
Chin. Ann. Math.
32B(2), 2011, 187–200
DOI: 10.1007/s11401-011-0639-2

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2011

Lagrangian Mean Curvature Flow in
Pseudo-Euclidean Space

Rongli HUANG1

Abstract The author establishes the long-time existence and convergence results of the
mean curvature flow of entire Lagrangian graphs in the pseudo-Euclidean space, which is
related to the logarithmic Monge-Ampère flow.

Keywords Indefinite metric, Self-expanding solution, Interior Schauder estimates,
Logarithmic Monge-Ampère flow

2000 MR Subject Classification 53B25, 53C40

1 Introduction

The mean curvature flow in higher codimension was studied extensively in the last few years
(cf. [7, 8, 11, 16, 19, 20, 22, 23]). In this paper, we consider the Lagrangian mean curvature
flow in the pseudo-Euclidean space.

Let R
2n
n be the 2n-dimensional pseudo-Euclidean space with index n. The indefinite flat

metric on R
2n
n (cf. [24]) is defined by

ds2 =
1
2

n∑
i=1

dxidyi.

The logarithmic Monge-Ampère flow (cf. [21]) can be written as
⎧⎨
⎩

∂u

∂t
− 1

n
ln detD2u = 0, t > 0, x ∈ R

n,

u = u0(x), t = 0, x ∈ R
n.

(1.1)

By Proposition 2.1, there exists a family of diffeomorphisms

rt : R
n → R

n,

such that
F (x, t) = (rt, Du(rt, t)) ⊂ R

2n
n

is a solution to the mean curvature flow in the pseudo-Euclidean space⎧⎨
⎩

dF

dt
=

−→
H,

F (x, 0) = F0(x).
(1.2)
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Here
−→
H is the mean curvature vector of the space-like submanifold F (x, t) ⊂ R

2n
n and

F0(x) = (x, Du0(x)).

Definition 1.1 Assume that u0(x) ∈ C2(Rn). We call u0(x) satisfying
(i) (Condition A) if

u0(x) =
u0(Rx)

R2
, ∀R > 0;

(ii) (Condition B) if
ΛI ≥ D2u0(x) ≥ λI, x ∈ R

n,

where Λ, λ are positive constants and I is the identity matrix.

We now state the main theorems of this paper.

Theorem 1.1 Let u0 : R
n → R be a C2 function satisfying condition B. Then there exists

a unique strictly convex solution of (1.1) such that

u(x, t) ∈ C∞(Rn × (0, +∞)) ∩ C(Rn × [0, +∞)), (1.3)

where u( · , t) satisfies condition B. More generally, for l = {3, 4, 5, · · · } and ε0 > 0, there holds

sup
x∈Rn

|Dlu(x, t)| ≤ C, ∀ t ∈ (ε0, +∞), (1.4)

where C depends only on n, λ, Λ, 1
ε0

.

The existence results are based in a prior estimates on u. P. L. Lions and M. Musiela [15]
introduced a class of fully nonlinear parabolic equations where the convexity properties of the
solutions are preserved. So we are able to derive a positive lower bound and an upper bound for
the eigenvalues of D2u. By the Krylov-Safonov Theorem, we obtain the Cα norm of D2u. But
it seems difficult to get the bound of D3u only using interior Schauder estimates without the
assumption of sup

x∈Rn

|Du0| < +∞. To overcome the difficulty, we will use the blow-up argument

to prove
sup

x∈R
n

t≥ε0

|D3u| < +∞,

and further establish (1.4) by interior Schauder estimates. Here we do not need the gradient
bound of u0.

Consider the following Monge-Ampère type equation:

detD2u = exp
{
n
(
u − 1

2

n∑
i=1

xi
∂u

∂xi

)}
. (1.5)

According to the definition in [9], we can show that an entire solution to (1.5) is a self-expanding
solution to Lagrangian mean curvature flow in the pseudo-Euclidean space.

The following theorem shows that we can obtain the self-expanding solutions by the loga-
rithmic Monge-Ampère flow.

