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Abstract This paper mainly deals with the type II singularities of the mean curvature
flow from a symplectic surface or from an almost calibrated Lagrangian surface in a Kähler
surface. The relation between the maximum of the Kähler angle and the maximum of |H |2
on the limit flow is studied. The authors also show the nonexistence of type II blow-up
flow of a symplectic mean curvature flow which is normal flat or of an almost calibrated
Lagrangian mean curvature flow which is flat.
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1 Introduction

Suppose that M is a compact Kähler surface. Let Σ be a smooth surface in M and ω, 〈 ·, · 〉
be the Kähler form and the Kähler metric on M respectively. The Kähler angle α of Σ in M

is defined by Chern-Wolfson [6]

ω|Σ = cosαdμΣ,

where dμΣ is the area element of Σ of the induced metric from 〈 , 〉. We call Σ a symplectic
surface if cosα > 0, a Lagrangian surface if cosα ≡ 0, a holomorphic curve if cosα ≡ 1. If we
assume in addition that M is a Calabi-Yau complex surface with a complex structure J , we
consider a parallel holomorphic (2, 0) form Ω for a Lagrangian surface Σ we have (see [13])

Ω|Σ = eiθdμΣ,

where θ is a multivalued function called Lagrangian angle. If cos θ > 0, then Σ is called almost
calibrated. If θ ≡ constant, then Σ is a special Lagrangian.

It is proved in [2, 22] that, if the initial surface is symplectic, then along the mean curvature
flow, at each time t the surface Σt is still symplectic. Thus we speak of symplectic mean
curvature flow. It is proved in [19] that, if the initial surface is Lagrangian, then along the
mean curvature flow, at each time t the surface Σt is still Lagrangian. Thus we speak of
Lagrangian mean curvature flow. The symplectic mean curvature flow was studied in [2–4, 10,
11, 22]. There are many references for Lagrangian mean curvature flows (see [8, 16–21]).
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In [10], we showed that, if the scalar curvature of the compact Kähler-Einstein surface M
is positive and the initial surface is sufficiently close to a holomorphic curve, then the mean
curvature flow has a global solution and converges to a holomorphic curve.

In general, the mean curvature flow may produce singularities. The singularities of the mean
curvature flow of convex hypersurfaces were studied by Huisken-Sinestrari [14, 15] and White
[23]. For symplectic mean curvature flow or almost calibrated Lagrangian mean curvature flow,
Chen-Li [2, 3] and Wang [22] proved that there is no Type I singularity.

We consider the strong convergence of the rescaled surfaces Σk
s in BR(0) around a type II

singular point X0. Let |Ak| be the norm of the second fundamental forms of Σk
s in BR(0). Then

we have that |Ak|2 ≤ 4 in BR(0) during the rescaling process. Thus by Arzela-Ascoli theorem,
Σk

s → Σ∞
s in C2(BR(0) × [−R,R]) for any R > 0 and any BR(0) ⊂ C2. By the definition of

the type II singularity, we know that Σ∞
s is defined on (−∞,+∞) and Σ∞

s also evolves along
the mean curvature flow in C2 with the Euclidean metric. We call Σ∞

s the limit flow or the
blow-up flow at X0. See Section 2 for details.

An important example of type II singularity is the translating soliton (see [9, 15]). Symplec-
tic or Lagrangian translating solitons were studied in [11, 12, 16, 18] recently. In [11, 12, 18],
some kinds of Liouville theorems were proved, and in [16], the authors constructed Lagrangian
translating solitons.

In this paper, we mainly study the nature of the general limit flow Σ∞
s . For this purpose,

we consider a general mean curvature flow Σt in R4 which exists globally with bounded second
fundamental forms and the following property:

μt(Σt ∩BR(0)) ≤ CR2, (1.1)

where 0 < C <∞ is a constant independent of t and R.

Theorem 1.1 Suppose that Σt (t ∈ (−∞, 0]) is a complete symplectic mean curvature flow
with cosα ≥ δ > 0 in C2 which satisfies (1.1). Assume that sup

t∈(−∞,0]

sup
Σt

|A|2 = 1. Then we

have

h2 = sup
t∈(−∞,0]

sup
Σt

|H |2 ≤ 4 sup
t∈(−∞,0]

sup
Σt

log
1

1 − 2 sin2 α
2

.

For the almost calibrated Lagrangian mean curvature flow, we have the following result.

Theorem 1.2 Suppose that Σt (t ∈ (−∞, 0]) is a complete almost calibrated Lagrangian
mean curvature flow with cos θ ≥ δ > 0 in C

2 which satisfies (1.1). Assume further that
sup

t∈(−∞,0]

sup
Σt

|A|2 = 1. Then we have

h2 = sup
t∈(−∞,0]

sup
Σt

|H |2 ≤
(

sup
t∈(−∞,0]

sup
Σt

θ − inf
t∈(−∞,0]

inf
Σt

θ
)2

.

On the other hand, applying the techniques used in [12], we can rule out the existence
of type II blow-up flows for a symplectic mean curvature flow which are normal flat. More
precisely, we prove the theorem below.
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Theorem 1.3 Suppose that Σt (t ∈ (−∞, 0]) is a complete symplectic mean curvature
flow with cosα ≥ δ > 0 in C2 which satisfies (1.1). Assume that sup

t∈(−∞,0]

sup
Σt

|A|2 = 1. Then

{Σt}t∈(−∞,0] can not be normal flat all the time.

Analogously for the almost calibrated Lagrangian mean curvature flow, we show the result
as follows.

