, we > h, sij < h < 1, (i, j) ∈ AN.

If Δuij(t) = uij(t) − uij(t − 1) > 0, uij(t − 1) > h
(1+δ) , then

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t)

⎧⎨
⎩< −a

( 1
h − 1

)
, N1(i, j)(t − 1) �= ∅,

= 0, N1(i, j)(t − 1) = ∅,

where

N1(i, j)(t − 1) = {(s, t); (s, t) ∈ N(i, j), (s, t) �= (i, j), 0 < ust(t − 1) < h}.

Proof Denote

N0(i, j)(t) = {(s, t); (s, t) ∈ N(i, j), (s, t) �= (i, j), ust(t) ≤ 0},
N1(i, j)(t) = {(s, t); (s, t) ∈ N(i, j), (s, t) �= (i, j), 0 < ust(t) < h},
N2(i, j)(t) = {(s, t); (s, t) ∈ N(i, j), (s, t) �= (i, j), ust(t) ≥ h}.

Obviously,
N(i, j) = N0(i, j)(t) ∪ N1(i, j)(t) ∪ N2(i, j)(t) ∪ {(i, j)}.

For (s, t) ∈ N(i, j) − {(i, j)},

zst(t) =

⎧⎪⎨
⎪⎩

0, (s, t) ∈ N0(i, j)(t),
ust(t)

h
, (s, t) ∈ N1(i, j)(t),

1, (s, t) ∈ N2(i, j)(t).

Therefore, ∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t) =
1
h

∑
(s,t)∈N1(i,j)(t)

(s,t) �=(i,j)

ust(t) + |N2(i, j)(t)| − 1.
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Since

wi > we > h, spq < h, (p, q) ∈ AN, Δuij(t) > 0, uij(t − 1) > 0,

according to Lemma A.1, we have

ust(t − 1) < h, (s, t) ∈ N(i, j) − {(i, j)}, N2(i, j)(t − 1) = ∅.

Again since

wi > (1 + δ)we, wi > (1 + δ)h, we > h, spq < h, (p, q) ∈ AN,

uij(t − 1) >
h

(1 + δ)
, ust(t − 1) < h, (s, t) ∈ N(i, j) − {(i, j)},

according to Lemma A.3, we have

ust(t) < h, (s, t) ∈ N(i, j) − {(i, j)}, N2(i, j)(t) = ∅.

Since

wi > (1 + δ)h, spq < h, (p, q) ∈ AN, uij(t − 1) >
h

(1 + δ)
,

from Lemma A.2, we have N0(i, j)(t) ⊃ N0(i, j)(t − 1), so N1(i, j)(t) ⊂ N1(i, j)(t − 1). Hence,
we know

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t) =
1
h

∑
(s,t)∈N1(i,j)(t)

(s,t) �=(i,j)

ust(t), (A.1)

∑
(s,t)∈N1(i,j)(t)

(s,t) �=(i,j)

ust(t − 1) =
∑

(s,t)∈N1(i,j)(t−1)
(s,t) �=(i,j)

ust(t − 1) −
∑

(s,t)∈N1(i,j)(t−1)
(s,t) �∈N1(i,j)(t)

(s,t) �=(i,j)

ust(t − 1)

≤
∑

(s,t)∈N1(i,j)(t−1)
(s,t) �=(i,j)

ust(t − 1). (A.2)

Suppose N1(i, j)(t − 1) �= ∅. If (s, t) ∈ N1(i, j)(t), then (i, j) ∈ N(s, t). So we have

ust(t) =
[
1 + a

(we

h
− 1

)]
ust(t − 1) − awi

∑
(p,q)∈N(s,t)
(p,q) �=(s,t)

zpq(t − 1) + asst

≤
[
1 + a

(we

h
− 1

)]
ust(t − 1) − awizij(t − 1) + ah. (A.3)

From (A.2) and (A.3), we get

∑
(s,t)∈N1(i,j)(t)

ust(t) ≤
[
1 + a

(we

h
− 1

)] ∑
(s,t)∈N1(i,j)(t)

ust(t − 1)

− [awizij(t − 1) − ah]|N1(i, j)(t)|.
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From equation (A.1) and (A.3), we get

h
( ∑

(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t) −
∑

(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1)
)

≤ a
(we

h
− 1

)
h

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1)) − [awizij(t − 1) − ah],

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t) ≤ a
(we

h
− 1

) ∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) − 1
h

[awizij(t − 1) − ah].