Theorem 1.2 Let u0 : R
n → R be a C2 function which satisfies condition B. Assume that

lim
τ→+∞ τ−2u0(τx) = U0(x) (1.6)
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for some U0(x) ∈ C2(Rn). Let u(x, t) and U(x, t) be two solutions to (1.1) with initial values
u0(x) and U0(x) respectively. Then

lim
t→+∞ t−1u(

√
tx, t) = U(x, 1). (1.7)

Here the convergence is uniform and smooth in any compact subset of R
n, and U(x, 1) is a

smooth self-expanding solution of (1.2).

To describe the asymptotic behavior of Lagrangian mean curvature flow (1.2), we will prove
the following theorem.

Theorem 1.3 Suppose that u0 is a smooth function which satisfies condition B and

sup
x∈Rn

|Du0(x)|2 < +∞.

Then the evolution equation of the mean curvature flow (1.2) has a long-time smooth solution
and the graph (x, Du(x, t)) converges to a plane in R

2n
n as t goes to infinity. If additionally

|Du0(x)| → 0 as |x| → ∞, then the graph (x, Du(x, t)) converges smoothly on any compact sets
to the coordinate plane (x, 0) in R

2n
n .

This paper is organized as follows. In Section 2, we show that the mean curvature flow (1.2)
is equivalent to logarithmic Monge-Ampère flow and then Theorem 1.1 is proved. By Theorem
1.1, we can present the proof of Theorem 1.2. In Section 3, we obtain the convergence results
by the decay estimates of the logarithmic Monge-Ampère flow.

2 Logarithmic Monge-Ampère Flow

Throughout the following Einstein’s convention of summation over repeated indices will be
adopted.

Let (x1, · · · , xn; y1, · · · , yn) be null coordinates in R
2n
n . Then the indefinite metric (cf. [24])

is defined by

ds2 =
1
2
dxidyi. (2.1)

Suppose that u is a smooth convex function. The graph M of ∇u can be written as
(
x1, · · · , xn;

∂u

∂x1
, · · · ,

∂u

∂xn

)
.

Then the induced Riemannian metric on M is defined by

ds2 =
∂2u

∂xi∂xj
dxidxj .

Choose a tangent frame field {e1, · · · , en} along M, where

ei =
∂

∂xi
+

∂2u

∂xi∂xj

∂

∂yj
.

We use 〈 · , · 〉 to denote the inner product induced from (2.1). Then

〈ei, ej〉 =
∂2u

∂xi∂xj
.
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Let {η1, · · · , ηn} be the normal frame field of M in R
2n
n defined by

ηi =
∂

∂xi
− ∂2u

∂xi∂xj

∂

∂yj

with

〈ηi, ηj〉 = − ∂2u

∂xi∂xj
.

The mean curvature vector of M is given by

−→
H = − 1

2ng

∂g

∂xl
glkηk,

where g = detD2u.
Suppose that u(x, t) is a strictly convex smooth function in R

n, and

F (x(t), t) =
(
x1, · · · , xn;

∂u

∂x1
, · · · ,

∂u

∂xn

)

satisfies (1.2). Then

dxi

dt
= − 1

2ng

∂g

∂xl
gli,

duj

dt
=

1
2ng

∂g

∂xl
glk ∂2u

∂xk∂xj
, i, j = 1, 2, · · · , n,

where uj = ∂u
∂xj , [gij ] = D2u, [gij ] = [gij ]−1. However,

duj

dt
=

∂uj

∂t
+

∂uj

∂xk

dxk

dt
, j = 1, 2, · · · , n.

So

∂uj

∂t
=

1
2ng

∂g

∂xl
glk ∂2u

∂xk∂xj
+

1
2ng

∂g

∂xl
glk ∂2u

∂xk∂xj

=
1
ng

∂g

∂xl
glkgkj =

1
n

∂

∂xj
ln g, j = 1, 2, · · · , n.

Then u(x, t) satisfies (1.1).
Conversely, if u(x, t) is a strictly convex smooth function in R

n, then we define in the obvious
way

F̃ (x, t) =
(
x1, · · · , xn;

∂u

∂x1
, · · · ,

∂u

∂xn

)
.