Theorem 1.4 Suppose that Σt (t ∈ (−∞, 0]) is a complete almost calibrated Lagrangian
mean curvature flow with cos θ ≥ δ > 0 in C2 which satisfies (1.1). Assume further that

sup
t∈(−∞,0]

sup
Σt

|A|2 = 1.

Then {Σt}t∈(−∞,0] can not be flat all the time.

Theorems 1.3 and 1.4 imply that it is important to know whether or under what condition,
the blow-up flow of a symplectic mean curvature flow is normal flat or an almost calibrated
Lagrangian mean curvature flow is flat. In fact, as we know (see [1]), the type II blow-up flow
of a curve shrinking flow for space curves is a planar curve.

2 Preparations

In this section, we define the rescaled surfaces and study the strong convergence of the
rescaled sequence at a type II singular point, which is more or less standard. However, we can
not find it in a reference, so we give all details here. It may be interesting in its own right.
Suppose that T is discrete singular time, that means there exists an ε > 0 such that the mean
curvature flow is smooth in [T − ε, T ). Assume that the mean curvature flow develops a type
II singularity at time T . Let X0 be a type II singular point of the mean curvature flow in M ,
that means,

max
Br(X0)∩Σt

|A|2 ≥ C

T − t
for any iM > r > 0, C > 0,

where iM is the injective radius of M . Then for any sequence {rk} with rk → 0,

max
σ∈(0,

rk
2 ]
σ2 max

[T−(rk−σ)2,T−(
rk
2 )2]

max
Σt∩Brk−σ(X0)

|A|2

≥
(rk

2

)2

max
Σ

T−(
rk
2 )2

∩B rk
2

(X0)
|A|2

=
(
T −

(
T −

(rk
2

)2))
max

Σ
T−(

rk
2 )2∩B rk

2
(X0)

|A|2

→ +∞.

We choose σk ∈ (0, rk

2 ] such that

σ2
k max

[T−(rk−σk)2,T−(
rk
2 )2]

max
Σt∩Brk−σk

(X0)
|A|2 = max

σ∈(0,
rk
2 ]
σ2 max

[T−(rk−σ)2,T−(
rk
2 )2]

max
Σt∩Brk−σ(X0)

|A|2.

Let tk ∈ [T − (rk − σk)2, T − ( rk

2 )2] and F (xk, tk) = Xk ∈ Brk−σk
(X0) satisfy

λ2
k = |A|2(Xk) = |A|2(xk, tk) = max

[T−(rk−σk)2,T−(
rk
2 )2]

max
Σt∩Brk−σk

(X0)
|A|2.
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Obviously, we have (Xk, tk) → (X0, T ) and λ2
kσ

2
k → ∞. In particular,

max
[T−(rk−σk

2 )2,T−(
rk
2 )2]

max
Σt∩B

rk− σk
2

(X0)
|A|2 ≤ 4λ2

k, (2.1)

and hence

max
[tk−(

σk
2 )2,tk]

max
Σt∩B

rk− σk
2

(X0)
|A|2 ≤ 4λ2

k. (2.2)

We now describe the rescaling process around (X0, T ) in details. The argument is discussed
with Chen. In the following, we denote the points of the image of F or Fk in M by capital
letters. We choose a normal coordinates in Br(X0) using the exponential map, where Br(X0) is
a metric ball in M centered at X0 with radius r (0 < r < iM

2 ). We express F in its coordinates
functions. Consider the following sequences:

Fk(x, s) = λk(F (xk + x, tk + λ−2
k s) − F (xk, tk)), s ∈

[
− λ2

k

σ2
k

4
, λ2

k(T − tk)
]
. (2.3)

We denote the rescaled surfaces by Σk
s , in which dμk

s is the induced area element from M . For
any R > 0, let BR(0) be a ball in R

4 with radius R in the Euclidean metric and centered at 0.
Then

Σk
s ∩BR(0) = {|Fk(x, s)| ≤ R},

it is clear that for any fixed R > 0, λ−1
k R < r

2 , rk <
r
2 as k sufficiently large. Then the surface

Σk
s is defined in BR(0) because

expX0
(λ−1

k {|Fk(x, s)| ≤ R}) ⊂ expX0
(|F −X0| ≤ λ−1

k R+ rk)

⊂ Bλ−1
k R+rk

(X0) ⊂ Br(X0).

Moreover, we pull back the metric on Br(X0) ⊂M via expX0
so that we get a metric h on the

Euclidean ball Br(0). Then for any fixed R > 0 such that λ−1
k R < r

2 , we can define a metric
hk,R on BR(0),

(hk,R)ij(X) = λ2
kh(λ−1

k X +Xk).

With respect to this metric Σk
s evolves along the mean curvature flow, which is derived as

follows.
If gk

s is the metric on Σk
s which is induced from the metric g(·, tk + λ−1

k s) on Σtk+λ−1
k s, it is

clear that
(gk

s )ij(X) = λ2
kgij(λ−1

k X +Xk, tk + λ−2
k s)

and
(gk

s )ij(X) = λ−2
k gij(λ−1

k X +Xk, tk + λ−2
k s).

