Chin. Ann. Math. .
32B(2), 2011, 223-240 Chinese Annals of

DOL: 10.1007/s11401-011-0635-6 Mathematics, Series B
© The Editorial Office of CAM and
Springer-Verlag Berlin Heidelberg 2011

The Second Type Singularities of Symplectic and
Lagrangian Mean Curvature Flows*
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Abstract This paper mainly deals with the type II singularities of the mean curvature
flow from a symplectic surface or from an almost calibrated Lagrangian surface in a Kéhler
surface. The relation between the maximum of the Kihler angle and the maximum of ||
on the limit flow is studied. The authors also show the nonexistence of type II blow-up
flow of a symplectic mean curvature flow which is normal flat or of an almost calibrated
Lagrangian mean curvature flow which is flat.
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1 Introduction

Suppose that M is a compact Kéhler surface. Let ¥ be a smooth surface in M and w, (-, -)
be the Kahler form and the Kahler metric on M respectively. The Kéhler angle o of ¥ in M
is defined by Chern-Wolfson [6]

wly = cosadpuy,

where duy, is the area element of ¥ of the induced metric from (, ). We call ¥ a symplectic
surface if cosa > 0, a Lagrangian surface if cosa = 0, a holomorphic curve if cosa = 1. If we
assume in addition that M is a Calabi-Yau complex surface with a complex structure J, we
consider a parallel holomorphic (2,0) form © for a Lagrangian surface 3 we have (see [13])

Q|E = eied,u‘fm

where 6 is a multivalued function called Lagrangian angle. If cos@ > 0, then X is called almost
calibrated. If § = constant, then X is a special Lagrangian.

It is proved in [2, 22] that, if the initial surface is symplectic, then along the mean curvature
flow, at each time t the surface ¥; is still symplectic. Thus we speak of symplectic mean
curvature flow. It is proved in [19] that, if the initial surface is Lagrangian, then along the
mean curvature flow, at each time ¢ the surface X, is still Lagrangian. Thus we speak of
Lagrangian mean curvature flow. The symplectic mean curvature flow was studied in [2—4, 10,
11, 22]. There are many references for Lagrangian mean curvature flows (see [8, 16-21]).
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In [10], we showed that, if the scalar curvature of the compact K&hler-Einstein surface M
is positive and the initial surface is sufficiently close to a holomorphic curve, then the mean
curvature flow has a global solution and converges to a holomorphic curve.

In general, the mean curvature flow may produce singularities. The singularities of the mean
curvature flow of convex hypersurfaces were studied by Huisken-Sinestrari [14, 15] and White
[23]. For symplectic mean curvature flow or almost calibrated Lagrangian mean curvature flow,
Chen-Li [2, 3] and Wang [22] proved that there is no Type I singularity.

We consider the strong convergence of the rescaled surfaces ¥ in B(0) around a type II
singular point X. Let |Ax| be the norm of the second fundamental forms of ¥ in Br(0). Then
we have that |Ax|? < 4 in Br(0) during the rescaling process. Thus by Arzela-Ascoli theorem,
¥k — ¥% in C*(Bg(0) x [-R, R]) for any R > 0 and any Bg(0) C C2 By the definition of
the type II singularity, we know that %2° is defined on (—oo, +00) and X5° also evolves along
the mean curvature flow in C? with the Euclidean metric. We call £2° the limit flow or the
blow-up flow at Xy. See Section 2 for details.

An important example of type II singularity is the translating soliton (see [9, 15]). Symplec-
tic or Lagrangian translating solitons were studied in [11, 12, 16, 18] recently. In [11, 12, 18],
some kinds of Liouville theorems were proved, and in [16], the authors constructed Lagrangian
translating solitons.

In this paper, we mainly study the nature of the general limit flow 3¢°. For this purpose,
we consider a general mean curvature flow ¥, in R* which exists globally with bounded second
fundamental forms and the following property:

pe(S: N Br(0)) < CR?, (1.1)

where 0 < C' < 0o is a constant independent of ¢t and R.

Theorem 1.1 Suppose that ¥ (t € (—o0,0]) is a complete symplectic mean curvature flow

with cosa > & > 0 in C? which satisfies (1.1). Assume that sup sup|A[*> = 1. Then we
te(—o0,0] ¢
have

h*= sup sup|H|* <4 sup suplog —_—
te(—00,0] T te(—00,0] T 1—2sin" 5

For the almost calibrated Lagrangian mean curvature flow, we have the following result.