Let r : R
n × (0, T ) → R

n be the solution of the following systems of ordinary differential
equations: ⎧⎨

⎩
dxi

dt
= − 1

2ng

∂g

∂xl
gli, i = 1, 2, · · · , n,

xi(0) = xi, i = 1, 2, · · · , n.

Then rt is a family of diffeomorphisms R
n → R

n and F (x, t) = F̃ (r(x, t), t) is a solution to
(1.2).

In summary, by the regularity theory of parabolic equations, we have the following results.

Proposition 2.1 Let u0 : R
n → R be a strictly convex C2 function. Then (1.1) admits

a strictly convex smooth solution on R
n × (0, T ) with initial value u(x, 0) = u0(x) if and only
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if (1.2) admits a smooth solution F (x, t) on R
n × (0, T ) with strictly convex potential and with

initial condition F (x, 0) = (x,∇u0(x)). In particular, there exists a family of diffeomorphisms
r(x, t) : R

n → R
n for t ∈ (0, T ) such that F (x, t) = (r(x, t),∇u(r(x, t), t)) solves (1.2) on

R
n × (0, T ).

A solution F ( · , t) to (1.2) is called self-expanding if it has the form

Mt =
√

t M1 for all t > 0, (2.2)

where Mt = F ( · , t).
Assume that F (x, t) is a self-expanding solution to (1.2). Following Proposition 2.1 , u(x, t)

satisfies

∂u

∂t
− 1

n
ln detD2u = 0, t > 0, x ∈ R

n. (2.3)

Hence,
D

(
u(x, t) − tu

( x√
t
, 1

))
= 0,

i.e.,

u(x, t) = tu
( x√

t
, 1

)
, t > 0. (2.4)

Thus combining (2.3), (2.4) and letting t = 1, we can verify that u(x, 1) satisfies (1.5).
We want to use the method of continuity and finite approximation to prove the solvability

of (1.1).

Definition 2.1 Given any T > 0, R > 0, 1 > α > 1 and set

BR = {x | |x| < R, x ∈ R
n}, BR,T = {x | |x| < R, x ∈ R

n} × (0, T ),

PBR,T = BR × {t = 0} ∪ ∂BR × (0, T ).

Let τ ∈ [0, 1]. We say u ∈ C5+α, 5+α
2 (BR × (0, T )) ∩ C(BR × [0, T )) is a solution to (�τ ) if u

satisfies
⎧⎨
⎩

∂u

∂t
− τ

n
ln detD2u − (1 − τ)�u = 0, (x, t) ∈ BR,T ,

u = u0(x), (x, t) ∈ PBR,T .
(2.5)

Clearly, there exists a unique solution u(x, t) which satisfies (2.5) with τ = 0. Let

I = {τ ∈ [0, 1] : (�τ ) has a solution}.

The long time existence of the flow (1.2) holds if I is both closed and open and R = +∞. To
prove that the classical solutions to (1.1) must be strictly convex, we need the following lemma
which is proved by P. L. Lions, M. Musiela (cf. [15, Theorem 3.1]).

Lemma 2.1 Let u : BR,T → R be a classical solution of a fully nonlinear equation of the
form

∂u

∂t
= F (D2u),
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where F is a C2 function defined on the cone Γ of definite symmetric matrices, which is mono-
tone increasing (that is, F (A) ≤ F (A + B) whenever B is a positive definite matrix), and the
function

F ∗(A) = −F (A−1)

is concave on Γ+ of positive definite symmetric matrices. If D2u ≥ 0 for (x, t) ∈ PBR,T , then
D2u ≥ 0 for (x, t) ∈ BR,T .

By making use of Lemma 2.1, we obtain the following result.

Corollary 2.1 Suppose that u : BR,T → R is a classical solution of a fully nonlinear
equation of the form

∂u

∂t
= F (D2u),

where F satisfies the conditions in Lemma 2.1 and F is concave on the cone Γ+. If λI ≤
D2u ≤ ΛI for (x, t) ∈ PBR,T , then λI ≤ D2u ≤ ΛI for (x, t) ∈ BR,T .

