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The Global Existence of Small Solutions to
the Oldroyd-B Model

Wenjing ZHAO!

Abstract The Cauchy problem to the Oldroyd-B model is studied. In particular, it
is shown that if the smooth solution (u,7) to this system blows up at a finite time T,
then fOT* [[Vu(t)||L dt = co. Furthermore, the global existence of smooth solution to this
system is given with small initial data.
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1 Introduction

In this paper, we consider the blow up principle and the global existence of small solutions
to the following Oldroyd-B model:

ou .
Re(a +u- Vu) =—-Vp+(l—¢) du+divT,

divu = 0, (1.1)
O (- D)7 = (Tu)r + 7(VT0) — 7 + = (Yu + vTu)
8t u T = wu)T T u WeT We u u),

where u : (z,t) € R" x [0,T) — u(z,t) € R is the fluid velocity, p : (z,t) € R" x [0,T) —
p(z,t) € R represents the hydrodynamic pressure, and 7 : (z,t) € R® x [0,T) — 7(z,t) € R**"
denotes the extra-stress tensor, n = 2,3 is the space dimension. The following parameters are
dimensionless: the Reynolds number Re € R, the Weissenberg number We € R, and the
elastic viscosity fraction € € (0,1). And the initial data satisfy

u(z,0) = uo(x), 7(x,0) =79(x). (1.2)

The Oldroyd-B model is a classical model for dilute solutions of polymers suspended in a
viscous incompressible solvent (see [2]). The system (1.1) describes the motion of the incom-
pressible fluid satisfying the Oldroyd constitutive law (see [17]). Viscoelastic material can be
viewed as the intermediate state between the fluid and solid. This kind of material exhibits
elastic behavior, such as memory effects as well as fluid properties. Many complicated hydro-
dynamical and rheological behaviors of complex fluids and the electro-magnetic behavior of the
materials (see [2, 5, 6, 10, 14, 18]) can be regarded as consequence of internal elastic properties.
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In 2001, Chemin and Masmoudi [3] established a criterion for the system involving both 7
and Vu. [4, 11, 13, 15] dealt with the inertial Oldroyd-B model for the deformation tensor and
established global-in-time existence for small initial data.

In this paper, we will prove a similar result like the well-known Beale-Kato-Majda criterion
(see [1]) for the two and three dimensional Oldroyd-B model for the extra-stress tensor with
the relaxation term (finite Weissenberg number) and global existence with small initial data.
The main results of the paper are presented by the following two theorems:

Theorem 1.1 Let s > [§] + 1 for n = 2,3 be an integer, ug € H*(R™), 19 € H*(R")
with V - ug = 0. Then there exists a positive time T, such that Cauchy problem (1.1) with
(1.2) has a unique solution on [0,T), (u,7) € L>=([0,T]; H*(R™)) with vu € L*([0,T]; H*(R™)).
Furthermore, if T is the mazximal time for existence, then

"
[ 1utmde = . 13)

Theorem 1.2 Let s > [§] + 1 for n = 2,3 be an integer, ug € H*(R™), 70 € H*(R") with
V-up=0, and 0 <e < %. Then Cauchy problem (1.1) with (1.2) has a unique global solution
(u,7) € L*([0,00); H*(R™)) with Vu € L%([0,00); H*(R™)) provided that ||ugl|| gz and ||7ol| s
are small enough.

This paper is organized as follows. Some lemmas are given in Section 2, and Theorem 1.1
and Theorem 1.2 are proved respectively in Section 3 and Section 4.
2 Preliminaries

Before proving the main theorems, we first introduce three useful estimates.