In this setting, (Σk
s , g

k
s ) is an isometric immersion in (BR(0), hk,R). Let Ak, Hk be the second

fundamental form and the mean curvature vector of (Σk
s , g

k
s ) in (BR(0), hk,R) respectively. Let

Γ
k
, Γk

s be the Christoffel symbols of hk,R on BR(0) and the Christoffel symbols of gk
s on Σk

s .
Since Fk is an isometric immersion in (BR(0), hk,R) with respect to the induced metric, by the
Gaussian equation, we have

(Ak)ij =
∑

α=1,2

(hk)α
ijν

k
sα = −∂2

ijFk +
∑
l=1,2

(Γk
s)l

ij∂lFk −
∑

α,β,γ=1,4

(Γ
k
)α
βγ∂iF

β
k ∂jF

γ
k ν

k
sα, (2.4)
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where {νk
sα, α = 1, 2} are bases of the normal space of Σk

s in (BR(0), hk,R). Let Γtk+λ−2
k s be

the Christoffel symbols on Σtk+λ−2
k s and Γ be the Christoffel symbols on M . It is not hard to

check that
Γ

k
(X) = Γ(λ−1

k X +Xk), Γk
s(X) = Γtk+λ−2

k s(λ
−1
k X +Xk).

Thus from (2.4), we get that

(Ak)ij = λk

(
− ∂2

ijF +
∑
l=1,2

(Γtk+λ−2
k s)

l
ij∂lFk −

∑
α,β,γ=1,4

Γ
α

βγ∂iF
β
k ∂jF

γ
k να

)
= λkAij , (2.5)

where {vα, α = 1, 2} are bases of the normal space of Σtk+λ−2
k s in M . Therefore,

|Ak|2 = λ−2
k |A|2, Hk = λ−1

k H, |Hk|2 = λ−2
k |H |2.

Set t = tk + λ−2
k s. It is easy to check that

∂Fk

∂s
= λ−1

k

∂F

∂t
.

Therefore, it follows that the rescaled surface also evolves by a mean curvature flow

∂Fk

∂s
= Hk (2.6)

in Bλkσk
(0), where s ∈ [−λ2

k
σ2

k

4 , λ
2
k(T − tk)].

By (2.1) and (2.2), we see that

|Ak|(0, 0) = 1, |Ak|2 ≤ 4

in Bλkσk
(0) and s ∈ [−λ2

k
σ2

k

4 , λ
2
k(T − tk)]. Since (X0, T ) is a type II singularity, we have λ2

kσ
2
k →

∞ and λ2
k(T − tk) → ∞. Thus by Arzela-Ascoli theorem, Σk

s → Σ∞
s in C2(BR(0)× [−R,R]) for

any R > 0 and any BR(0) ⊂ C2. By (2.3), we know that Σ∞
s is defined on (−∞,+∞). Since

for each fixed R > 0, λ−1
k X +Xk → X0 for X ∈ BR(0) as k → ∞, we get that hk,R converges

uniformly in BR(0) to the Euclidean metric as k → ∞, and the Christoffel symbols (Γ
k
) of

hk,R converge uniformly in BR(0) to 0 as k → ∞. We see that Σ∞
s also evolves along the mean

curvature flow in C2 with the Euclidean metric. We call Σ∞
s the limit flow or the blow-up flow

at X0.
In the rest part of this section, we estimate the difference of Ak, Hk and A0

k, H
0
k , where A0

k

and H0
k are the second fundamental form and the mean curvature vector of Σk

s in the Euclidean
metric on BR(0) respectively. Although it is not needed in this paper, it is interesting in its
own right.

Let Γ0k
s be the Christoffel symbols of Σk

s for the Euclidean metric on BR(0), and {ν0k
sα :

α = 1, 2} be bases of the normal space of Σk
s with respect to the Euclidean metric on BR(0).

Similarly, considering Fk as an isometric immersion in BR(0) with the Euclidean metric, we
have

(A0
k)ij =

∑
α=1,2

(h0)α
ij(ν

0k
s )α = −∂2

ijFk +
∑
l=1,2

(Γ0k
s )l

ij∂lFk. (2.7)
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Note that the induced metric on Σk
s from hk,R is given by 〈∂Fk, ∂Fk〉hk,R

, so it holds that

|∂Fk|2hk,R
= 2,

which in turn implies that, for k sufficiently large and R fixed, |∂Fα
k | is uniformly bounded in

BR(0) with the Euclidean metric.
Using the Euclidean metric on BR(0), we decompose the tangent bundle of BR(0) along Σk

s

into the tangential component TΣk
s and the normal component T⊥Σk

s . Let A⊥
k : TΣk

s ×TΣk
s →

T⊥Σk
s be the normal component of Ak. Noticing that A⊥

k − A0
k lies in T⊥Σk

s and ∂iFk lies in
TΣk

s , it follows from (2.4) and (2.5) that

sup
BR(0)

|A⊥
k −A0

k| ≤ C sup
BR(0)

|Γk| → 0,

as k → ∞ for any fixed R > 0. From the uniform convergence of the metrics hk,R to the
Euclidean metric, we have

|A⊥
k | ≤ |Ak| ≤ 2|Ak|hk,R

for any fixed R > 0 and sufficiently large k. Hence, there exist positive constants δk,R which
tend to 0 as k → ∞ such that

|A0
k| = |A⊥

k | + δk,R ≤ 2|Ak|hk,R
+ δk,R

for all sufficiently large k and any fixed R > 0; and similarly there exist constants δ′k,R > 0
with δ′k,R → 0 as k → ∞ such that

|H0
k | ≤ 2|Hk|hk,R

+ δ′k,R

for sufficiently large k and any given R > 0.