Proof Step 1 We will show that D2u ≥ λI for (x, t) ∈ BR,T . In fact, B. Andrews proved
the conclusions (cf. Theorem 3.3 in [1]). Here we present another proof.

Set u = u − λ
2 |x|2. Then u satisfies

∂u

∂t
= F (D2u + λI)

with D2u ≥ 0 for (x, t) ∈ PBR,T . Define

F (D2u) = F (D2u + λI),

F
∗
(A) = −F (A−1 + λI),

F
∗
(λ1, λ2, · · · , λn) = −F (λ−1

1 + λ, λ−1
2 + λ, · · · , λ−1

n + λ),

Σ = {λ1 > 0, λ2 > 0, · · · , λn > 0}.

It follows from [2] that F
∗
(A) is concave on Γ+ if and only if F

∗
(λ1, λ2, · · · , λn) is concave on

Σ. Note that for all ξ ∈ R
n,

∂2F
∗

∂λi∂λj
ξiξj = −Fijξiξj − 2Fiλiξ

2

i ,

where ξi = ξi

λ2
i
. Since F ∗(A) = −F (A−1) is concave on Γ+, we have

−Fijξiξj |λ=0 − 2Fiλiξ
2

i |λ=0 ≤ 0.

Replace λi by λi

1+λλi
. So

−Fijξiξj ≤ 2Fi
λi

1 + λλi
ξ
2

i .

Clearly,
∂2F

∗

∂λi∂λj
ξiξj = −Fijξiξj − 2Fiλiξ

2

i ≤ 2Fi
λi

1 + λλi
ξ
2

i − 2Fiλiξ
2

i ≤ 0.

Therefore D2u ≥ 0 for (x, t) ∈ BR,T by Lemma 2.1.

Step 2 We prove that D2u ≤ ΛI for (x, t) ∈ BR,T .
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Introduce the Legendre transformation of u

τ = t, yi =
∂u

∂xi
, i = 1, 2, · · · , n, u∗(y1, · · · , yn) :=

n∑
i=1

xi ∂u

∂xi
− u(x).

In terms of τ, y1, · · · , yn, u∗(y1, · · · , yn, τ), one can easily check that

∂u∗

∂τ
= −∂u

∂t
,

∂2u∗

∂yi∂yj
=

[ ∂2u

∂xi∂xj

]−1

.

Then u∗ is a solution of the form
∂u∗

∂τ
= F ∗(D2u∗).

Since F ∗∗ = F is concave on the cone Γ+, using the conclusions of Step 1, we arrive at
D2u∗ ≥ 1

ΛI for (x, t) ∈ BR,T and this yields our desired result.

Given x0 ∈ R
n, κ > 0, define

QR,x0 = {x | |x − x0| ≤ R} × [κ, κ + R), QR
2 ,x0

=
{

x
∣∣∣ |x − x0| ≤ R

2

}
×

[
κ +

R

4
, κ +

R

2

)
,

QR
3 ,x0

=
{
x

∣∣∣ |x − x0| ≤ R

3

}
×

[
κ +

R

3
, κ +

5R

12

)
, BR,x0 = {|x − x0| ≤ R}.

The following two lemmas which will be mentioned below may be used repeatedly (cf. [14]).

Lemma 2.2 (cf. [3, Lemma 14.6]) Let u : R
n × [0, T ) → R be a classical solution of a fully

nonlinear equation of the form
⎧⎨
⎩

∂u

∂t
− F (D2u) = 0, t > 0, x ∈ R

n,

u = u0(x), t = 0, x ∈ R
n,

where F is a C2 concave function defined on the cone Γ of definite symmetric matrices, which
is monotone increasing with

λI ≤ ∂F

∂rij
≤ ΛI.

Then there exists 0 < α < 1 such that

[D2u]
Cα, α

2 (Q 1
2 ,x0

)
≤ C|D2u|C0(Q1,x0

),

where α, C are positive constants depending only on n, λ, Λ, 1
κ .