Since

wi > we > h, spq < h, (p, q) ∈ AN, Δuij(t) > 0, uij(t − 1) > 0,

according to Lemma A.1, we have ∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) <
we

wi
< 1.

Since
wi > (1 + δ)we, h < 1, zij(t − 1) >

1
h
· h

(1 + δ)
=

1
(1 + δ)

,

we get∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t) ≤ a
(we

h
− 1

)
− 1

h

[
a(1 + δ)we

1
1 + δ

− ah
]

< −a

h
+ a ≤ −a

( 1
h
− 1

)
< 0.

In the case of N1(i, j)(t − 1) = ∅, we have N1(i, j)(t) = ∅, so
∑

(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t) = 0.

Proof of Lemma 2.2 If uij(t0) ≥ h, then ∃ t1 > t0, uij(t1) < h, or uij(t) ≥ h, t > 0. If
uij(t0) ≤ 0, then ∃ t1 > t0, 0 < uij(t1) < h, or uij(t) ≤ 0, t > t0. So we just consider the case
that 0 < uij(t0) < h.

Step 1 We proof that ∃ t1 > t0, uij(t1) ≥ h. In fact, if

0 < uij(t) < h, 0 < uij(t − 1) < h,

then

uij(t + 1) =
[
1 + a

(we

h
− 1

)]
uij(t) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t) + asij ,

uij(t) =
[
1 + a

(we

h
− 1

)]
uij(t − 1) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(t − 1) + asij ,

Δuij(t + 1) =
[
1 + a

(we

h
− 1

)]
Δuij(t) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t). (A.4)
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Since
Δuij(t0) > 0,

h

(1 + δ)
< uij(t0 − 1) < h,

from Lemma A.4, we have ∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t0) < 0.

So Δuij(t0 + 1) > 0, therefore uij(t0 + 1) > h
(1+δ) . If uij(t0 + 1) < h, according to Lemma A.4,

we have ∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t0 + 2) < 0.

By mathematical induction, we know that as long as uij(t) < h, it holds that

Δuij(t) > 0,
∑

(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t) < 0.

From (A.4), we know
Δuij(t + 1) >

[
1 + a

(we

h
− 1

)]
Δuij(t).

Since 1 + a(we

h − 1) > 1, we know that Δuij(t) ↑. Therefore ∃ t1 > t0,

uij(t1) ≥ h,
h

(1 + δ)
< uij(t1 − 1) < h.

Step 2 We prove that when t > t1, it holds that

uij(t) > h, Δuij(t) > 0, ust(t) < h, (s, t) ∈ N(i, j) − {(i, j)}.

In fact, uij(t1) ≥ h, h
(1+δ) < uij(t1 − 1) < h. According to Lemma A.4, we have

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t1) < 0.

So

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t1 + 1) ≤ 0,

Δuij(t1 + 1) > (1 − a)Δuij(t1) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

Δzst(t1) > 0, uij(t1 + 1) > h.

By mathematical induction, we know that when t > t1,

Δuij(t) > 0, uij(t) > h.

Since Δuij(t1) > 0, uij(t1 − 1) > h
(1+δ) , according to Lemma A.1, we know ust(t1 − 1) <

h, (s, t) ∈ N(i, j) − {(i, j)}; according to Lemma A.3, we know ust(t1) < h, (s, t) ∈ N(i, j) −



180 J. Zhuang

{(i, j)}. By mathematical induction, we know that when t > t1, ust(t) < h, (s, t) ∈ N(i, j) −
{(i, j)}.

Step 3 We show that ∃ t2 > t1, t > t2,

ust(t) < −aδh, (s, t) ∈ N(i, j) − {(i, j)}, lim
t→∞ uij(t) = we + sij ≥ h.

For simplicity, we only consider the case of 0 < ust(t1) < h. By mathematical induction, we
can show that as long as 0 < ust(t) < h,

ust(t + 1) =
(
1 + a

(we

h
− 1

))
ust(t) − awi

∑
(p,q)∈N(s,t)
(p,q) �=(s,t)

zpq(t) + asst

≤
[
1 + a

(we

h
− 1

)]
ust(t) − awizij(t) + asst

=
[
1 + a

(we

h
− 1

)]
ust(t) − awi + ah,

Δust(t + 1) ≤ a
(we

h
− 1

)
ust(t) − awi + ah

< a
(we

h
− 1

)
h − a(1 + δ)h + ah = −aδh.