3 Proofs of Theorem 1.1 and Theorem 1.2

Now we begin to prove our main theorems. We first prove Theorem 1.2. Let H(X,X0, t, t0)
be the backward heat kernel on R4. Let Σt be a smooth family of surfaces in R4 defined by
Ft : Σ → R4. Define

ρ(X, t) = (4π(t0 − t))H(X,X0, t, t0) =
1

4π(t0 − t)
exp−|X −X0|2

4(t0 − t)

for t < t0, such that

d
dt
ρ = −Δρ− ρ

(∣∣∣H +
(X −X0)⊥

2(t0 − t)

∣∣∣2 − |H |2
)
,

where (X −X0)⊥ is the normal component of X −X0.
Define

ΨX0,t0(X, t) =
∫

Σt

1
cos θ

ρ(X, t)dμt.
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Proposition 3.1 Along the almost calibrated Lagrangian mean curvature flow Σt in R4,
we have

∂

∂t
ΨX0,t0(X, t) = −

(∫
Σt

1
cos θ

ρ(F, t)
∣∣∣H +

(F −X0)⊥

2(t0 − t)

∣∣∣2dμt

+
∫

Σt

1
cos θ

ρ(F, t)|H |2dμt +
∫

Σt

2
cos3 θ

|∇ cos θ|2 ρ(F, t)dμt

)
.

Proof From the evolution equation of Lagrangian angle (see [19, 20]),

( ∂
∂t

− Δ
)

cos θ = |H |2 cos θ, (3.1)

we know
( ∂

∂t
− Δ

) 1
cos θ

= − |H |2
cos θ

− 2
|∇ cos θ|2

cos3 θ
. (3.2)

Recall the general formula (7) in [7], for a smooth function f = f(x, t) on Σt with polynomial
growth at infinity,

d
dt

∫
Σt

fρdμt =
∫

Σt

( d
dt
f − Δf

)
ρdμt −

∫
Σt

fρ
∣∣∣H +

(X −X0)⊥

2(t0 − t)

∣∣∣dμt. (3.3)

Choosing f = 1
cos θ in (3.3) and putting (3.2) into (3.3), we get our monotonicity formula.

Proof of Theorem 1.2 Without loss of generality, we may assume

inf
t∈(−∞,0]

inf
Σt

θ = 0.

If h = 0, or η := sup
t∈(−∞,0]

sup
Σt

θ = 0, it is evident that the result holds. Now we assume that

h > 0, η > 0.
Fix any R > 0 and set X0 = 0. First we claim that there exists a sequence {si} such that

si → −∞ as i → ∞ and lim
i→∞

max
Σsi

∩BR(X0)
|H |2 = 0. Integrating the monotonicity formula in

Proposition 3.1 with t0 = 0 from 2s to s for s < 0, we get
∫

Σ2s

1
cos θ(x, 2s)

1
−2s

e
|F |2
8s dμ2s −

∫
Σs

1
cos θ(x, s)

1
−se

|F |2
4s dμs ≥

∫ s

2s

∫
Σt

1
cos θ

ρ(F, t)|H |2dμtdt.

By Proposition 3.1, we know that
∫
Σs

1
cos θρ(F, s) is nonincreasing in s. Since cos θ is bounded

below by δ, for any t < 0, we have
∫

Σt

1
cos θ

ρ(X, t)dμt ≤ 1
δ

∫
Σt

ρ(X, t)dμt

≤ C

δ

∫ ∞

0

∫
Σt∩∂Br(0)

1
0 − t

e
r2
4t dσtdr

≤ C

−t
∫ ∞

0

e
r2
4t

d
dr

vol(Br(0) ∩ Σt)dr

≤ C

−t
[
e

r2
4t vol(Br(0) ∩ Σt)|∞r=0 −

∫ ∞

0

vol(Br(0) ∩ Σt)e
r2
4t

2r
4t

dr
]
,
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where we denote by C > 0 the constant which does not depend on t and may change from one
line to another line. Since we have assumed that μt(BR(0) ∩ Σt) ≤ CR2 in (1.1), we have

∫
Σt

1
cos θ

ρ(X, t)dμt ≤ C
[ 1
−te

r2
4t r2

∣∣∣∞
r=0

+
∫ ∞

0

2r3

4t2
e

r2
4t dr

]

≤ C
[ 1
−te

r2
4t r2 + e

r2
4t
r2

t
− 4e

r2
4t

]∣∣∣∞
r=0

≤ C.

Thus the quantity
∫
Σs

1
cos θρ(F, s) is uniformly bounded above. Moreover, by the mean value

theorem, there is s′ ∈ [2s, s] such that
∫ s

2s

∫
Σt

1
cos θ

1
−te

|F |2
t |H |2dμtdt = −s

∫
Σs′

1
cos θ

1
−s′ e

|F |2
s′ |H |2dμs′

≥ Ce
R2

s′

∫
Σs′∩BR(0)

|H |2dμs′ ,

where C is independent of s. Thus we can find a sequence {si} such that si → −∞ as i → ∞
and ∫

Σsi
∩BR(0)

|H |2dμsi → 0, as i→ ∞.

Since the second fundamental forms of Σsi are bounded above and Σs satisfy the mean curvature
flow equation, we have that Σsi strongly converges to a smooth limit surface Σ−∞ in BR(0).
Therefore,

lim
i→∞

max
Σsi

∩BR(0)
|H |2 = 0. (3.4)

This can also be proved by Moser iteration.
Now we use gradient estimate to prove our theorem. For this purpose we introduce a new

function f(X, t) = |H |2 + pθ2, where p > 1, t ∈ [si, 0], {si} is the sequence in (3.4). Using the
evolution equation for |H |2 in R4

(
Δ − ∂

∂t

)
|H |2 = 2|∇H |2 − 2(Hαhα

ij)
2

and the evolution equation for θ (
Δ − ∂

∂t

)
θ = 0,

we get
(
Δ − ∂

∂t

)
f ≥ 2(p− 1)|H |2. (3.5)

Here, we have used the fact |∇θ| = |H |.
Let ψ(r) be a C2 function on [0,∞) such that

ψ(r) =

⎧⎨
⎩

1, if r ∈
[
0,

1
2

]
,

0, if r ≥ 1,

0 ≤ ψ(r) ≤ 1, ψ′(r) ≤ 0, ψ′′(r) ≥ −C and
|ψ′(r)|2
ψ(r)

≤ C,
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where C is an absolute constant.
Let

g(X, t) = ψ
( |X |2
R2

)
.