Theorem 1.2 Suppose that 3, (t € (—0,0]) is a complete almost calibrated Lagrangian
mean curvature flow with cos > § > 0 in C? which satisfies (1.1). Assume further that

sup sup|A|? =1. Then we have
te(—o00,0] Xt

2
h* = sup sup|H? S( sup supf — inf inf@) .
te(—00,0] ¢ te(—00,0] ¢ t€(—00,0] B¢

On the other hand, applying the techniques used in [12], we can rule out the existence
of type II blow-up flows for a symplectic mean curvature flow which are normal flat. More
precisely, we prove the theorem below.
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Theorem 1.3 Suppose that ¥; (t € (—00,0]) is a complete symplectic mean curvature

flow with cosa > & > 0 in C* which satisfies (1.1). Assume that sup sup|A|?> = 1. Then
te(—o00,0] ¢
{EtHe(—o0,0) can not be normal flat all the time.

Analogously for the almost calibrated Lagrangian mean curvature flow, we show the result
as follows.

Theorem 1.4 Suppose that ¥y (t € (—00,0]) is a complete almost calibrated Lagrangian
mean curvature flow with cosf > § > 0 in C? which satisfies (1.1). Assume further that

sup sup|A*> =1.
te(—o00,0] 3¢

Then {X¢}1e(—o0,0p can not be flat all the time.

Theorems 1.3 and 1.4 imply that it is important to know whether or under what condition,
the blow-up flow of a symplectic mean curvature flow is normal flat or an almost calibrated
Lagrangian mean curvature flow is flat. In fact, as we know (see [1]), the type II blow-up flow
of a curve shrinking flow for space curves is a planar curve.

2 Preparations

In this section, we define the rescaled surfaces and study the strong convergence of the
rescaled sequence at a type II singular point, which is more or less standard. However, we can
not find it in a reference, so we give all details here. It may be interesting in its own right.
Suppose that T is discrete singular time, that means there exists an ¢ > 0 such that the mean
curvature flow is smooth in [T — ¢, T). Assume that the mean curvature flow develops a type
IT singularity at time T'. Let Xy be a type II singular point of the mean curvature flow in M,
that means,

C
max |A|? > —— foranyiy >7r >0, C >0,
B,.(X0)NZ; T—t

where i is the injective radius of M. Then for any sequence {ry} with r, — 0,

max o> max max |AJ?
o€(0,7k] [T—(rk—0)2,T— ()2 Z¢NBry —o (Xo)
N
> (—k) max |A|2
2/ %

T,(*'Tk)zﬂB%k(XO)

Tk 2 2
—(r-(r- (%)) max 1A
2 ET_(%]S_)QOB%&(XO)

— 400.

We choose o, € (0, %] such that

UZ max max |A|2= max o2 max max |A|2.

[T—(rk—0%)2,T— ()] ZtNBry —o) (Xo) 0€(0,7F]  [T—(re—0)2,T—(F)?] ZeNBry —o (Xo)
Let ty, € [T — (ri — 0%)?, T — (%)) and F(zk, ty) = Xy € Br,—0, (Xo) satisfy

A = AP (Xk) = [AP (zg, th) = max max |A]%.

[T—(rk—0or)2,T—(5)2] Z¢NByy oy (Xo)
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Obviously, we have (Xj, tx) — (Xo,T) and A\io7 — oco. In particular,

max max ) |A|? < 4)2, (2.1)

[T—(re=F)2,T=(F)] =08, 2, (Xo
and hence

max max |A]? < 4%, (2.2)
[t —(Z)2 1] EtﬂB,,.k,UTk (Xo)

We now describe the rescaling process around (Xg,T') in details. The argument is discussed
with Chen. In the following, we denote the points of the image of F' or Fj in M by capital
letters. We choose a normal coordinates in B, (X() using the exponential map, where B, (X)) is
a metric ball in M centered at Xy with radius r (0 < r < %) We express F' in its coordinates
functions. Consider the following sequences:

2
— o
Fi(,s) = M(Flon + 2,0+ A %8) = Flaw, ), se [ NIRRT 0] 23)

We denote the rescaled surfaces by ¥, in which du* is the induced area element from M. For

any R > 0, let Br(0) be a ball in R* with radius R in the Euclidean metric and centered at 0.
Then
2% N Br(0) = {|Fi(z,s)| < R},
it is clear that for any fixed R > 0, )\glR <3, 1, < 5 as k sufficiently large. Then the surface
Y* is defined in Br(0) because
expy, (A, {[Fi(@, 5)| < R}) C expx, (|F — Xo| < Ay 'R +11)
C BAIZIR-H“/C (Xo) C BT(XO).