Lemma 2.1 Foru € H*(R"™), Vu € L>®(R"™) where n = 2 or 3, and for any positive integer
s> 1, set v =Dgu where o € Z7 with |a| = s. Then we have

/[D?(u - Vu) — u- VDgulv < O ()| Vul| = Jul -, (2.1)
where C(n) is a constant depending only on n.
Proof First
[ D3 vu) —w- 9D2uw < D2+ ) — - VD2 ol
then we can easily get (2.1) by the Sobolev inequality
IDZ(f9) — fDZgllL> < Cn)(II £z

where f =u and g = Vu.

gl + IV ll=llgllge—r), (2.2)

Lemma 2.2 For (Vu,7) € H*(R")NL>®(R™) where n = 2 or 3, and for any positive integer
s> 1, set v=Dgu, n = D31 where a € Z} with |a| = s. Then we have

/[D;’(u -VT) —u- VDT

C(n)

<o vaullfr + ==l (1Vulles + 717 + 1) + CO)lIVul 17, (2:3)
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where 6 > 0 and C(n) is a constant depending only on n

Proof By the Cauchy inequality, we have

/[D;’(u -VT) —u- VD7l < [|DG(u- V7) —u- VDT L2l L2

s—1
< Cm)( Y ID5 ullalIDbr o + [ Full 7l )l

i=1

Then for any integer 1 < j < s, using the Gagliardo-Nirenberg interpolation inequalities (see
[7,9, 16]),

. n—4j n—4(s—j)
D% fllzs < Cn)|ID5 fIl 75 2 Fllp= (2.4)
we obtain

n—4(s—i)

. n—4i
D5 ull s < C)l[vo]| 57 [ Vul 7

(2.5)
Di < C 2(7:7, 42:) 7;(7?(;2:1))
[De7llrs < C)llnll ;2 7l

. (2.6)
So

/[Dg‘(u vT) —u- VDTN

n—4(s—i)

n—4i n—4i n—4(s—i)
n—2s 2(n—2s 2(n—2s
(} :||w||L< Pl 7

AT+ 1 9ull ez )l o
n—d(s—i) 3n—4(s+1%)

n—4i n—4(s—1i)
(m) D NVull g Il 9l 7 ] 2
i=1

s—1

Cn)l[vullz= |7l
Finally by means of the Young’s inequality we obtain (2.3)

Lemma 2.3 For (Vu,7) € H*(R")NL>®(R™) where n = 2 or 3, and for any positive integer
s> 1, set v =Dgu, n = DT where a € Z' with |a| = s. Then we have

[ ounin+ [ D2y un < Ol ula- e~ Irlae + 8l ul.
C(n)
+ == Il (Ivulle + I7l|Z= + 1)
+C)||Vull = |7/
where § > 0 and C(n) is a constant depending only on n

2.7)

Proof By the Cauchy inequality, we get

/ D (vur ) + / D2 (rTu)y < (D2 (Vur)|| = + D2 (v w)l| =) ] 2z

s—1
< C(n)(IIWIIBIITIILx + 3 IDs ! ul | Dy e

i=1
+ Ivull < 7l ) 2



218 W. J. Zhao

By using (2.5) and (2.6), we obtain

[o2wurin+ [ D26 g < Ol ulu.

7 e |7l s

n—4(s—i) 3n—4(s+1i)) n—4i n—4(s—i)

n)ZHVU’HHi” 23) H ”Hz(n 25) ||Vu||2(" 25) TH 3(n—25)

+C(n)|\VUHLwIITH?{s~

Then by the Young’s inequality, we get (2.7).

3 Proof of Theorem 1.1

As the local existence of the Oldroyd-B model is well-known, here we only present the
H?-estimates for the solution of (1.1)—(1.2), s > [§] + 1.

Proof of Theorem 1.1 Actually let (u,7) be the unique local solution to (1.1)—(1.2). It
is sufficient to prove for any integer s > [§] + 1,

lullers + |7lare < Co, ¢ <T* (3.1)

for some constant Cy provided that

Tx
/ V()| pedt 2 My < +oo. (3.2)
0

In what follows, we are going to present the L? estimate up to s order derivative of v and .
First, a standard energy estimate for system (1.1) gives

Re d 2, 2, We d 5 1 9
(1-— - -
2dt/ll €/|V| QEdt/ITIJrE/ITI

= _5 ViuiTj Ty + — B /T”Vjulm—l-/vjuinj

We
< ) (N9l z= il + |vull 27l e, (33)
where C'(n) is a constant depending only on n. Thus by the Cauchy inequality, we have
Re d We d
el + Tl + 52 s
1 € We
< c)(Ivullz~ + m%) (Rellullzz + = l7l13-). (3.4)
Then
W W 1 e
Rellullls + ~— Il < (Relluoll3s + ~- |3 )o@ (Mot mimr ™) (3.5)