Using the fact that |∇X |2 = 2, a straightforward computation shows that

(
Δ − ∂

∂t

)
g = 4ψ′′ 〈X,∇X〉2

R4
+ 2ψ′ 〈∇X,∇X〉

R2
≥ −C1

R2
,

|∇g|2
g

≤ C2

R2
.

(3.6)

Let (X(si), t(si)) be the point where g ·f achieves its maximum in BR(0)× [si, 0]. It is clear
that, if the maximum of g · f is achieved at si as i→ ∞, the claim follows.

Indeed, if Σsi ∩BR(0) = ∅ as i→ ∞, then (g · f)(X, si) → 0 as i→ ∞, and the claim holds.
If Σsi ∩BR(0) �= ∅ as i→ ∞, by (3.4), we have

lim
i→∞

(g · f)(X, si) ≤ pη2.

We see that the claim also holds.
Now we assume (X(si), t(si)) ∈ BR(0)×(si, 0]. By the maximum principle, at (X(si), t(si)),

we have

∇(g · f) = 0,
∂

∂t
(g · f) ≥ 0 (3.7)

and
Δ(g · f) ≤ 0.

Hence
(
Δ − ∂

∂t

)
g · f ≤ 0, (3.8)

∇g = − g

f
∇f. (3.9)

Substituting (3.5) and (3.6) into (3.8) and using (3.9), we get

0 ≥
(
Δ − ∂

∂t

)
g · f = f

(
Δ − ∂

∂t

)
g + g

(
Δ − ∂

∂t

)
f + 2∇g · ∇f

≥ −C1

R2
f − 2

|∇g|2
g

f + g
(
Δ − ∂

∂t

)
f

≥ −C1 + 2C2

R2
f + 2g · |H |2(p− 1). (3.10)

Since p > 1, we get

g|H |2(X(si), t(si)) ≤ C3

(p− 1)R2
.

Therefore,

sup
B R

2
×[si,0]

f(X, t) ≤ C3

(p− 1)R2
+ p sup

BR×[si,0]

θ2.
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Letting i→ ∞ and R → ∞, we obtain

h2 ≤ pη2.

Letting p→ 1, we get the desired inequality. This completes the proof of Theorem 1.2.

Now we turn to the proof of Theorem 1.1.
Recall the evolution equation of the Kähler angle in C2 (see [2]),

( ∂

∂t
− Δ

)
cosα = |∇JΣt |2 cosα, (3.11)

where JΣt is an almost complex structure in a tubular neighborhood of Σt in C2 with
⎧⎪⎪⎨
⎪⎪⎩

JΣte1 = e2,
JΣte2 = −e1,
JΣtv1 = v2,
JΣtv2 = −v1.

(3.12)

It is shown in [2, 5] that

|∇JΣt |2 ≥ 1
2
|H |2, (3.13)

which implies ( ∂
∂t

− Δ
)

cosα ≥ 1
2
|H |2 cosα.

Using equation (3.11), we can prove one monotonicity formula along the symplectic mean
curvature flow in R4 by the same argument as the one used in the proof of Proposition 3.1.

Proposition 3.2 Along the symplectic mean curvature flow Σt in C2, we have

∂

∂t

(∫
Σt

1
cosα

ρ(F, t)dμt

)

= −
(∫

Σt

1
cosα

ρ(F, t)
∣∣∣H +

(F −X0)⊥

2(t0 − t)

∣∣∣2dμt

+
∫

Σt

1
cosα

ρ(F, t)|∇JΣt |2dμt +
∫

Σt

2
cos3 α

|∇ cosα|2ρ(F, t)dμt

)
.

Proof of Theorem 1.1 Set δ := inf
t∈(−∞,0]

inf
Σt

cosα, and we only need to show that δe
h2
4 ≤ 1.

If h = 0 or δ = 0 or δ = 1, it is evident that the result holds. Now we assume that h > 0,
0 < δ < 1 and argue by contradiction. Suppose that δ > e−

h2
4 , i.e., 1

δ2 < e
h2
2 . Then there exists

a constant p′ ∈ (0, 1
2 ) such that 1

δ2 ≤ ep′h2
< e

h2
2 .

By the definition of h2 and the fact that h > 0, we know that, for any ε > 0, there exist
R0 > 0 and T0 > 0 such that

sup
[−T0,0]

sup
Σt∩BR0 (X0)

|H |2 > (1 − ε)h2.

Now we choose ε ∈ (0, 1 − 2p′), and suppose that

|H |2(X, t) = sup
[−T0,0]

sup
Σt∩BR0(X0)

|H |2 > (1 − ε)h2
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for (X, t) ∈ BR0(X0) × [−T0, 0].
Fix R > 2R0 and set X0 = 0. By the monotonicity formula (see Proposition 3.2) and

proceeding as in the proof of Theorem 1.2, we can find a sequence {si} such that si → −∞ and
∫

Σsi
∩BR(0)

|∇JΣt |2 → 0, as i→ ∞.