Hence ∃ t2(s, t) > t1, when t = t2(s, t), ust < 0, we have ust(t − 1) > 0; when t = t2(s, t) + 1,
we have

ust(t + 1) = (1 − a)ust(t) − awi

∑
(p,q)∈N(s,t)
(p,q) �=(s,t)

zpq(t) + asst

< −awi + asst < −a(1 + δ)h + ah < −aδh.

According to mathematical induction, we have

ust(t) < −aδh, (s, t) ∈ N(i, j) − {(i, j)}, t > t2 = max{t2(s, t); (s, t) ∈ N(i, j) − {(i, j)}}.

Therefore,

uij(t + 1) = (1 − a)uij(t) + awe + asij , t ≥ t2, lim
t→∞ uij(t) = we + sij ≥ h.

Next, we give some lemmas which will be used in the proof of Theorem 2.1.

Lemma A.5 The simple lateral inhibitory neural array is given by difference equations
(2.1). The conditions (C1), (C2), (C4)–(C6) are satisfied. Then for input s, ∃Ns ∈ �, P (Ns) =
0, when ω ∈ Ω − Ns, ∃T (s, ω) > 0, s.t.

z(t)(ω) = z(ω) ∈ Z, t > T (s, ω), u(t)(ω) → u(ω) ∈ Ue, t → ∞.

Proof If uij(0)(ω) > h, then uij(t)(ω) ≥ h, t > 0, or ∃ t1 > 0, uij(t1 − 1)(ω) > h,
uij(t1)(ω) < h. If uij(0)(ω) < 0, then uij(t)(ω) ≤ 0, t > 0, or ∃ t1 > 0, uij(t1 − 1)(ω) ≤ 0,
uij(t1)(ω) > 0. For simplicity, suppose

0 < uij(0)(ω) < h, (i, j) ∈ AN.
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Therefore AN1(0) = AN. According to Lemma 2.1, ∃(k1, l1) ∈ AN, ∃N1, P (N1) = 0, if
ω ∈ Ω − N1, then when t > 0, uk1l1(t)(ω) ↑ h, or uk1l1(t)(ω) ↓ 0. For simplicity, suppose
uk1l1(t)(ω) ↑ h. Then ∃ t1 > 0, such that

uij(t1)(ω) − uij(t1 − 1)(ω) > 0, uij(t1 − 1)(ω) >
h

(1 + δ)
.

According to Lemma 2.2, ∃ t2 > t1, when t > t2,

uk1j1(t)(ω) > h, ust(t)(ω) < −aδh, (s, t) ∈ N(k1, l1) − {(k1, l1)},
lim

t→∞uk1j1(t)(ω) = we + wi > h.

If AN1(t2) �= ∅, then ∃ (k2, l2) ∈ AN1(t2), ∃N2, P (N2) = 0, when ω ∈ Ω−(N1∪N2), uk2l2(t)(ω) ↑
h or uk2l2(t)(ω) ↓ h. For simplicity, suppose uk2l2(t)(ω) ↑ h. Then ∃ t3 > t2, when t > t3,

uk2j2(t)(ω) > h, ust(t)(ω) < −aδh, (s, t) ∈ N(k2, l2) − {(k2, l2)},
lim

t→∞uk2j2(t)(ω) = we + wi > h.

At last ∃Nn, P (Nn) = 0, ∃ tn+1, as long as

ω ∈ Ω − (N1 ∪ N2 ∪ · · · ∪ Nn),

AN1(t) = ∅, t ≥ tn+1. It is easy to show AN2(t) = AN2(tn + 1), t ≥ tn+1. Therefore

lim
t→∞uij(t)(ω) = we − wi(|AN2(tn+1) ∩ N(i, j)| − 1) + sij = uij(ω) > h, (i, j) ∈ AN2(tn + 1),

lim
t→∞ust(t)(ω) = −wi|AN2(tn+1) ∩ N(s, t)| + sst = ust(ω) < 0, (s, t) ∈ AN0(tn + 1),

z(t)(ω) = z(ω) ∈ Z, t ≥ tn + 1.

Lemma A.6 The simple lateral inhibitory neural array is given by difference equations
(2.1). The neighborhoods satisfy

(s, t) ∈ N(i, j) ⇒ (i, j) ∈ N(s, t).