Next, by differentiating (1.1) we obtain

Re (% +u- V(Vu)) = —vVp+ (1 —¢) A(Vu) + div VT — ReVu - Vu,
8(;7') +u-V(VT) 4+ Vu - VT = V(Vu)T + (Vu)(VT) + v (vTu)

1
+7v(vhu) — W VTt ﬁ(vm + vvTu).
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In view of V - u = 0, we get by the standard L? estimate
Wel d
Re=-— vul? + (1—¢ v2ul? + 2y vr|?
i | 17l /| P+ 22 [lorf 42 [ 1or]
= —Re/viu- Vu;jViuj — — / Viu - V1 VT + — / ViV T ViTjl
€ €
We We
+ ? Viu;ViTr ViTj + ? ViTik VieuiViTj
We
+ ~ TikViViewViTj + | ViViui VT
We We
< Re||Vul| || VuF2 + ?HVUHLOOIIVTH%z + TIITHLwHVTHmIIVZUIIm

We 9 We 9
+ =Vl 973 + = [l 973

We
+ ?HTHL“Hv2u”L2HV7—”L2 + 192l g2 [V 7| 2. (3.6)
By the Cauchy inequality, we have
We d
e vl 0|2 + 5 3 1972
1 We 1 We
< oo (Ioulie + 5 Y+ L) (Refruis + Werz). @7
< cn)(J[vulls +2(1_E) Il + 5=y (Rel Tullte + =C19rl3e). 37

Using the equation for 7

87' - T ]_ I3 T
e + (u- V)T = (Vu)T +7(V " u) — %T-f— %(Vu—i— AR
by [12] one can get
3
7l < (ol + oMo )eMo £ Ay, (3.5)

Hence we obtain
We We 2 1
ReHuH%p + ?HTH%{l < (Re||u0|\%[1 + ?HT{)H%{l)ec(n)(M0+2(11_5) LEMIT 55T ) (3.9)

Finally, for any positive integer s > [5] 4+ 1, we have the following equations for v = Dgu,
n = DG where o € Z7 with |a| = s:

Re(gt +u - VU) = —Re[D(u-Vu) —u-Diu] — VDIp + (1 — &) Av +divy, (3.10)
Sp + (- ¥y = ~[Dg(u- v7) — u- D7) + DE(Vur) + DI (rv"w)
1
T We! T We 11
\7\76774_\7\/e(vv+v v), (3.11)

and dive = 0. After multiplying both sides of (3.10) and (3.11) by v and 7 respectively, and
integrating by parts, we obtain

d
%E / [v> + (1 —¢) / |Vo|? = /Vmijvj - Re/[Dg(u -Vu) —u - VDS ulv, (3.12)

2dt/| |2+—/|n|2 /Da(u ) —u- VD27 /Di(WT)U

+/Dg(TVTu)7}+ %/(Vivj + Vjvi)mj (3.13)
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with the help of divw = 0. Combining (3.12) and We -(3.13) yields

Re d 2, 2 / 2, / 2
- ]__ \V4 —
w1l =e) [ oo+ 3 zdt 2+ 2 [

= —Re/[Dg(u -Vu) —u- VDSulv — — /[Dg(u -VT) —u-VDLTn

+ %/D;’(Vur)n+ %/Dg(TVTU)n-F/(Vin)UU. (314)
Using (2.1), (2.3) and (2.7), we obtain
Re d We d

1
5 g lulld + (1= Il + 52l + Il

We
< C(n)Rel| Vul| L [[ullF + C(n)—IIWIIHs 7 ze |7l s

We C(n
+ 2 sl + Sz

We
+ C(n)?IIWIILwHTII?{s + [vul| -

Vg + [I7] T~ +1)

7l (3.15)