Lemma 2.3 (cf. [3, Theorem 4.9]) Let v : R
n × [0, T ) → R be a classical solution of a

linear parabolic equation of the form
⎧⎨
⎩

∂v

∂t
− aijvij = 0, t > 0, x ∈ R

n,

v = v0(x), t = 0, x ∈ R
n,

where there exists a positive constant C such that

λI ≤ aij ≤ ΛI, [aij ]Cα(Q R
2 ,x0

) ≤ C.
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Then there holds

|Dv|C0(Q R
3 ,x0

) + |D2v|C0(Q R
3 ,x0

) + [D2v]
Cα, α

2 (Q R
3 ,x0

)
≤ C3|v|C0(QR,x0

),

where C3 is a positive constant depending only on n, λ, Λ and C, R, 1
κ .

According to problem (2.5), we have the following lemma.

Lemma 2.4 I is closed.

Proof Suppose that u is a solution of (�τ ). For A ∈ Γ+, set

F (A) =
τ

n
ln detA + (1 − τ)Tr A.

Let λ1, λ2, · · · , λn be the eigenvalues of A. Define

f(λ1, λ2, · · · , λn) = F (A) =
τ

n
ln λ1λ2 · · ·λn + (1 − τ)(λ1 + λ2 + · · · + λn),

f∗(λ1, λ2, · · · , λn) = F ∗(A) =
τ

n
ln λ1λ2 · · ·λn − (1 − τ)

( 1
λ1

+
1
λ2

+ · · · + 1
λn

)
.

One can verify that D2f, D2f∗ are negative in a cone Σ = {λ1 > 0, λ2 > 0, · · · , λn > 0}.
By [2], we deduce that F, F ∗ are smooth concave functions defined on the cone Γ+, which are
monotone increasing.

It follows from Corollary 2.1 that if u0(x) satisfies condition B then u(x, t) does so. For
T > s > 0, R > ε > 0, define

BR−ε,T = BR−ε × (0, T ), BR−ε(T, s) = BR−ε × (s, T ).

Furthermore, combining Lemma 2.2 with Lemma 2.3, we have

‖u‖C2,1(BR−ε,T ) ≤ C1, ‖u‖
C2+α,2+α

2 (BR−ε(T,s))
≤ C2, (2.6)

where 0 < α < 1, C1 is a positive constant depending only on u0, R, T and C2 relies
on u0, λ, Λ, R, T, 1

ε , 1
s . By (2.6), a diagonal sequence argument and the regularity theory of

parabolic equations imply that I is closed.

To prove that I is open we need the following lemma (cf. [10, Theorem 17.6]).

Lemma 2.5 Let B1,B2 and X be Banach spaces and G be a mapping from an open subset
of B1 × X into B2. Let (ũ, τ̃ ) be a point in B1 × X satisfying that

( i ) G[ũ, τ̃ ] = 0,
( ii ) G is continuously differentiable at (ũ, τ̃),
(iii) the partial Fréchet derivative L = G1

(ũ,τ̃) is invertible.
Then there exists a neighbourhood N of τ̃ in X, such that the equation G[u, τ ] = 0 is solvable
for each τ ∈ N with solution u = uτ ∈ B1.

By the implicit function theorem, we have the next lemma.

Lemma 2.6 I is open.

Proof Define the Banach spaces

X = R,

B1 = C2+α, 2+α
2 (BR,T ),

B2 = Cα, α
2 (BR,T ) × C2+α, 2+α

2 (PBR,T )
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and a differentiable map from B1 × X into B2,

G : (u, τ) →
[∂u

∂t
− τ

n
ln det D2u − (1 − τ)�u, u − u0

]
.

We take an open set of B1 × X:

Θ =
{

u
∣∣∣ λ

2
I < D2u(x, t) <

3Λ
2

I, u ∈ B1

}
× (0, 1).

Suppose that (u, τ) ∈ Θ. Then the partial Fréchet derivative L = G1
(u,τ) is invertible if and

only if the following Cauchy-Dirichlet problem is solvable:⎧⎨
⎩

∂w

∂t
− τ

n
uij ∂2w

∂xi∂xj
− (1 − τ)�w = f, (x, t) ∈ BR,T ,

w = g, (x, t) ∈ PBR,T ,

where (f, g) ∈ B2. Using the theory of the linear parabolic equations (cf. [14, Chapter V,
Theorem 5.6]) we can do it.