By (3.13), we get

lim
i→∞

max
Σsi

∩BR(0)
|H |2 = 0. (3.14)

Now we use gradient estimate to prove our theorem. For this purpose, we introduce a new
function f(X, t) = ep|H|2

cos2 α , where t ∈ [si, 0], {si} is the sequence in (3.14), and p is constant with
0 < p < 1

2 to be determined later.

(
Δ − ∂

∂t

)
f =

1
cos2 α

(
Δ − ∂

∂t

)
ep|H|2 + ep|H|2

(
Δ − ∂

∂t

) 1
cos2 α

+ 2∇ep|H|2 · ∇ 1
cos2 α

.

Using the evolution equation for |H |2 in R
4

(
Δ − ∂

∂t

)
|H |2 = 2|∇H |2 − 2(Hαhα

ij)
2,

we get
(
Δ − ∂

∂t

)
ep|H|2 = ep|H|2(4p2|H |2|∇|H ||2 + 2p|∇H |2 − 2p|Hαhα

ij |2)
≥ ep|H|2(4p2|H |2|∇|H ||2 + 2p|∇H |2 − 2p|H |2|A|2)
≥ ep|H|2(4p2|H |2|∇|H ||2 + 2p|∇H |2 − 2p|H |2).

Since

∇ep|H|2 = ∇(f cos2 α) = cos2 α∇f + 2f cosα∇ cosα,

we have

∇ep|H|2 · ∇ 1
cos2 α

= cos2 α∇f · ∇ 1
cos2 α

− 4f
cos2 α

|∇ cosα|2.

Using the evolution equation (3.11), we get

(
Δ − ∂

∂t

) 1
cos2 α

= 6
|∇ cosα|2

cos4 α
+ 2

|∇JΣt |2
cos2 α

≥ 6
|∇ cosα|2

cos4 α
+

|H |2
cos2 α

.

So,

(
Δ − ∂

∂t

)
f ≥ f

(
4p2|H |2|∇|H ||2 + 2p|∇H |2 + 2

(1
2
− p

)
|H |2 − 2

|∇ cosα|2
cos2 α

)

+ 2 cos2 α∇f · ∇ 1
cos2 α

. (3.15)

Choose g the same as in the proof of Theorem 1.2, such that (3.6) is satisfied. Let
(X(si), t(si)) be the point where g · f achieves its maximum in BR(0) × [si, 0]. We claim
that the maximum of g · f can not be achieved at si as i→ ∞.
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Indeed, if Σsi ∩BR(0) = ∅ as i→ ∞, then (g · f)(X, si) → 0 as i→ ∞, and the claim holds.
If Σsi ∩BR(0) �= ∅ as i→ ∞, we denote εi = max

Σsi
∩BR(0)

|H |2. Then by (3.14), we know that

lim
i→∞

εi = 0. Since si → −∞ as i→ ∞, we choose i sufficiently large such that si < −T0. Then

(g · f)(X(si), t(si)) ≥ (g · f)(X, t) = f(X, t) =
ep|H|2(X,t)

cos2 α(X, t)
> e(1−ε)ph2

.

On the other hand,

f(X, si) =
ep|H|2(X,si)

cos2 α(X, si)
≤ epεi

δ2
≤ ep′h2+pεi .

Note 1− ε > 2p′. Therefore we can choose p ∈ (0, 1
2 ) such that p(1− ε) > p′. Now for the fixed

p′, ε and p, there exists an N > 0, such that for each i > N , p′h2 + pεi < (1 − ε)ph2. And for
these i, the claim holds.

By the maximum principle, at (X(si), t(si)) we have

∇(g · f) = 0,
∂

∂t
(g · f) ≥ 0 (3.16)

and
Δ(g · f) ≤ 0.

Hence
(
Δ − ∂

∂t

)
g · f ≤ 0, (3.17)

∇g = − g

f
∇f. (3.18)

Substituting (3.15) and (3.16) into (3.17) and using (3.18) twice, we get

0 ≥
(
Δ − ∂

∂t

)
g · f = f

(
Δ − ∂

∂t

)
g + g

(
Δ − ∂

∂t

)
f + 2∇g · ∇f

≥ −C1

R2
f − 2

|∇g|2
g

f + g
(
Δ − ∂

∂t

)
f

≥ −C1 + 2C2

R2
f + 2g · f |H |2

(1
2
− p

)

+ g · f
(
2p|∇H |2 + 4p2|H |2|∇|H ||2 − 2

|∇ cosα|2
cos2 α

)

+ 2g cos2 α∇f · ∇ 1
cos2 α

≥ −C1 + 2C2

R2
f + 2g · f |H |2

(1
2
− p

)

+ g · f
(
2p|∇H |2 + 4p2|H |2|∇|H ||2 − 2

|∇ cosα|2
cos2 θ

)

− 2 cos2 αf∇ 1
cos2 α

· ∇g. (3.19)

Using equation (3.18), we have

∇g = g
(
2
∇ cosα
cosα

− p∇|H |2
)
.
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Thus,

4gp2|∇|H ||2|H |2 =
|∇g|2
g

+ 4g
|∇ cosα|2

cos2 α
− 4∇g · ∇ cosα

cosα
.

Putting this equation into (3.19), we get

0 ≥ −C1 + 2C2

R2
f + 2gf

(1
2
− p

)
|H |2 + 2pgf |∇H |2 +

f

g
|∇g|2 + 2gf

|∇ cosα|2
cos2 α

≥ −C4

R2
f + 2gf

(1
2
− p

)
|H |2.