And it also satisfies

0 < a <
h

[h + wi(Nn − 1)]
.

Then u(t)(ω) (t > 0) is continuous as long as u(0)(ω) is continuous.

Proof According to Note 2.2 and Note 2.5, on

W (0 ≤ t′ ≤ t) =
⋂

0≤t′≤t

W (AN0t, AN1t, AN2t)(t′),

we have

u(t + 1)(ω) = A(0 ≤ t′ ≤ t)Wu(0)(ω) + aB(0 ≤ t′ ≤ t)W s + ad(0 ≤ t′ ≤ t)W ,

where A(0 ≤ t′ ≤ t)W , B(0 ≤ t′ ≤ t)W and d(0 ≤ t′ ≤ t)W are defined by equations (2.4),
(2.5) and (2.6) respectively. According to Proposition 2.2, |A(0 ≤ t′ ≤ t)W | > 0, hence because
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u(0)(ω) is continuous, u(t + 1)(ω) is continuous too. So u(t)(ω), t > 0 is continuous on
W (0 ≤ t′ ≤ t) =

⋂
0≤t′≤t

W (AN0t, AN1t, AN2t)(t′). Therefore, u(t)(ω) (t > 0) is continuous on

Ω.

Lemma A.7 The simple lateral inhibitory neural array is given by difference equations
(2.1). Conditions (C1), (C2), (C4)–(C6) are satisfied. Then for constant input s, ∃Ns ∈ �,
s.t. P (Ns) = 0 and

∃O(s, δ(s,u(0)(ω))) = {s′; |s′ − s| < δ(s,u(0)(ω))},

if s′ ∈ O(s, δ(s,u(0)(ω))) and ω ∈ Ω − Ns, then

z(t)|s′,u(0)(ω) = z(ω), t > T (s, ω), u(t)|s′,u(0)(ω) → u′(ω) ∈ Ue, t → ∞,

where z(t)|s′,u(0)(ω) and u(t)|s′,u(0)(ω) are the output and the state vector when the input is s′

and the initial state is u(0)(ω) respectively.

Proof From Lemma A.5, we know that for the input s, ∃Ns ∈ �, P (Ns) = 0, when
ω ∈ Ω − Ns, ∃T ′(s, ω) > 0, s.t.

z(t)(ω) = z(ω) ∈ Z, t > T ′(s, ω), u(t)(ω) → u(ω) ∈ Ue, t → ∞.

According to Lemma A.6, u(t)(ω) (t > 0) is continuous. Thus ∃N t
s , s.t. P (N t

s) = 0, if ω ∈ Ω−
N t

s , then uij(t)(ω) �= 0, uij(t)(ω) �= h. Let N ′′
s =

⋃
t>0

N t
s , Ns = N ′

s∪N ′′
s . For ω ∈ Ω−Ns, denote

[z(ω)]1 = {(i, j); zij(ω) = 1, (i, j) ∈ AN},
[z(ω)]0 = {(i, j); zij(ω) = 0 ∧ zst(ω) = 0, (s, t) ∈ N(i, j), ( i, j) ∈ AN}.

∃T ′′(s, ω) > 0, when t > T ′′(s, ω),

uij(t)(ω) > h, ust(t)(ω) < 0, (s, t) ∈ N(i, j) − (i, j), (i, j) ∈ [z(ω)]1,

uij(t)(ω) < 0, (i, j) ∈ [z(ω)]0.

Let

ε1 = min{uij(T ′′(s, ω))(ω) − h, −ust(T ′′(s, ω))(ω); (s, t) ∈ N(i, j) − {(i, j)}, (i, j) ∈ [z(ω)]1},
ε2 = min{−uij(T ′′(s, ω))(ω); (i, j) ∈ [z(ω)]0}, ε = min

{ε1

2
,
ε2

2

}
.

Since difference equations (2.1) satisfy the Lipschitz condition, u(t)(ω) is dependent continu-
ously on s. Corresponding to this ε, ∃ δ(s,u(0)(ω)) > 0, if s′ ∈ O(s, δ(s,u(0)(ω))), then

uij(T ′′(s, ω))(ω) > h, ust(T ′′(s, ω))(ω) < 0, (s, t) ∈ N(i, j) − {(i, j)}, (i, j) ∈ [z(ω)]1,

uij(T ′′(s, ω))(ω) < 0, (i, j) ∈ [z(ω)]0.

