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1 Introduction

Let D be the open unit disk in the complex plane and H(D) denote the space of all holo-
morphic functions in D. For each p (0 < p <∞), the Hardy space Hp(D) is defined by

Hp(D) =
{
f ∈ H(D) : sup

0<r<1

∫
∂D

|f(rξ)|pdσ(ξ) <∞
}
, ‖f‖p =

[ ∫
∂D

|f∗(ξ)|pdσ(ξ)
] 1

p

,

where f∗ denotes the radial limit of f and dσ is the normalized Lebesgue measure on the
boundary ∂D of D. For 1 < p <∞, the Hardy space Hp(D) is a Banach space.

Let ϕ : D → D be a holomorphic self-map of D. For a holomorphic function f on D, denote
the composition f ◦ ϕ by Cϕf and call Cϕ the composition operator induced by ϕ.

Let X and Y be Banach spaces. For a bounded linear operator T : X → Y , the essential
norm ‖T ‖e,X→Y is defined to be the distance from T to the set of the compact operators
K : X → Y , namely,

‖T ‖e,X→Y = inf{‖T −K‖ : K is compact from X into Y },

where ‖ · ‖ denotes the usual operator norm.
J. H. Shapiro [3] expressed the essential norm of the composition operator Cϕ : H2(D) →

H2(D) in terms of natural Nevanlinna counting function of the inducing map ϕ.
The natural Nevanlinna counting function for ϕ, Nϕ, provides such a measure. It is defined

by

Nϕ(w) =
∑

z∈ϕ−1{w}
log

( 1
|z|

)
, w ∈ D\{ϕ(0)}.

As usual, z ∈ ϕ−1{w} is repeated according to the multiplicity of the zero of ϕ− w at z.
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The main goal of this paper is to compute the essential norm of Cϕ : Hp(D) → Hq(D) for
1 < p ≤ q <∞ in terms of the natural Nevanlinna counting function of the inducing map ϕ.

In this paper, we get the following theorem.

Theorem 1.1 Let ϕ be a holomorphic self-map of D, 1 < p ≤ q < ∞. If Cϕ : Hp(D) →
Hq(D) is bounded, then there exist constants C1 and C2, such that

C1 lim sup
|a|→1−

Nϕ(a)

[log( 1
|a| )]

q
p

≤ ‖Cϕ‖qe,Hp→Hq ≤ C2 lim sup
|a|→1−

Nϕ(a)

[log( 1
|a| )]

q
p

.

Particularly, we get the corollary.

Corollary 1.1 For 1 < p ≤ q <∞, Cϕ : Hp(D) → Hq(D) is compact if and only if

lim sup
|a|→1−

Nϕ(a)

[log( 1
|a| )]

q
p

= 0.

In the case p = q = 2, Theorem 1.1 and Corollary 1.1 were given by J. H. Shapiro [3].
Throughout the paper, C denotes a positive constant, whose value may change from one

occurrence to the next one, but it is independent of f and ϕ.

2 Proof of Theorem 1.1

Recall that a holomorphic function f in D has the Taylor expansion

f(z) =
∞∑
k=0

akz
k.

For the Taylor expansion of f and any integer n ≥ 1, let

Rnf(z) =
∞∑
k=n

akz
k

and Kn = I −Rn where If = f is the identity operator.
The operator Kn has a connection with the following natural question: When does the

partial sums of the Taylor expansion of f converge to f in the norm topology of the function
space? K. Zhu [5] considered the question for various analytic function spaces on the unit disc.
In order to prove our main result, we need some of his results.

Lemma 2.1 Suppose that X is a Banach space of holomorphic functions in D with the
property that the polynomials are dense in X. Then ‖Knf − f‖X → 0 as n→ ∞ if and only if
sup{‖Kn‖ : n ≥ 1} <∞.

Lemma 2.2 If 1 < p < ∞, then ‖Knf − f‖p → 0 as n → ∞ for each f ∈ Hp(D).
Moreover, sup{‖Rn‖ : n ≥ 1} <∞ and sup{‖Kn‖ : n ≥ 1} <∞.

Lemmas 2.1 and 2.2 are Proposition 1 in [5].
To prove Theorem 1.1, we also need the following lemmas.
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Lemma 2.3 For 0 < p <∞, f ∈ H(D) and ϕ is a holomorphic self-map of D. Then

‖f ◦ ϕ‖pp = |f(ϕ(0))|p +
p2

2

∫
D

|f(w)|p−2|f ′(w)|2Nϕ(w)dA(w),

where dA is the normalized Lebesgue measure on D.