Moreover, we pull back the metric on B,.(Xo) C M via expy, so that we get a metric h on the
Euclidean ball B,.(0). Then for any fixed R > 0 such that A\, 'R < %, we can define a metric

27
hk,R on BR(O),
(hi,r)ij (X) = Aph(A "X + X5).

With respect to this metric ¥ evolves along the mean curvature flow, which is derived as

follows.
If g% is the metric on ¥ which is induced from the metric g(-, ¢ + )\;ls) on Etk+)\;15, it is
clear that
(95)i5(X) = Mogij (g "X + X, te + A %s)
and

(99)7(X) = A 2g7 X + Xt + A %),
In this setting, (X*, g¥) is an isometric immersion in (Bg(0), kg r). Let Ax, Hy be the second
fundamental form and the mean curvature vector of (X%, g¥) in (Bg(0), hi r) respectively. Let
fk, I'* be the Christoffel symbols of hj r on Br(0) and the Christoffel symbols of g¥ on ¥,
Since Fy, is an isometric immersion in (Br(0), h, ) with respect to the induced metric, by the
Gaussian equation, we have

(Ar)ij = > ()§vh, = =05 Fe+ Y THL0F - > (fk)gyainfangVfa, (2.4)

a=1,2 1=1,2 a,B,v=1,4
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where {vE o = 1,2} are bases of the normal space of ¥ in (Bg(0), hx r). Let T

s tk+)\;25 be

the Christoffel symbols on Etﬁ)\;% and T be the Christoffel symbols on M. It is not hard to
check that

k

I'(X)=TO\,'X+X,), THX)=T A1 X + X)),

ttAL s

Thus from (2.4), we get that

(Ap)ij = Mo ( —2F+ Y (T, e )hOF— Y fgvaiF,fangya) = \ediyy, (25
1=1,2 a,B,7=1,4

where {v,,a = 1,2} are bases of the normal space of 3 in M. Therefore,

t+Ag 2s
[Akl? = NZAP, Hye= XU, Hy? = N2 H P
Set t =ty + /\];28. It is easy to check that

% — )(18_F
Os koot
Therefore, it follows that the rescaled surface also evolves by a mean curvature flow

OF,
— =H, 2.6
0s i (26)
in B0, (0), where s € [—A2Z5 X2(T — 1),

By (2.1) and (2.2), we see that

|Ak|(0a0):1a |Ak|2§4

in By, 0, (0) and s € [—Ai%, A2(T —tx)]. Since (Xo, T) is a type II singularity, we have \2o7 —
oo and A7 (T —t;) — oo. Thus by Arzela-Ascoli theorem, ¥ — ¥ in C?(Bg(0) x [~ R, R]) for
any R > 0 and any Bgr(0) C C2. By (2.3), we know that ¥2° is defined on (—oo, +00). Since
for each fixed R > 0, )\,ng + Xk — Xo for X € Br(0) as k — oo, we get that hj r converges
uniformly in Br(0) to the Euclidean metric as & — oo, and the Christoffel symbols (Fk) of
hi.r converge uniformly in Br(0) to 0 as k — oco. We see that X2° also evolves along the mean
curvature flow in C? with the Euclidean metric. We call £2° the limit flow or the blow-up flow
at Xg.

In the rest part of this section, we estimate the difference of Ay, Hy, and A, HY, where A?
and H) are the second fundamental form and the mean curvature vector of ¥ in the Euclidean
metric on Br(0) respectively. Although it is not needed in this paper, it is interesting in its
own right.

Let I'% be the Christoffel symbols of £¥ for the Euclidean metric on Bg(0), and {2 :
a = 1,2} be bases of the normal space of ¥ with respect to the Euclidean metric on Bg(0).
Similarly, considering Fj, as an isometric immersion in Bgr(0) with the Euclidean metric, we
have

(AD)ig = Y (ho) () e = =04 Fr + Y (T)L,0,F.. (2.7)

a=1,2 1=1,2



228 X. L. Han, J. Y. Li and J. Sun

Note that the induced metric on ¥ from hi,r is given by (0Fy, 0F))n, , so it holds that
2
|8Fk|hk,R — 2,

which in turn implies that, for k sufficiently large and R fixed, |0F}| is uniformly bounded in
Bpr(0) with the Euclidean metric.