Thereby applying Lemma 2.5 and using approximate methods, we deduce that I is open.

Lemma 2.7 Let u0 : R
n → R be a C2 function which satisfies condition B. Then there

exists a unique strictly convex solution of (1.1) such that u(x, t) satisfies condition B and (1.3).

Proof For N ∈ Z+, T > 0, consider the Cauchy-Dirichlet problem⎧⎨
⎩

∂u

∂t
− 1

n
ln detD2u = 0, (x, t) ∈ BN,T ,

u = u0, (x, t) ∈ PBN,T .
(2.7)

By Lemmas 2.4 and 2.6, there exists a unique strictly convex solution of (2.7). We denote it
by uN (x, t). Corollary 2.1 tells us that uN(x, t) satisfies condition B. For QR,x0 ⊂⊂ BN,T , by
Lemmas 2.2 and 2.3, there exists a positive constant C independent of N such that

[D2uN ]
Cα, α

2 (Q R
3 ,x0

)
≤ C.

By condition B, there exists a positive constant C̃ independent of N and 1
κ such that

|uN |C0(Q R
3 ,x0

) + |DuN |C0(Q R
3 ,x0

) + |D2uN |C0(Q R
3 ,x0

) ≤ C̃.

A diagonal sequence argument and the regularity theory of parabolic equations imply that we
obtain the desired results.

Proof of Theorem 1.1 Using Lemma 2.7, there exists a unique strictly convex solution
to (1.1) satisfying (1.3) and condition B.

By Lemma 2.2, we get

[D2u]
Cα, α

2 (Q 1
2 ,x0

)
≤ C, (2.8)

where C is a positive constant depending only on n, λ, Λ and 1
κ .

We will derive higher order estimates (1.4) via the blow up argument for l = 3. To do so,
by [1], we employ a parabolic scaling now. The remaining proof is routine. Define

y = μ(x − x0), s = μ2(t − t0),

uμ(y, s) = μ2[u(x, t) − u(x0, t0) − Du(x0, t0) · (x − x0)].
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It is easy to see that

D2
yuμ = D2

xu,
∂

∂s
uμ =

∂

∂t
u

and
Dl

yuμ = μ2−lDl
xu

for all nonnegative integers l. By computing, uμ(y, s) satisfies
⎧⎨
⎩

∂uμ

∂s
− 1

n
ln detD2uμ = 0, s > 0, y ∈ R

n,

uμ = uμ(y, s)|t=t0 , s = 0, y ∈ R
n

with

uμ(0, 0) = Duμ(0, 0) = 0. (2.9)

Suppose that |D3u|2 is not bounded on R
n × [ε0, +∞). By [12, Lemma 3.5], there would be a

sequence {tk} (tk ≥ ε0) and Rk → +∞, such that

2ρk := sup
x∈BRk,x0

|D3u(x, tk)|2 → +∞ (2.10)

and

sup
x∈BRk,x0

t≤tk

|D3u(x, t)|2 ≤ 2ρk. (2.11)

Then there exists xk such that

|D3u(xk, tk)|2 ≥ ρk → +∞, as k → +∞. (2.12)

Let (y, Duμk
(y, s)) be a parabolic scaling of (x, Du(x, t)) by μk = (ρk)

1
2 at (xk, tk) for each k.

Thus uμk
(y, s) is a solution of a fully nonlinear parabolic equation

∂uμk

∂s
− 1

n
ln detD2uμk

= 0, 0 < s ≤ μ2
ktk, y ∈ R

n. (2.13)

Combining (2.10)–(2.12) and (2.8), we arrive at

λI ≤ D2
yuμk

= D2
xu ≤ ΛI, (y, s) ∈ R

n × [0, +∞); (2.14)

for all y1, y2 ∈ R
n, y1 = μk(x1 − x0), y2 = μk(x2 − x0),

|D2
y1

uμk
− D2

y2
uμk

|
|y1 − y2|α = μ−α

k

|D2
x1

u − D2
x2

u|
|x1 − x2|α ≤ μ−α

k C → 0,

and

|D3
yuμk

|2 = μ−2
k |D3

xu|2 ≤ 2, ∀ y ∈ R
n, (2.15)

|D3
yuμk

(0, 0)| ≥ 1.