For (i, j) ∈ [z(ω)]1, it is easy to show that when t > T ′′(s, ω),

uij(t)(ω) > h, ust(t)(ω) < 0, (s, t) ∈ N(i, j) − {(i, j)}, (i, j) ∈ [z(ω)]1,

uij(t)(ω) < 0, (i, j) ∈ [z(ω)]0.
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Let T (s, ω) = max{T ′(s, ω), T ′′(s, ω)}. Then

z(t)(ω) = z(ω), t > T (s, ω), u(t)(ω) → u′(ω) ∈ Uε, t → ∞.

Proof of Theorem 2.1 Let

SQ = {s; sij is rational, (i, j) ∈ AN}, N =
⋃

s∈SQ

Ns.

Here Ns is defined by Lemma A.5, so P (Ns) = 0. From Lemma A.7, we know that for s ∈ SQ,
as long as ω ∈ Ω − Ns, ∃T (s, ω) > 0, s.t.

z(t)|s,u(0)(ω) = z(ω) ∈ Z, t > T (s, ω), u(t)|s,u(0)(ω) → u(ω) ∈ Uε, t → ∞.

Furthermore, for this s, ∃O(s, δ(s,u(0)(ω))) = {s′; |s′ − s| < δ(s,u(0)(ω))}, if s′ ∈ O(s, δ(s,
u(0)(ω))), then

z(t)|s′,u(0)(ω) = z(ω) ∈ Z, t > T (s, ω), u(t)|s′,u(0)(ω) → u ∈ Uε, t → ∞.

Since ⋃
s∈SQ

O(s, δ(s, u(0))) ⊃ {s, sij ≤ h, (i, j) ∈ AN},

∀ s′ ∈ {s, sij ≤ h, (i, j) ∈ AN} and ∀ω ∈ Ω − Ns, ∃ s ∈ SQ, s.t. s′ ∈ O(s, δ(s,u(0)(ω))), such
that

z(t)|s′,u(0)(ω) = z(ω) ∈ Z, t > T (s, ω),

u(t)|s′,u(0)(ω) → u(ω) ∈ Ue, t → ∞.

Let N =
⋃

s∈SQ

Ns. Then P (N) = 0. ∀ s, if ω �∈ N c, we have

z(t)|s′,u(0)(ω) = z(ω) ∈ Z, t > T (s, ω), u(t)|s′,u(0)(ω) → u(ω) ∈ Ue, t → ∞.

Proof of Theorem 2.2 Denote

Ω0 =
{
ω; ∃u ∈ Ue, ∃ s, lim

t→∞u(t)|s,u(ω) = u, ω ∈ Ω
}
.

Corresponding to this set, there exists

U0 =
{
u(0); ∃u ∈ Ue, ∃ s, lim

t→∞u(t)|s,u(0) = u
}
.

Denote N = Ω − Ω0, U = R|AN| − U0. According to Theorem 2.1, P (N) = 0.
Let

Ok = {x; ‖x‖ ≤ k, x ∈ R|AN|}, k = 1, 2, 3, · · · .

Then

U = lim
k→∞

U ∩ Ok.
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Let u(0)(ω) be random variable with uniform probability distribution on Ok (k ≥ 1). It is easy
to prove

P (N) = 0 ⇒ λ(U ∩ Ok) = 0.

Therefore λ(U) = lim
k→∞

λ(U ∩ Ok) = 0. Here λ( · ) is Lebesgue measure.

Proof of Proposition 2.3 Let u(0) ∈ N(u, ε). We first consider the neuron (i, j) ∈ [u]2.
From the definition of N(u, ε), we know

ust(0) < ε, (s, t) ∈ N(i, j) − {(i, j)}.
There are two cases.

Case 1 In this case, uij(0) > h, so

uij(1) = (1 − a)uij(0) + awe − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(0) + asij

> (1 − a)h + awe − awi(Nn − 1)
1
h

ε − a(1 − α)(we − h)

= h + a
[
α(we − h) − εwi

(Nn − 1)
h

]
.

Since ε < ε1 ≡ α ((we−h)h)
[(Nn−1)wi]

, we know uij(1) > h.