Using the Euclidean metric on Br(0), we decompose the tangent bundle of Br(0) along ¥
into the tangential component TS* and the normal component T-3*. Let A : TSF x TSF —
T+¥* be the normal component of Aj. Noticing that Akl — A9 lies in T+¥F and 9;F}, lies in
Tk it follows from (2.4) and (2.5) that

sup |Af — A < C sup ] -0,
Br(0) Br(0)

as k — oo for any fixed R > 0. From the uniform convergence of the metrics hjy g to the
Euclidean metric, we have

A | < |Ak| < 2| Akln,p

for any fixed R > 0 and sufficiently large k. Hence, there exist positive constants ;g which
tend to 0 as k — oo such that

|AQ| = A | + Ok, < 2|Ak|n, p + Ok

for all sufficiently large k and any fixed R > 0; and similarly there exist constants d; z > 0
with 0} z — 0 as k — oo such that

|Hl(c)| < 2|Hk7|hk,R + 5;@R

for sufficiently large k£ and any given R > 0.

3 Proofs of Theorem 1.1 and Theorem 1.2

Now we begin to prove our main theorems. We first prove Theorem 1.2. Let H(X, Xo,t,t0)
be the backward heat kernel on R*. Let ¥; be a smooth family of surfaces in R* defined by
F, : ¥ — R%. Define

(X,t) = (4 (to — ) H (X, Xo,t, to) exp — X = Xol*
— T —_ = ———eXxp—————
LA, 0 » 40,0, 0 An(to —1) p A(to —1)
for t < tg, such that
d (X — Xo)t 2 5
o= _Ap— ‘H 7‘ —|H|?),
at’ r p( T - |H] )
where (X — Xg)* is the normal component of X — Xj.
Define
v X, t) = X, t)dp.
Xo,to( ) ) /Zf, COSGP( ) ) He
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Proposition 3.1 Along the almost calibrated Lagrangian mean curvature flow ¥, in R*,
we have

d 1 (F' = Xo)
i Y Xoito (X 1) = —(/E mp(Fat)‘HﬂL ﬁ‘ dyu

1 2 2
— (F,t)|H|*d - 0% p(F, t)dpy ).
[ g E R+ [ 9 condl o i)

Proof From the evolution equation of Lagrangian angle (see [19, 20]),

9 2
(a - A) cosf = |H|* cos b, (3.1)
we know
0 1 |H]? |V cos 0]
(E_A)COSO T cosf -2 cos36 (3:2)

Recall the general formula (7) in [7], for a smooth function f = f(x,¢) on X; with polynomial
growth at infinity,

%/z,, Tpdp :/Zt (%f_Af)Pth _/z,, fp’H+ % due. (3.3)

Choosing f = in (3.3) and putting (3.2) into (3.3), we get our monotonicity formula.

cos 0

Proof of Theorem 1.2 Without loss of generality, we may assume

inf infd =0.
te(—o00,0] Xt
If h=0,orn:= sup supf = 0, it is evident that the result holds. Now we assume that

te(—o00,0] 3t
h>0,n>0.

Fix any R > 0 and set X, = 0. First we claim that there exists a sequence {s;} such that

s; — —oo as ¢ — oo and lim max  |H|?> = 0. Integrating the monotonicity formula in
t—00 X5, NBRr(Xo)

Proposition 3.1 with ¢y = 0 from 2s to s for s < 0, we get

1 1 2 1 1 e s 1
- " 8s d — - e 4 d g> F,t H2d dt
/22.; cos f(x, 2s) “2s° Hzs /zs cos f(, s) —5° fs = /23 /Ef, cosé)p( JH [*d

By Proposition 3.1, we know that fz:. ﬁp(F, s) is nonincreasing in s. Since cos is bounded

below by §, for any ¢t < 0, we have
/ L (X,t)d 1/ p(X,t)d
s, cos 6 e = 5 pe

< —/ /
,NB,.(0)
d

,2
e T doydr

S —_t . Q%EVOI(B (0) n Et)d
2 > 22
< % [eﬁvol(Br(O) %), - / vol(B,.(0) N £y)e 4—201@,
- 0
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where we denote by C > 0 the constant which does not depend on ¢ and may change from one
line to another line. Since we have assumed that 1;(Bg(0) N ;) < CR? in (1.1), we have

0 oo 2r3 ﬁd
e4t dr
r=0 +A 4t2 :|

o0

1 1 .2
/ p(X,t)dpy < C[—eﬂr2
5, cost —t

2
<C’{ e4fr +e4f%—4e§}

=0

<C.