For each i, set w = Dxiuμk
. From (2.13), w satisfies

∂w

∂s
− 1

n
uij

μk
wij = 0.
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Using (2.15) and Lemma 2.2, there exists a constant C depending only on n, λ, Λ, 1
ε0

, such that
we derive

[D3
yuμk

]
Cα, α

2 (Q 1
2 ,y0

)
≤ C, ∀ y ∈ R

n. (2.16)

Combining (2.9) and (2.14)–(2.16) together, a diagonal sequence argument shows that uμk

converges subsequentially and uniformly on any compact subsets in R
n × [0, +∞) to a smooth

function u∞ with
[D2

yu∞]
Cα, α

2 (Q 1
2 ,y0

)
= 0, ∀(y, s) ∈ R

n × [0, +∞)

and
|D3

yu∞(0, 0)| ≥ 1.

It is a contradiction. So sup
x∈R

n

t≥ε0

|D3u(x, t)| ≤ C. From equation (1.1), using the interior Schauder

estimates, we obtain (1.4) for l = 3, 4, 5 · · · .

The following lemma shows that how the self-expanding solutions are constructed by the
flow (1.1).

Lemma 2.8 If u0 satisfies conditions A and B. Then u(x, 1) is a smooth solution to (1.5).

Proof The main idea comes from [6], which we present here for completeness.
If u0 satisfies conditions A and B. Then by Theorem 1.1, there exists a unique smooth

solution u(x, t) to (1.1) for all t > 0 with initial value u0. One can verify that

uR(x, t) := R−2u(Rx, R2t)

is a solution to (1.1) with initial value

uR(x, 0) := R−2u0(Rx) = u0(x).

Here condition A is used. Since uR(x, 0) = u0, the uniqueness results in Theorem 1.1 imply

u(x, t) = uR(x, t)

for any R > 0. Therefore u(x, t) satisfies (2.4), and hence u(x, 1) solves (1.5). In other words,
u(x, 1) is a smooth self-expanding solution.

We present here the proof of Theorem 1.2 by the methods of [6].

Proof of Theorem 1.2 Assume that

U0(x) = lim
R→+∞

R−2u0(Rx).

So U(x, 0) satisfies condition B and we obtain

U0(x) = lim
R→∞

R−2u0(Rx) = lim
R→∞

R−2l−2u0(Rlx) = l−2U0(lx),

namely, U0(x) satisfies condition A. Then by Lemma 2.8, we conclude that U(x, 1) is a self-
expanding solution.
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Define
uR(x, t) := R−2u(Rx, R2t).

It is clear that uR(x, t) is a solution to (1.1) with initial value uR(x, 0) = R−2u0(Rx) satisfying
condition B.

For any sequence Ri → +∞, we consider the limitation of uRi(x, t). For t > 0, there holds

D2uRi(x, t) = D2u(Rix, R2
i t).

Using Theorem 1.1, we have
λI ≤ D2uRi(x, t) ≤ ΛI

for all x and t > 0. Moreover, according to (1.4) in Theorem 1.1, we get

sup
x∈Rn

|DluRi( · , t)| ≤ C, ∀ t ≥ ε0, l = {3, 4, 5 · · · }.

For any m ≥ 1, l ≥ 0, using (1.1), there exists a constant C such that

sup
x∈Rn

∣∣∣ ∂m

∂tm
DluRi

∣∣∣ ≤ C, ∀ t ≥ ε0, l = {3, 4, 5 · · · }.