By the Cauchy inequality and choosing § small enough, we have

1d 1—¢
5 = (Rellully. + 7l ) + 55
We 1 1 We
< Co)|Ivulles + 575 Il + 5] (Rellulle + el ). 3.16)

With the aid of the Gronwall’s inequality, we get that ||u||z= and ||7| gs are bounded as t < T™*
if (3.2) is satisfied. This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Similarly to the proof of Theorem 1.1, we are going to present a global priori estimate of the
solutions constructed in Theorem 1.1. Let (u, 7) be the unique solution constructed in Theorem
1.1 with the initial data (ug, 79) which satisfies all the requirements in Theorem 1.1.

Actually, combining (3.3), (3.6) and (3.14), we can get

1d Weld 1
i+ — 5 g7l + (=l vulie + Il

We We
= ? VjuiTjTi + ? Tij VUi + VUi Tij
We
—Re [ Vu- Vu;jViuj — — (Viu VT — ViVEUuTr
9
— Vu;ViTer — ViTje ViU — Tjkvivkul)vile + / ViViu;ViTji

- Re/ (iju -Vug + Viu - VVug + Viu - vviuk)vfjuk

We
3
2 2
— ViVourp VT — ViVeupViTg — Vrukvijnl — Vikarvrul

/ (Vit VVTh + Vit VViTh + ViU - VT — Vi Vol Trt

2 2 2 2
— ViTkr ViVt — VjTir ViVeup — Tkrvijv,,ul)vijm + / vijvlukvijm,
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S0
1d

- 2
Rezdt||u”H2+ e 2dt

We We
< C(THWHLWHTHLQ + Re||Vul| Lo || Vul|3 2 + ?HVUHLWHVTH%P

—ll7e + @ =e)llvulzy + _||T||H2

We We
+ —[V2ull2 17l V7] 22 + Re|| Vull o | Vul72 + — (|9l 1= [ V27172
We We, .
+ Pl ol 27 e + — [Pl 927 2l
Hlvallczlitlce + [1V2ull 2|97 22 + [ VPull 22| 927 2.
Using the Gagliardo-Nirenberg interpolation inequalities, we have
197llze < C) TN, 1V%ullps < Cn)l|Vull g2
Therefore, we get
1d We 1
5 37 (Bellullfs + =IIml% ) + (1 = &) Fullfe + <7l
We 9
<€) (I7ull = 7|3 + Rel| vula ull ) + [Vulge 7l = (1)

Similarly, for gerneral positive integer s > [§] 4 1, we can get the following estimate

1d We )
2z (Rellulle + =7l ) + (= o)l vy + il

We
< cm)(IIvulln- =

I7l1%- + Rell VullZ

umd+wmema (42)

When 0 < ¢ < 2, we can choose ki, ks > 0 satisfying k1 + ko <1 —¢ and g~ > <2 L such that

1d
2dt

< kal|vul 3

We 1
(Rellully- + = li7l%- ) + (L = )l Vuly + =lirll-

1 We 9
+ (G =23 )+ CRel vl

1
e + kall Tl + 77l

which implies

1d We
5 (Rellulliz. + =173 ) < =[(1 = ) = k1 — ko = C(m)Reul -] | Tl -
11 1 o We?
S e s . 4.
=i O e I @)
Set W
e 9
Ag = max {|[uollfy: + gl =Relluoll3 + ol }.
If Ag is so small that
(1—¢)—k1— ke —C(n)Reyv/Ap >0 (4.4)
and
1 1
e Cn )2we Ao >0, (4.5)
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from (4.3) it turns out that

‘We ‘We
Relul|7. + ?HT”%—IS < Relluo||F- + ?IIToll?qs-

Hence ||ul|%. < Ag and ||7||%. < Ap. In view of the choice of Ag in (4.4) and (4.5), (4.3) tells
us Relul|%. + 2¢||7||%. is monotone-decreasing. Therefore, if the initial data are small enough,
then ||ul| g+ and ||7]| gs will be bounded for all t < co. Using the blow up principle in Theorem
1.1, we finish the proof of Theorem 1.2.
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