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1 Introduction

Let D be the open unit disk in the complex plane and H (D) denote the space of all holo-
morphic functions in D. For each p (0 < p < 00), the Hardy space HP (D) is defined by

1
w(D) = {fe HO): sw [ [709Pan©) <soh. Wflo=[ [ I @rase)]”.
0<r<1.JoD aD

where f* denotes the radial limit of f and do is the normalized Lebesgue measure on the
boundary 9D of D. For 1 < p < oo, the Hardy space HP(D) is a Banach space.

Let ¢ : D — D be a holomorphic self-map of D. For a holomorphic function f on D, denote
the composition f o ¢ by C,f and call C, the composition operator induced by ¢.

Let X and Y be Banach spaces. For a bounded linear operator T : X — Y, the essential
norm ||T||e,x—y is defined to be the distance from T to the set of the compact operators
K : X — Y, namely,

ITle,x -y = inf{||]T — K|| : K is compact from X into Y},

where || - || denotes the usual operator norm.

J. H. Shapiro [3] expressed the essential norm of the composition operator C, : H?(D) —
H?(D) in terms of natural Nevanlinna counting function of the inducing map .

The natural Nevanlinna counting function for ¢, N, provides such a measure. It is defined

by
No(w)= Y log(r). we D\{p(0)}.

z€p—1 |Z|
e~ H{w}

As usual, 2z € p~{w} is repeated according to the multiplicity of the zero of ¢ — w at 2.
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The main goal of this paper is to compute the essential norm of C, : H?(D) — H?(D) for
1 < p < q < oo in terms of the natural Nevanlinna counting function of the inducing map .

In this paper, we get the following theorem.

Theorem 1.1 Let ¢ be a holomorphic self-map of D, 1 < p < ¢ < oco. If C, : H?(D) —
H9(D) is bounded, then there exist constants Cy and Cq, such that

N,
Cq lim sup i)g <NCllE gr e < Colimsup —=—— _Nola)
i Tog(E )1 el Jlog( L

a)
)7

IH/“

;-.

Particularly, we get the corollary.
Corollary 1.1 For 1 <p < ¢ < o0, C,: H?(D) — HY(D) is compact if and only if

lim sup @)

Nel@) __
jaj -1~ [log()]?

In the case p = ¢ = 2, Theorem 1.1 and Corollary 1.1 were given by J. H. Shapiro [3].
Throughout the paper, C' denotes a positive constant, whose value may change from one
occurrence to the next one, but it is independent of f and ¢.

2 Proof of Theorem 1.1

Recall that a holomorphic function f in D has the Taylor expansion

o0
= E akzk.
k=0

For the Taylor expansion of f and any integer n > 1, let

() = Z apz"
k=n

and K,, = I — R,, where I f = f is the identity operator.

The operator K, has a connection with the following natural question: When does the
partial sums of the Taylor expansion of f converge to f in the norm topology of the function
space? K. Zhu [5] considered the question for various analytic function spaces on the unit disc.
In order to prove our main result, we need some of his results.

Lemma 2.1 Suppose that X is a Banach space of holomorphic functions in D with the
property that the polynomials are dense in X. Then | K, f — fllx — 0 as n — oo if and only if
sup{||Kp| : n > 1} < c0.

Lemma 2.2 If 1 < p < oo, then |Knf — fllp — 0 as n — oo for each f € HP(D).
Moreover, sup{||Ry|| : n > 1} < 0o and sup{||K,|| : n > 1} < c0.

Lemmas 2.1 and 2.2 are Proposition 1 in [5].

To prove Theorem 1.1, we also need the following lemmas.
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Lemma 2.3 For 0 < p<oo, f € H(D) and ¢ is a holomorphic self-map of D. Then

2
170 ¢l = £GP+ B [ 17215 ) PN (w)dAGw),
D

where dA is the normalized Lebesque measure on D.

Lemma 2.3 is the special case of Lemma 2.2 (see the Change of Variable Formula and (2.1)
in [4]).

Lemma 2.4 Let ¢ be a holomorphic self-map of D. If 1(0) # 0 and 0 < r < [1(0)|, then

Ny(0) < %2 /  Ny(w)dA(w).

Lemma 2.4 is the special case of Lemma 4.1 in [4].
Lemma 2.5 Let ¢ be a holomorphic self-map of D. Let a € D and let

a—w

Ua(w) - 1 —aw

be the Mobius self-map of D that interchanges 0 and a. Then
Nw C0q4 = Naaow.

Lemma 2.5 is the special case of Lemma 4.2 in [4].

Lemma 2.6 For 0 < p < oo, we have [ € HP(D) and w € D. Then

cllf
rw) < e
(1—|w])7
Here C is independent of f.

Lemma 2.6 is the special case of Lemma 2.5 in [4].

Proof of Theorem 1.1 At first, we prove

”CsO”g,HP*,Hq 2 Cl limsupﬁ.
la]—1- [log —l)]p

For a € D, letting

we know ||kq|l, =1 and, as |a] — 17, k, — 0 uniformly on compact subset of D.