If ust(0) < 0, ∀(s, t) ∈ N(i, j) − {(i, j)}, then

ust(1) = (1 − a)ust(0) − awi

∑
(p,q)∈N(s,t)
(p,q) �=(s,t)

zpq(0) + asst < −awi + ah < 0.

If ust(0) < ε, ∀(s, t) ∈ N(i, j) − {(i, j)}, then

ust(1) =
[
1 + a

(we

h
− 1

)]
ust(0) − awi

∑
(p,q)∈N(s,t)
(p,q) �=(s,t)

zpq(0) + asst,

Δust(1) = a
(we

h
− 1

)
ust(0) − awi

∑
(p,q)∈N(s,t)
(p,q) �=(s,t)

zpq(0) + asst

< a
(we

h
− 1

)
ε − awi + ah = a(we − h)

ε

h
− a(wi − h).

Since ε < ε2 ≡ wih−(1+δ)h2

we−h , we have Δust(1) < −aδh. Using mathematical induction, we know
that when t ≥ 1, we have

(a) uij(t) > h,

(b) ust(t − 1) < 0 ⇒ ust(t) < 0,

(c) 0 < ust(t − 1) < ε ⇒ Δust(t) < −aδh.

Hence ∃ tij > 0, when t > tij , uij(t) > h, ust(0) < 0, (s, t) ∈ N(i, j) − {(i, j)}.
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Case 2 In this case, h − ε < uij(0) < h, so

uij(1) =
[
1 + a

(we

h
− 1

)]
uij(0) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(0) + asij ,

Δuij(1) = a
(we

h
− 1

)
uij(0) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(0) + asij

> a
(we

h
− 1

)
(h − ε) − awi(Nn − 1)

ε

h
− aα(we − h)

= a(a − α)(we − h) +
a

h
[we − h − wi(Nn − 1)]ε.

Since

ε < ε4 ≡ we − (1 + δ)h
we − h + (Nn − 1)wi

h,

we have Δuij(1) > aασh. ∀(s, t) ∈ N(i, j) − {(i, j)}, if ust(0) < 0, then

ust(1) = (1 − a)ust(0) − awi

∑
(p,q)∈N(s,t)
(p,q) �=(s,t)

zpq(0) + asst

< −awi
h − ε

h
+ ah = −a(wi − h) + a

wi

h
ε.

Since

ε < ε3 ≡ wi − h
(we−h)

h2 + wi

h

<
wi − h

wi

h

,

we have ust(1) < 0. If 0 < ust(0) < ε, then

uij(1) =
[
1 + a

(we

h
− 1

)]
uij(0) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(0) + asij ,

Δuij(1) = a
(we

h
− 1

)
uij(0) − awi

∑
(s,t)∈N(i,j)
(s,t) �=(i,j)

zst(0) + asij

< a
(we

h
− 1

)1
h

ε − awi
h − ε

h
+ ah = a

(we − h

h2
+

wi

h

)
ε − a(wi − h).

Since

ε < ε3 ≡ wi − h
we−h

h2 + wi

h

<
wi − h

wi

h

, Δust(1) < 0, ust(1) < ε,

using mathematical induction, we know that when t ≥ 1,

(a) uij(t − 1) < h ⇒ Δuij(t) > aασh,

(b) ust(t) < ε, (s, t) ∈ N(i, j) − {(i, j)}.
Hence ∃ t′ij > 0, such that uij(t′ij − 1) < h, uij(t′ij) > h. This is just the same as Case 1.
Therefore, ∃ tij > 0, when t > tij , uij(t) > h, ust(0) < 0, (s, t) ∈ N(i, j) − {(i, j)}.

Then we consider the neuron (i, j) ∈ [u]0. Since sij ≤ 0, uij(0) < 0,

uij(1) ≤ (1 − a)uij(0) + asij < 0.
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By mathematical induction, we know that when t ≥ 1,

uij(t) ≤ (1 − a)uij(t − 1) + asij < 0.

So when t > T ≡ max{tij ; (i, j) ∈ [u]2},

uij(t + 1) = (1 − a)uij(t) + awe + asij > h, (i, j) ∈ [u]2,

ust(t + 1) = (1 − a)ust(t) − awi|[u]2 ∩ N(i, j)| + asst < 0, (s, t) ∈ N(i, j), (i, j) ∈ [u]2.

Therefore when t > T ,
z(t) = z ∈ Z(s), lim

t→∞u(t) = u ∈ U(s).
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