We observe that
uRi = R−2

i u0 and DuRi(0, 0) = R−1
i Du0(0)

are both bounded. Thus uRi(0, t) and DuRi(0, t) are uniformly bounded with respect to i for
any fixed t. By the Arzelà-Ascoli theorem, there exists a subsequence {Rki} such that uRki

(x, t)
converges uniformly to a solution Û(x, t) to (1.1) in any compact subsets of R

n × (0,∞), and
Û(x, t) satisfies the estimates in Theorem 1.1. Since ∂Û

∂t is uniformly bounded for any t > 0,
Û(x, t) converges to some function Û0(x) when t → 0. One can verify that

Û0(x) = lim
t→0

Û(x, t)

= lim
t→0

lim
i→+∞

R−2
i u(Rix, R2

i t)

= lim
i→+∞

lim
t→0

R−2
i u(Rix, R2

i t)

= lim
i→+∞

R−2
i u0(Rix)

= U0(x).

By the uniqueness results, the above limit is independent of the choice of the subsequence {Ri}
and

Û(x, t) = U(x, t).

So, letting R =
√

t, we have t−1u(
√

t x, t) = u√
t(x, 1) converging to U(x, 1) uniformly in

compact subsets of R
n when t → +∞. Theorem 1.2 is established.

At the end of this section, we present the following Bernstein theorem for equation (1.5).

Proposition 2.2 Let

w = u − 1
2
〈x, Du〉.

If u is a C2 strictly convex solution to (1.5) and w takes its maximum or minimum at some
point x ∈ R

n with |x| < +∞. Then u must be a quadratic polynomial.
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Proof It follows from Caffarelli’s regularity theory of Monge-Ampère type equations and
interior Schauder estimates that u is a smooth strictly convex solution. From (1.5), w satisfies

uijwij =
1
2
〈x, Dw〉.

Since w takes its maximum or minimum at some point x ∈ R
n with |x| < +∞. For every R > 0,

by strong maximum principle (cf. [18]), we deduce that w must be some constant in BR(x) also
in R

n. Using the Pogorelov’s theorem in [17], we show that u must be a quadratic polynomial.

3 Longtime Existence and Convergence

As in [5], we can also show that a bound on the height of the graphs is preserved along (1.1).

Lemma 3.1 If u(x, t) is a smooth solution to (1.1) and sup
x∈Rn

|Du0(x)|2 < +∞ . Then

sup
x∈Rn

|Du(x, t)|2 ≤ sup
x∈Rn

|Du0(x)|2. (3.1)

Proof By (1.1), we have

∂

∂t
|Du(x, t)|2 − 1

n
uij(|Du(x, t)|2)ij = − 2

n
upqupiuqi ≤ 0.

Using Lemma 4.2 in [23], we obtain the desired results.

To obtain the convergence of the flow (1.2), we introduce the following decay estimates of
the higher order derivatives based on Theorem 1.1 (cf. [13, Theorem 1.3]).

Proposition 3.1 Assume that u(x, t) is a strictly convex solution to (1.1) satisfying (1.3)
and condition B. Then there exists a constant C depending only on n, λ, Λ, 1

ε0
such that

sup
x∈Rn

|D3u( · , t)| ≤ C

t
, ∀ t ≥ ε0. (3.2)

More generally, for all l = {3, 4, 5, · · · } there holds

sup
x∈Rn

|Dlu( · , t)| ≤ C

tl−2
, ∀ t ≥ ε0. (3.3)

Proof of Theorem 1.3 By Theorem 1.1 and Proposition 2.1, (1.2) admits a long-time
smooth solution.

Using (3.3) and (3.1), a diagonal sequence argument shows that as t → ∞, Du(x, t) converges
subsequentially and uniformly on any compact subsets of R

n to a smooth function Du∞ with
|Dl

yu∞| = 0, ∀ y ∈ R
n for l ≥ 3. So Du∞ must be an affine linear function and (x, Du∞(x))

an affine linear subspace. It shows that the graph of the mean curvature flow (1.2) converges
to a plane in R

2n
n .

As the proof of Theorem 1.1 in [5], if |Du0(x)| → 0 as |x| → ∞, then the graph (x, Du(x, t))
converges smoothly on any compact sets to the coordinate plane (x, 0) in R

2n
n .
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