Thus the quantity fz: Tlse p(F, s) is uniformly bounded above. Moreover, by the mean value
theorem, there is s’ € [2s, s] such that

" | Pdpsdt = L L Hdu,
95 Jx, cos 9 ¢ He 5, cosf —s’ Hs
S t s/

2
z@%/ |H|2dp,
Y, NBR (0)

where C' is independent of s. Thus we can find a sequence {s;} such that s; — —oco as i — oo

and
/ |H|?dps, — 0, asi— oo.
3. NBRr(0)

Since the second fundamental forms of X5, are bounded above and 3 satisfy the mean curvature
flow equation, we have that X, strongly converges to a smooth limit surface ¥_ in Br(0).
Therefore,
lim  max |H*>=0. (3.4)
1—00 ESiﬁBR(O)
This can also be proved by Moser iteration.
Now we use gradient estimate to prove our theorem. For this purpose we introduce a new
function f(X,t) = |H|? + pf?, where p > 1, t € [s;,0], {s;} is the sequence in (3.4). Using the
evolution equation for |H|? in R*

(A - —)|H|2 = 2|VH|* - 2(H*h;)?

and the evolution equation for

-
we get
(A=) 52200 nimp. (3.5)

Here, we have used the fact |VO| = |H].
Let 1 (r) be a C? function on [0, 00) such that

1

Liﬂ€h+
Y(r) = 2
0, if r>1,

0<y(r) <1, ¥'(r)<0, ¢"(r)>-C and
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where C' is an absolute constant.
Let | |2
X
9(X.1) = ().

Using the fact that [VX|? = 2, a straightforward computation shows that

) (X,VX)2 (VX,VX) o
(A B E) - M’Hi + WT Z TRy
[Vgl® _
g R2

(3.6)

Let (X (s;),t(s;)) be the point where g- f achieves its maximum in m x [s;,0]. Tt is clear
that, if the maximum of g - f is achieved at s; as ¢ — oo, the claim follows.

Indeed, if ¥4, NBr(0) = as i — oo, then (¢9- f)(X,s;) — 0 as i — 0o, and the claim holds.
If ¥,, N Br(0) # 0 as i — oo, by (3.4), we have

lim (g - f)(X, ) < pn*.

17— 00
We see that the claim also holds.
Now we assume (X (s;),t(s;)) € Br(0) x (s;,0]. By the maximum principle, at (X (s;), t(s;)),

we have

Vg =0, £lof)20 (.7
and
Alg-f) <0
Hence
(A—g)g-fgo, (3.8)
ot
Vg = —%Vf. (3.9)

Substituting (3.5) and (3.6) into (3.8) and using (3.9), we get

0> (A~ Dgr=r(a-Dgro(a-2)rvavg vy

IVgl 2]
>~ f -2 (A= g)f
Oy + 20
> —%Z?wag-un (p—1). (3.10)

Since p > 1, we get
Cs

S (X (50 1(50)) < o=y

Therefore,

Cs 5
sup f(X,t) < sup 0~.
B x[s:,0] (%:9) (p—=1DR* 7 poxis:,0
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Letting ¢ — co and R — o0, we obtain

< pn2.
Letting p — 1, we get the desired inequality. This completes the proof of Theorem 1.2.

Now we turn to the proof of Theorem 1.1.
Recall the evolution equation of the Kéhler angle in C? (see [2]),

9 T2
(a - A) cosa = |VJg,|” cosa, (3.11)

where Jx, is an almost complex structure in a tubular neighborhood of 3; in C? with

JZtel = €2,
Iy, e2 = —ex,
T, 01 = v, (3.12)
Jy,v2 = —v;.
It is shown in [2, 5] that
= 1
Vi [? > SIH%, (3.13)

which implies

0 1 2
( ; A) COS @ 2|I{| COS @

Using equation (3.11), we can prove one monotonicity formula along the symplectic mean
curvature flow in R* by the same argument as the one used in the proof of Proposition 3.1.