This implies that

C4

R2
≥ 2g

(1
2
− p

)
|H |2 = 2gf

(1
2
− p

)cos2 α|H |2
ep|H|2

≥ 2gfδ2e−ph2
(1

2
− p

)
|H |2.

By the assumption that sup
t∈(−∞,0]

sup
Σt

|A|2 = 1, we have h2 ≤ 2. So

C5

R2
≥ δ22gf

(1
2
− p

)
|H |2.

Since 1
2 − p > 0, we get

|H |2(X(si), t(si))(g · f)(X(si), t(si)) ≤ C5

(1
2 − p)R2

.

So
|H |2(X(si), t(si))f(0, 0) ≤ |H |2(X(si), t(si))(g · f)(X(si), t(si)) ≤ C5

(1
2 − p)R2

.

Notice f(0, 0) ≥ 1. Thus

|H |2(X(si), t(si)) ≤ C5

(1
2 − p)R2

.

Therefore,

sup
B R

2
×[si,0]

f(X, t) ≤ 1
δ2

ep|H|2(x(si),t(si)) ≤ 1
δ2

e
pC5

( 1
2−p)R2

.

Letting i→ ∞ and R → ∞, we get

ep′h2 ≥ 1
δ2

≥ sup f ≥ eph2
,

which is a contradiction because p > p(1 − ε) > p′ and h > 0. This completes the proof of
Theorem 1.1.

4 Proofs of Theorem 1.3 and Theorem 1.4

We first prove Theorem 1.3.
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Proof of Theorem 1.3 Without loss of generality, we assume |A|2(0, 0) = 1. We prove
the theorem by contradiction. Suppose that the symplectic mean curvature flow {Σt}t∈(−∞,0]

is normal flat at every time. Then we have

(
Δ − ∂

∂t

)
|A|2 = 2|∇A|2 − 2

∑
i,j,m,k

( ∑
α

hα
ijh

α
mk

)2

≥ 2|∇A|2 − 2|A|4 (4.1)

and
(
Δ − ∂

∂t

)
cosα = −|A|2 cosα.

Thus, we obtain

(
Δ − ∂

∂t

) 1
cosα

=
|A|2
cosα

+ 2
|∇ cosα|2

cos3 α
. (4.2)

Because Σt is normal flat at each t, we have

|∇JΣt |2 = |A|2.

Applying Proposition 3.2 with |∇JΣt |2 = |A|2, by the same argument used to derive (3.4),
we obtain that there is a sequence si such that si → −∞, and

lim
i→∞

max
Σsi

∩BR(0)
|A|2 = 0 (4.3)

for any fixed R > 0.
Assume that f is a positive increasing function which will be defined later. Using (4.1) and

(4.2), we have

(
Δ − ∂

∂t

)(
|A|2f

( 1
cosα

))

=
(
Δ − ∂

∂t

)
|A|2f

( 1
cosα

)
+ |A|2

(
Δ − ∂

∂t

)(
f
( 1

cosα

))
+ 2∇|A|2 · ∇f

( 1
cosα

)

≥ f(2|∇A|2 − 2|A|4) + |A|2
(
f ′ |A|2

cosα
+ 2f ′ |∇ cosα|2

cos3 α
+ f ′′ |∇ cosα|2

cos4 α

)

+ 2
∇(f |A|2) − |A|2∇f

f
· ∇f

( 1
cosα

)

= |A|2f
(
2
|∇A|2
|A|2 − 2|A|2 +

f ′

f

|A|2
cosα

)
+ |A|2

(
f ′′ − 2

(f ′)2

f
+ 2f ′ cosα

) |∇ cosα|2
cos4 α

+ 2|A|2∇(f |A|2)
f |A|2 · ∇f

( 1
cosα

)
. (4.4)

Set φ = f |A|2. At the point where φ �= 0, it is easy to see that

∇φ = f∇|A|2 + |A|2∇f = f∇|A|2 − |A|2f ′∇ cosα
cos2 α

,

i.e,

∇ cosα
cos2 α

=
f

f ′
(∇|A|2

|A|2 − ∇φ
φ

)
. (4.5)
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Plugging (4.5) into (4.4), we obtain

(
Δ − ∂

∂t

)
φ ≥ φ

(
2
|∇A|2
|A|2 − 2|A|2 +

f ′

f

|A|2
cosα

)

+
φf

(f ′)2
(
f ′′ − 2

(f ′)2

f
+ 2f ′ cosα

)( |∇|A|2|2
|A|4 − 2

∇|A|2
|A|2 · ∇φ

φ
+

|∇φ|2
φ2

)

− 2|A|2f ′∇φ
φ

· ∇ cosα
cos2 α

= φ
(f ′

f

|A|2
cosα

− 2|A|2
)

+ φ
(
2
|∇A|2
|A|2 + 4

ff ′′

(f ′)2
|∇|A||2
|A|2 − 8

|∇|A||2
|A|2

+ 8
f

f ′ cosα
|∇|A||2
|A|2

)
− 2|A|2f ′∇φ

φ
· ∇ cosα

cos2 α

+ φ
( ff ′′

(f ′)2
+ 2

f

f ′ cosα− 2
)( |∇φ|2

φ2
− 2

∇|A|2
|A|2 · ∇φ

φ

)

≥ φ
(f ′

f

|A|2
cosα

− 2|A|2
)

+ φ
(
4
ff ′′

(f ′)2
+ 8

f

f ′ cosα− 6
) |∇|A||2

|A|2

+ φ
( ff ′′

(f ′)2
+ 2

f

f ′ cosα− 2
)( |∇φ|2

φ2
− 2

∇|A|2
|A|2 · ∇φ

φ

)