Lemma 2.3 is the special case of Lemma 2.2 (see the Change of Variable Formula and (2.1)
in [4]).

Lemma 2.4 Let ψ be a holomorphic self-map of D. If ψ(0) 	= 0 and 0 < r < |ψ(0)|, then

Nψ(0) ≤ 1
r2

∫
rD

Nψ(w)dA(w).

Lemma 2.4 is the special case of Lemma 4.1 in [4].

Lemma 2.5 Let ψ be a holomorphic self-map of D. Let a ∈ D and let

σa(w) =
a− w

1 − aw

be the Möbius self-map of D that interchanges 0 and a. Then

Nψ ◦ σa = Nσa◦ψ .

Lemma 2.5 is the special case of Lemma 4.2 in [4].

Lemma 2.6 For 0 < p <∞, we have f ∈ Hp(D) and w ∈ D. Then

|f(w)| ≤ C‖f‖p
(1 − |w|) 1

p

.

Here C is independent of f .

Lemma 2.6 is the special case of Lemma 2.5 in [4].

Proof of Theorem 1.1 At first, we prove

‖Cϕ‖qe,Hp→Hq ≥ C1 lim sup
|a|→1−

Nϕ(a)

[log( 1
|a|)]

q
p

.

For a ∈ D, letting

ka(z) =
{ 1 − |a|2

(1 − az)2
} 1

p

,

we know ‖ka‖p = 1 and, as |a| → 1−, ka → 0 uniformly on compact subset of D.
For the moment, fix a compact operator K : Hp(D) → Hq(D). Since the family {ka} is

bounded in Hp(D), and ka → 0 uniformly on compact subsets of D as |a| → 1−, we have
‖Kka‖q → 0, as |a| → 1−. Thus

‖Cϕ −K‖ ≥ lim sup
|a|→1−

‖(Cϕ −K)ka‖q ≥ lim sup
|a|→1−

(‖Cϕka‖q − ‖Kka‖q) = lim sup
|a|→1−

‖Cϕka‖q.
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Upon taking the infimum of both sides of this inequality over all compact operators K :
Hp(D) → Hq(D), we obtain

‖Cϕ‖e,Hp→Hq ≥ lim sup
|a|→1−

‖Cϕka‖q. (2.1)

By Lemma 2.3,

‖Cϕka‖qq = |ka(ϕ(0))|q +
q2

2

∫
D

|ka(w)|q−2|k′a(w)|2Nϕ(w)dA(w).

So, there is a constant C such that

‖Cϕka‖qq ≥ C

∫
D

|ka(w)|q−2|k′a(w)|2Nϕ(w)dA(w)

= C
4
p2

|a|2(1 − |a|2) q
p

∫
D

Nϕ(w)

|1 − aw|2+ 2q
p

dA(w)

= C
4
p2

|a|2(1 − |a|2) q
p−2

∫
D

Nϕ(w)

|1 − aw| 2q
p −2

|σ′
a(w)|dA(w)

= C
4
p2

|a|2(1 − |a|2) q
p−2

∫
D

Nϕ(σa(z))

|1 − aσa(z)|
2q
p −2

dA(z).

Here σa = σ−1
a is the Möbius self-map of D as in Lemma 2.5, and the change of variable

z = σa(w) was made. Now,

1
|1 − aσa(z)| =

|1 − az|
1 − |a|2 ≥ 1

2(1 − |a|2) , as |z| ≤ 1
2
,

so

‖Cϕka‖qq ≥
C|a|2

(1 − |a|2) q
p

∫
1
2D

Nϕ(σa(z))dA(z).

Since σa ◦ ϕ(0) > 1
2 , if |a| is sufficiently close to 1, applying Lemmas 2.5 and 2.4, we have

∫
1
2D

Nϕ(σa(z))dA(z) =
∫

1
2D

Nσa◦ϕ(z)dA(z) ≥ 4Nσa◦ϕ(0) = 4Nϕ(a).

Therefore,

‖Cϕka‖qq ≥
C|a|2Nϕ(a)

(1 − |a|2) q
p

.

Since log( 1
|a| ) is comparable to (1 − |a|2), if |a| is sufficiently close to 1, by (2.1), we get

‖Cϕ‖qe,Hp→Hq ≥ C1 lim sup
|a|→1−

Nϕ(a)

[log( 1
|a|)]

q
p

.