Proposition 3.2 Along the symplectic mean curvature flow ¥; in C2, we have

%<Lt coiozp(F7 t)dﬂt)

([, ot + S

, cosa 2(to — t)
1 = 2
—p(F, )|V Js, [*dp: + / +— |V cos al*p(F, t)dut).
5, COS 5, €08 o
Proof of Theorem 1.1 Set d := inf infcosa, and we only need to show that 56% <1.

te(—o00,0] Tt
If h=00ord =0o0rd =1, it is evident that the result holds. Now we assume that A > 0,

W2 . W2 .
0 < 0 < 1 and argue by contradiction. Suppose that § > e_}T, ie., 6% < e’z . Then there exists

/ .2
a constant p’ € (0, 1) such that 55 < e? W < e'r.

By the definition of h? and the fact that h > 0, we know that, for any € > 0, there exist
Ro > 0 and Ty > 0 such that

sup sup  |H*>> (1 —¢)h?
[=T0,0] =, Br, (Xo)

Now we choose ¢ € (0,1 — 2p’), and suppose that

|H[*(X,7) = sup sup  |H|? > (1 —¢e)h?
[~T0.0] 52, "By (o)
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for (7, %) S BRO (Xo) X [—To,O].
Fix R > 2Ry and set Xy = 0. By the monotonicity formula (see Proposition 3.2) and
proceeding as in the proof of Theorem 1.2, we can find a sequence {s;} such that s; — —oo and

/ |VJs,|? =0, asi— oo,
S, NBr(0)

By (3.13), we get

lim  max |H*>=0. (3.14)
1—00 ESiﬁBR(O)
Now we use gradient estimate to prove our theorem. For this purpose, we introduce a new
2
function f(X,t) = %, where t € [s;,0], {s;} is the sequence in (3.14), and p is constant with
0<p< % to be determined later.

0 1 0 2 2 0 1 2 1
A__) _ (A__> Pl H| plH| (A__) oveplHI” . ,
( ot f cos? a ot e Ot/ cos? a T2ve vCos2 a
Using the evolution equation for [H|? in R?
9 2 2 apoa\2
(A= 2 )1HP =2VH? —2(H"h)%,
we get
0 2 2
(&= 57 )1 = eI (42| H 2|V H] | + 2p| VH? = 2p|H* 5y ?)
2
> oMV (4p? | H?| V| H|* + 2p|VH|? = 2p| H[*|A]?)
2
> oMV (4p? | H?| V| H|* + 2p|VH|? — 2p| H ).
Since
VerlHI® = V(fcos? a) = cos> aVf +2f cosaV cos a,
we have
1 4
verlHl® .y =cos’aVf- -V 5 ——£|Vcosa|2.
cos? « cos?a  cos?a
Using the evolution equation (3.11), we get
0 1 |V cos ar|? |VJs, |2 |Vcosal> |H|?
A-2) —6 22l > 6 .
( Ot/ cos? cos* « + cos2a T costa + cos? a
So,
0 1 V cos a?
(A=) 7= (40 HPIVIH|? + 29| VH? +2(5 = p) | HI? - 2%)
ot 2 cos? o
1
+2cos’aVf - V—s5—. (3.15)
cos? a

Choose ¢ the same as in the proof of Theorem 1.2, such that (3.6) is satisfied. Let
(X (s;),t(si)) be the point where g - f achieves its maximum in Bgr(0) x [s;,0]. We claim
that the maximum of ¢g - f can not be achieved at s; as i — oo.
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Indeed, if X5, N Br(0) = as i — oo, then (¢9- f)(X,s;) — 0 as i — 0o, and the claim holds.

If ¥, N Br(0) # 0 as i — oo, we denote g; = - mgx(o) |H|?. Then by (3.14), we know that
s;NBRr

lim ¢; = 0. Since s; — —00 as i — 00, we choose i sufficiently large such that s; < —Ty. Then

11— 00

. _ plH|* (X)) .
(- DX (s:).t(50) = (g XD = F(X, 1) = e > o170,
cos? a(X,1)
On the other hand,
plH|*(X,s:) pei L
F(X,s0) = — < 1 ceritre

cos?a(X,s;) = 62

Note 1 —¢ > 2p’. Therefore we can choose p € (0, 3) such that p(1 —e) > p’. Now for the fixed
p’,e and p, there exists an N > 0, such that for each i > N, p'h? + pe; < (1 — &)ph?. And for
these 4, the claim holds.