For the moment, fix a compact operator K : HP(D) — H9(D). Since the family {kq} is
bounded in HP(D), and k, — 0 uniformly on compact subsets of D as |a| — 17, we have
| Kkqllq — O, as |a| — 1~. Thus

|Cy — K| > timsup [[(Cyp — K)kally > limsup(|Cokaly — [ Kkally) = limsup [ Cokally

la|—1— la|—1— la|—1—
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Upon taking the infimum of both sides of this inequality over all compact operators K :
HP(D) — H%(D), we obtain

|Colle,rrr—ma > limsup ||Cokallq- (2.1)

la]—1~

By Lemma 2.3,
1Cokallg = [ka(e |q+—/|/‘~‘ )72 [k (w)[* Ny (w)d A(w).
So, there is a constant C' such that
ICokaly = € [ o)l )N} A(w)
ol [ e i)

[\J

q

D1 —aw** %
4 a_ N,
= ol - )i [ el i)
D D |1 —awl|?
4 a_ N Ogl\Z
= CloP(i— a2 [ RETE)ayp)
v b [L—t0,(2)|?

Here o, = o, ! is the Mobius self-map of D as in Lemma 2.5, and the change of variable
z = 0,(w) was made. Now,

1 -z 1 < L
T—Go.)l ~ 1T=laP = 20—[aP) © 7 =2
S0 Claf?
a
C.k qziq/ N,(og,(2))dA(2).
ICokall = aP)F )i o(0a(2))dA(z)
Since o, 0 ¢(0) > , if |a| is sufficiently close to 1, applying Lemmas 2.5 and 2.4, we have
/ Ny(oa(2))dA(= / N op(2)dA(2) > 4Ny, 04,(0) = 4N, (a).
Therefore,
H Hq C|a’|2N<P(a’)
pRallg Z T -
(1~ JaP)?
Since 1og(r‘1b‘) is comparable to (1 — |a|?), if |a| is sufficiently close to 1, by (2.1), we get

(a)
1Cy ||e o e > Cqlimsup ———— ‘P .
HP—H la|—1- UOg(L)]p

Now, we turn to prove

No(a)

1Co I HP—H1 = Cs lim sup -
el flog( )T

Since, for each n, K, is compact, we have that C,K,, is compact and for each n,

1Colle,rp—ma = (2.2)
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Let U denote the closed unit ball in H?(D), for f(z) € U, by Lemma 2.3,
[Co R flI§ = [Rn f(p(0))|* + i / | R f ()| "2 (R f)' (w)[* Ny (w)dA(w). (2.3)
For a fixed constant ro, + < ro < 1, we have
/DIRnf(w)lq_Ql(Rnf)’(W)IQNw(W)dA(W)
= /ToD | R f (w)| 72| (Rnf)' (w)[* Ny (w)dA(w)
+/D\T0D | R f (w)| 72| (Rn f)' (w)[? Ny (w)dA(w). (2.4)

Let M = sup & By Lemma 2.6, we have
|w|>ro [log(‘w‘ g

C||R, f|&—P
|Rnf(w)|q_” < Hifo;;p.
(1—Jwl)»

Then

/ | R f (w)]772|(Ri f)' (w)[* Nyp (w) d A (w)
D\roD

log(L)]% " Hlog( L
<oMBI” [ D|Rnf(w)|”_2|(Rnf)'(w)|2[ g((ﬂw')[j('w'”

Since 1og(‘—1‘) < 2(1—|wl) as |w| > %, we have

w

/ (R f ()72 (R fY () 2N,y () d A(w)
D\roD

R ()P~ (R ) (u0)?Tog (o ) dAw).

< CM||R,f||o™"
<cmirsly [ m

D\ToD

For (z) = z, we have N,(w) = log( ‘w‘) By Lemma 2.3, we get

LRI @2 (R ()P o ()44 () < CR. I,
D\roD

By Lemma 2.2 and f(z) € U, we get
/D B (PN () A ) < OMIR S < O,
70

Using the Cauchy integral formula, for 0 < r < 1, w € rD, we have

(R f) () = 5 /m ((]: fflff)ds

By the Hoélder inequality, letting » — 17, we get

(R f) (w)| < %, where C' is independent of f.
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By Lemma 2.6, we get

R f )2 R ) < —
1 u)

By Lemma 2.2, we get || R, f|l, — 0, as n — co0. So, as n — o0,
(R ()2 (R f) () — 0, wniformly on roD amd  [Ryf(o(0))] = 0. (25)

By Lemma 2.3, for f(z) = z and p = 2, we get
llell3 = 1(0))* + 2/DN¢(w)dA(w).
So, by Lemma 2.6, we get
/ R Ny (w)dA(w) < C, where C' is independent of . (2.6)
Combining (2.2)—(2.6) and letting n — oo, we get

N,
ICollE oo < C sup —el)
|w|>rg [log(v)]r’

Let ro — 17. Then

a)
kB

1ColIE pro—pra < O hmsup _Nela)
la|—1- [1og(

|H,_\

The proof is completed.
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