Now, we turn to prove

‖Cϕ‖qe,Hp→Hq ≤ C2 lim sup
|a|→1−

Nϕ(a)

[log( 1
|a|)]

q
p

.

Since, for each n, Kn is compact, we have that CϕKn is compact and for each n,

‖Cϕ‖e,Hp→Hq = ‖CϕRn + CϕKn‖e,Hp→Hq ≤ ‖CϕRn‖. (2.2)
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Let U denote the closed unit ball in Hp(D), for f(z) ∈ U , by Lemma 2.3,

‖CϕRnf‖qq = |Rnf(ϕ(0))|q +
q2

2

∫
D

|Rnf(w)|q−2|(Rnf)′(w)|2Nϕ(w)dA(w). (2.3)

For a fixed constant r0, 1
2 < r0 < 1, we have
∫
D

|Rnf(w)|q−2|(Rnf)′(w)|2Nϕ(w)dA(w)

=
∫
r0D

|Rnf(w)|q−2|(Rnf)′(w)|2Nϕ(w)dA(w)

+
∫
D\r0D

|Rnf(w)|q−2|(Rnf)′(w)|2Nϕ(w)dA(w). (2.4)

Let M = sup
|w|>r0

Nϕ(w)

[log( 1
|w| )]

q
p
. By Lemma 2.6, we have

|Rnf(w)|q−p ≤ C‖Rnf‖q−pp

(1 − |w|) q−p
p

.

Then ∫
D\r0D

|Rnf(w)|q−2|(Rnf)′(w)|2Nϕ(w)dA(w)

≤ CM‖Rnf‖q−pp

∫
D\r0D

|Rnf(w)|p−2|(Rnf)′(w)|2
[log( 1

|w|)]
q
p−1[log( 1

|w|)]

(1 − |w|) q−p
p

dA(w).

Since log( 1
|w|) ≤ 2(1 − |w|) as |w| ≥ 1

2 , we have
∫
D\r0D

|Rnf(w)|q−2|(Rnf)′(w)|2Nϕ(w)dA(w)

≤ CM‖Rnf‖q−pp

∫
D\r0D

|Rnf(w)|p−2|(Rnf)′(w)|2 log
( 1
|w|

)
dA(w).

For ϕ(z) = z, we have Nϕ(w) = log( 1
|w|). By Lemma 2.3, we get

∫
D\r0D

|Rnf(w)|p−2|(Rnf)′(w)|2 log
( 1
|w|

)
dA(w) ≤ C‖Rnf‖pp.

By Lemma 2.2 and f(z) ∈ U , we get
∫
D\r0D

|Rnf(w)|q−2|(Rnf)′(w)|2Nϕ(w)dA(w) ≤ CM‖Rnf‖qp ≤ CM.

Using the Cauchy integral formula, for 0 < r < 1, w ∈ rD, we have

(Rnf)′(w) =
1

2πi

∫
∂(rD)

(Rnf)(ξ)
(ξ − w)2

dξ.

By the Hölder inequality, letting r → 1−, we get

|(Rnf)′(w)| ≤ C‖Rnf‖p
(1 − |w|)2 , where C is independent of f .
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By Lemma 2.6, we get

|Rnf(w)|q−2|(Rnf)′(w)|2 ≤ C‖Rnf‖qp
(1 − |w|) q+4p−2

p

.

By Lemma 2.2, we get ‖Rnf‖p → 0, as n→ ∞. So, as n→ ∞,

|Rnf(w)|q−2|(Rnf)′(w)|2 → 0, uniformly on r0D and |Rnf(ϕ(0))| → 0. (2.5)

By Lemma 2.3, for f(z) = z and p = 2, we get

‖ϕ‖2
2 = |ϕ(0))|2 + 2

∫
D

Nϕ(w)dA(w).

So, by Lemma 2.6, we get
∫
r0D

Nϕ(w)dA(w) ≤ C, where C is independent of ϕ. (2.6)

Combining (2.2)–(2.6) and letting n→ ∞, we get

‖Cϕ‖qe,Hp→Hq ≤ C sup
|w|>r0

Nϕ(w)

[log( 1
|w|)]

q
p

.

Let r0 → 1−. Then

‖Cϕ‖qe,Hp→Hq ≤ C2 lim sup
|a|→1−

Nϕ(a)

[log( 1
|a|)]

q
p

.

The proof is completed.
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