By the maximum principle, at (X (s;),t(s;)) we have

Vig-f)=0, %(g-f) >0 (3.16)
and
A(g-f) <0
Hence
0
(A at) <0, (3.17)
Vg = —?Vf. (3.18)

Substituting (3.15) and (3.16) into (3.17) and using (3.18) twice, we get

0> (8- )y r=s(a-D)g+g(a- ) +2v9-v)

ot ot
Cq |V9| 9
> —
>l =2 (b= )1
Ch 420,
Z—Tf g- fIH? (__P)

2 2| 772 2 |VCOS‘34|2
+g- f(2pIVHP +4p |H| VIH|[? 2= )
+2gcos’aVf -V 7,

cos
Ch +2Cy 1
_—Tf‘f'?g'f”ﬂ (5_17)
. 2 2| 7712 2 [V cos af?
+ g f (20| VH] + 4| HP|V || - 2255 )
—2cos’> afV 5— - Vg. (3.19)
cos? o
Using equation (3.18), we have
V cos
Vg = g<2 —pV|H|2).
cos o
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Thus,
2 2
4gp? |V | H| 2| H? = Vgl 4 |Vcozsa| v .Vcosa.
g cos? o cos o
Putting this equation into (3.19), we get
Cy +2C5 9 2 9 |V cos af?
> _ STt - H 9gf Y 5T
02 =S 207 (5 - p) HP + 200 (VHP + 199 4 201 5250
C4 2
—ﬁf‘f'?gf(i —P)|H| :
This implies that
Cy 1 2 1 cos® a|H|?
1
> 2 —ph? (1 2
> 295%™ (5~ p)|H]
By the assumption that sup sup|A|> = 1, we have h? < 2. So
te(—o00,0] 3¢
C
>0 (5 - p) I HP.
Since 5 —p >0, we get
(X (50, Hs) g - D)X (80, 1(50)) < e
(5 —pR
So o
[H|*(X (i), () £(0,0) < [H[*(X (), t(s0))(g - [)(X (53), 8(53)) < a _;)RQ
2
Notice f(0,0) > 1. Thus
Cs
HI2(X (s:), t(s)) < —22—
[H|7(X (s:),t(si)) TR

Therefore,

sup F(X,8) < = opH@(E0460) < 1 a5
BE X[Si,o] - 62 - 52
2

Letting ¢ — oo and R — oo, we get
)

2 1 2
eP h 26—225upf2eph

which is a contradiction because p > p(1 —¢) > p’ and h > 0. This completes the proof of
Theorem 1.1.

4 Proofs of Theorem 1.3 and Theorem 1.4

We first prove Theorem 1.3.
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Proof of Theorem 1.3 Without loss of generality, we assume |A|?(0,0) = 1. We prove
the theorem by contradiction. Suppose that the symplectic mean curvature flow {X¢}e(—oo,0]
is normal flat at every time. Then we have

0
(A—a)|A|2:2|VA|2—2 Z (Zh” mk) 22|VA|2—2|A|4 (4.1)

i,5,m,k a

and
0 2
(A - &) cosa = —|A|” cos a.

Thus, we obtain

oy 1 AP |V cos a|?
(A—a) = +2 .

Because ¥; is normal flat at each ¢, we have

cosa  Cos cosd o

Vs, [* = AP

Applying Proposition 3.2 with |VJs, |? = |A|?, by the same argument used to derive (3.4),

we obtain that there is a sequence s; such that s; — —oo, and

lim max |AP?=0 (4.3)
1—00 ESiﬁBR(O)

for any fixed R > 0.
Assume that f is a positive increasing function which will be defined later. Using (4.1) and
(4.2), we have

(2= ) (41 (2)

(A_ _)| | f(COsa) +14P° (A— %) (f(coia)) +2V|A[]* - Vf(cosa)
> f(2|vA|2_2|A|4)+|A|2(f/!fs|i +2f/|VCOSOé|2 +f,,|Vcosa|2)

VUIAP) — APV o ( )

coss o cost o

+2
f
vAQ 2 le , \v4 2
:|A|2f(2||A|2| —2|A|2+—u)+|A| ( —2%—1—2]( COSO&)%
2 V(f1A]%) 1
+2lAP— -Vf(cosa). (4.4)

Set ¢ = f|A|%. At the point where ¢ # 0, it is easy to see that

,Vcosa

Vo = fVIAP +[APVf = fVIAP — |APf'——

cos?2a’

ie,

AP ¢

Veosa  f(VIAP? V¢
cos?a ?( ) (4.5)
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Plugging (4.5) into (4.4), we obtain

/ 2
(& _)¢ 6(2 ||A|2| 4"‘””?%)
of (f,,_2(f’)2 +2f'cosa)<|v|A|2|2 _LVIAR Ve |V¢>I2)