− 2|A|2f ′∇φ
φ

· ∇ cosα
cos2 α

= φ|A|2
(f ′

f

1
cosα

− 2
)

+ φ
(
4
ff ′′

(f ′)2
+ 8

f

f ′ cosα− 6
) |∇|A||2

|A|2

− φ
( ff ′′

(f ′)2
+ 2

f

f ′ cosα− 2
)( |∇φ|2

φ2
+ 2

f ′

f

∇ cosα
cos2 α

· ∇φ
φ

)

− 2|A|2f ′∇φ
φ

· ∇ cosα
cos2 α

. (4.6)

Following the ideas in [12], we choose

f(x) =
(2 − δ)2x2

(2 − δx)2
, x ∈

[
1,

1
δ

]
,

such that

4
ff ′′

(f ′)2
+ 8

f

f ′ cosα− 6 = 0.

It is evident that for x ∈ [1, 1
δ ],

1 ≤ f(x) ≤ (2 − δ)2

δ2
.

By (4.6), we have

(
Δ − ∂

∂t

)
φ ≥ 2φ|A|2

( 1
1 − δ

2 cos α

− 1
)

+
φ

2

( |∇φ|2
φ2

+ 2
f ′

f

∇ cosα
cos2 α

· ∇φ
φ

)

− 2|A|2f ′∇φ
φ

· ∇ cosα
cos2 α

≥ δφ|A|2 +
|∇φ|2
2φ

−
(
2|A|2f ′∇ cosα

cos2 α
− φ

f ′

f

∇ cosα
cos2 α

)
· ∇φ
φ
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≥ δφ|A|2 − b · ∇φ
φ
, (4.7)

where b = 2|A|2f ′ ∇ cos α
cos2 α − φf ′

f
∇ cos α
cos2 α is bounded.

Now we choose g as in the proof of Theorem 1.2. Recall that

|∇g| ≤ C6

R
.

Let (X(si), t(si)) be the point where φg achieves its maximum in BR(0) × [si, 0]. If Σsi∩
BR(0) = ∅ as i → ∞, then φg → 0 as i → ∞. If Σsi ∩ BR(0) �= ∅ as i → ∞, then by (4.3), we
have

(φg)(X, si) = |A|2(X, si)f(X, si)g(X, si)

≤ (2 − δ)2

δ2
|A|2(X, si)g(X, si) → 0, as i→ ∞.

On the other hand,

(φg)(X(si), t(si)) ≥ (φg)(0, 0) = |A|2(0, 0)f
( 1

cosα(0, 0)

)
g(0, 0) = f

( 1
cosα(0, 0)

)
≥ 1. (4.8)

This implies that the maximum of φg can not be achieved at si as i → ∞. By the maximum
principle, at (X(si), t(si)), we have

∇(gφ) = 0,
∂

∂t
(gφ) ≥ 0, Δ(gφ) ≤ 0.

Hence,
(
Δ − ∂

∂t

)
(gφ) ≤ 0, ∇g = − g

φ
∇φ.

Using (4.7) and (3.6), we obtain

0 ≥
(
Δ − ∂

∂t

)
(gφ)

=
(
Δ − ∂

∂t

)
gφ+ g

(
Δ − ∂

∂t

)
φ+ 2∇g · ∇φ

≥ −C1

R2
φ+ δ|A|2φg − b · ∇φ

φ
g + 2∇g ·

(
− φ

g

)
∇g

= −C1

R2
φ+ δ|A|2φg + b · ∇g − 2

φ

g
|∇g|2

≥ −C1

R2
φ+ δ|A|2φg − |b|C6

R
− 2

C2

R2
φ

≥ δ|A|2(X(si), t(si)) − C7

R2
− C8

R
(by (4.8)),

i.e.,

|A|2(X(si), t(si)) ≤ C7

δR2
+
C8

δR
. (4.9)

Here we have used (4.8) and the fact that

φ = |A|2f ≤ f ≤ (2 − δ)2

δ2
.
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The constants C7, C8 depend only on δ.
On the other hand, we have

1 ≤ f
( 1

cosα(0, 0)

)
= |A|2(0, 0)f

( 1
cosα(0, 0)

)
g(0, 0)

= (φg)(0, 0) ≤ (φg)(X(si), t(si))

= |A|2(X(si), t(si))f
( 1

cosα(X(si), t(si))

)
g(X(si), t(si))

≤ (2 − δ)2

δ2
|A|2(X(si), t(si)),

i.e.,

|A|2(X(si), t(Xsi)) ≥
δ2

(2 − δ)2
. (4.10)

It follows from (4.9) and (4.10) that

δ2

(2 − δ)2
≤ C7

δR2
+
C8

δR
.

Letting R→ ∞, we get a contradiction.

The proof of Theorem 1.4 is similar. Note that

(
Δ − ∂

∂t

)
cos θ = −|H |2 cos θ.

Suppose that the Lagrangian mean curvature flow {Σt}t∈(−∞,0] is flat at every time. Then we
have

|A|2 = |H |2 and
(
Δ − ∂

∂t

)
cos θ = −|A|2 cos θ.

Therefore
(
Δ − ∂

∂t

) 1
cos θ

=
|A|2
cos θ

+ 2
|∇ cos θ|2

cos3 θ
.

Also by (3.4), we have

lim
i→∞

max
Σsi

∩BR(0)
|A|2 = 0.

The remaining part of the proof is the same as that of Theorem 1.3 with cosα replaced by
cos θ. We leave the details to readers.
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