+

(f")? f Al A2 ¢ ¢?
V¢ V cosa
B 2|A| '~ cos? o
f/ VAQ f// VIA 2 VI|A 2
¢(f(,!os|a 2|A|2)+¢(2||A|2| T )2| |L1|2|| -8 |l1|2||
f |V|A||2 qu V cos a
+8? |AJ2 ) —2APf == cos? o
fr" f V¢2 VIAP? Vo
+o(f +2eosa-2) (G- -2+ 30)
AR [ ViA]1?
¢(f cos o — 214 ) ( (f")? +8_ _6) |AJ?
[ V VMP Vo
+o((m 2 osa—2) (5 - W?)
S T
1 P [VIA|P?
= dlAP (fcosa 2)+¢( (f)? +8? _6) |AJ?
I / |Vo|? f'Vecosa V¢
_(b((f) +2? _2)( @2 +27 cos? o 7)
— 9|4 fE VCZSO‘. (4.6)
cos? o

Following the ideas in [12], we choose

f(z) = %, x € [1,1},

0
such that
[ f
4(f’)2 +8?cosa—6—0
It is evident that for z € [1, $],
2—14)2
1< f(z) < ( 52 )

By (4.6), we have

(o~ §)oz20h (i 1) (S5 o] S 2

2cos

V¢ Vecosa
2P T
cos? «
V¢|2 V cos a f'Veosay Vo
- oA o IV Veosa f' .
= oolAl" + 2¢ (2| ¥ cos? o ¢f 608204) o
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> 60/Af — b 22, (4.7)
¢
where b = 2|A|? f' L5 quT/ Y95 i bounded.
Now we choose g as in the proof of Theorem 1.2. Recall that
06
Vgl <

Let (X (s;),t(s;)) be the point where ¢g achieves its maximum in Br(0) X [s;,0]. If ¥,N
Br(0) =0 as i — oo, then ¢g — 0 as i — oo. If Xs, N Br(0) # 0 as i — oo, then by (4.3), we
have

(69)(X, 50) = [A*(X, 50) f(X, 5:)9(X., 5)

(2

— )2 .
< T)|A|2(Xv Si)g(X, si) — 0, asi— oo.

On the other hand,

(09)(X(50). ) = (69)(0.0) = [AF(0.0)f (52575 )900.0) = (o) = 1 (49

This implies that the maximum of ¢g can not be achieved at s; as i — oo. By the maximum
principle, at (X (s;),t(s;)), we have

0
Vige) =0, =(99) 20, Alge) <0
Hence,
_ g
(A— —)(9¢) Vg = —5%.

Using (4.7) and (3.6), we obtain

0> (8- 2)(g0)

= (8- D)oo +g(d- Yo +2vg-vo

> —%¢+5|A| b9 —b- 29429y (- %)Vg

”
C
= L6+ 01APgg +b Vg - 2?|Vg|2

>~ SLo 4 ol4P0g — bl S0~ 2524
C7 Cg
> 8| AP (X (si),t(si)) — =~ g by (48),
ie.,
Cr  Cs
2 A e b7 G
[AP(X (i), t(s0)) < 575 + 57 (4.9)
Here we have used (4.8) and the fact that
2—6)?
o=lapr< <2200

52
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The constants C7, Cg depend only on 4.
On the other hand, we have

1< f(m) — A12(0,0)f (————

= (¢9)(0,0) < (¢9)(X (s1), t(s:)

— POt (ot )70 00)
_ 52
< B AR (X)),
|A]2(X (8:),1(Xs,)) > (2f5)2. (4.10)
It follows from (4.9) and (4.10) that
52 C;  Cyg

7 < T8
2—072 " srZ "R

Letting R — oo, we get a contradiction.

The proof of Theorem 1.4 is similar. Note that
9 2
(A — —) cos® = —|H|* cos®.
ot

Suppose that the Lagrangian mean curvature flow {¥;};c(—oo,g) is flat at every time. Then we
have

0
2 _ 72 _ = = _|A?
|A]* = |H|* and (A (’%) cos |AJ” cos .

Therefore

(A 5‘) 1 _|A|2 2|Vcost9|2.

Ot/ cos®  cosf cos3 0

Also by (3.4), we have

lim  max |A]>=0.
1—00 ZSiﬁBR(O)

The remaining part of the proof is the same as that of Theorem 1.3 with cosa replaced by

cosf. We leave the details to readers.
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