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1 Introduction

In this paper, we consider the system
⎧⎪⎨
⎪⎩

nt =
[
ε4n

( (n(ln n)xx)xx

n
+

((ln n)xx)2

2

)
x
− ε2

2
(n(ln n)xx)x + nx + nVx

]
x
,

−λ2Vxx = n − C(x),
(1.1)

where the electron density n and the electrostatic potential V are unknown variables; the
doping profile C(x) representing the distribution of charged background ions is supposed to be
independent of time t; the scaled Planck constant ε > 0 and Debye length λ > 0 are parameters.
For smooth positive solutions, (1.1) is equivalent to

⎧⎪⎨
⎪⎩

nt = ε4[(n(ln n)xxx)xxx + 2(n((ln n)xx)2)xx] − ε2

2
(n(ln n)xx)xx + nxx + (nVx)x,

−λ2Vxx = n − C(x).
(1.2)

Since all the results in this paper are obtained for fixed λ > 0, for convenience, we let λ = 1 in
the following. To search for solutions which are physically reasonable, namely the solutions in
which density n are nonnegative, we might as well suppose n = ρ4. Moreover, let T > 0 be any
fixed constant and QT = (0, T ]×T where T represents one dimensional flat torus. We consider
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the initial-periodic boundary value problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρ4)t = ε4[(ρ4(ln ρ4)xxx)xxx + 2(ρ4((ln ρ4)xx)2)xx]

−ε2

2
(ρ4(ln ρ4)xx)xx + (ρ4)xx + (ρ4Vx)x, in (0, T ]× T,

−Vxx = ρ4 − C(x), in (0, T ]× T,

ρ(0, ·) = ρ0( · ), in T,∫
T

ρ4
0dx =

∫
T

C(x)dx,

(1.3)

where
∫

T
ρ4
0dx =

∫
T

C(x)dx is a necessary condition such that the Poisson equation in (1.3) is
solvable.

The sixth-order parabolic equation in (1.1) was introduced recently by A. Jüngel and D.
Matthes [24], and the weak solutions of its special case

nt = n
((n(ln n)xx)xx

n
+

((ln n)xx)2

2

)
x

(1.4)

were obtained by A. Jüngel and J. Milǐsić [25]. This system could be regarded naturally as a
sixth-order correction of quantum drift-diffusion model. Quantum drift-diffusion model, quan-
tum hydrodynamic model and quantum energy transport model are three quantum macroscopic
models, which were introduced to simulate the quantum effects in miniaturized semiconduc-
tor devices. Some derivations of these models could be found in [14, 15, 26] etc., and some
mathematical results of them were given in a series of works [1–13, 16–24, 29] etc. While for
the sixth-order parabolic system (1.1), up to the authors’ knowledge, no theoretic results were
shown. The main task of this paper is to establish the global existence and semiclassical limit
of weak solutions to (1.1).

Firstly, invoking semi-discretization method and compactness argument, we obtain the
global weak solutions to (1.3) with nonnegative large initial value, where moreover the reg-
ularity of these solutions is better than that of [25] on the simple sixth-order equation (1.4). In
the proof, we make use of two techniques. On one hand, we cope with the higher-order terms
as three separate parts for the time-discretization weak solutions nτ = ρ4

τ . On the other hand,
for any smooth function u,

u4(ln u4)xxx = 2u2(u2)xxx + 2(u2)x(u2)xx − 16u(u2)xuxx, (1.5)

u4((ln u4)xx)2 = 4((u2)xx)2 − 64u(ux)2uxx, (1.6)

(u4)xxx = 2u2(u2)xxx + 6(u2)x(u2)xx,

u4(ln u4)xx = 2u2(u2)xx − 2((u2)x)2. (1.7)

These four equivalent transformations permit us to obtain the key convergent results for the
three separate higher-order parts, that is,

nτ (ln nτ )xxx
weakly

⇀ n(ln n)xxx, in L
12
7 (0, T ; L2(T)),

nτ (ln nτ )2xx
weakly

⇀ n(ln n)2xx, in L
3
2 (0, T ; H−1(T)),

nτ (ln nτ )xx
weakly

⇀ n(ln n)xx, in L
12
7 (0, T ; L2(T)).
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Secondly, in the proof of semiclassical limit, one needs that the higher order quantum terms,
especially the sixth-order terms vanish in some sense as ε → 0. To deal with this difficulty,
we have to make full use of delicate interpolation skills and the equivalent transformations
(1.5) and (1.6). More precisely, by the Gagliardo-Nirenberg inequality, one has ε

2
3 (
√

n)x ∈
L6(0, T ; L2(T)), ε

4
3 (
√

n)xx ∈ L3(0, T ; L2(T)), ε
5
3 (
√

n)xx ∈ L
12
5 (0, T ; L∞(T)) uniformly in ε.

These and (1.5)–(1.6) imply ε
8
3 n(ln n)2xx ∈ L

3
2 (0, T ; L1(T)), ε

7
3 n(ln n)xxx ∈ L

12
7 (0, T ; L2(T))

uniformly in ε, which permit us to show the vanishing of the higher order terms in the discussion.
The following notations will be used in this paper. Wm,p(T) (Hm(T) = Wm,2(T)) and

Ck,θ(T) denote the Sobolev spaces and Hölder spaces, respectively; H−m(T) denotes the dual
space of Hm(T); D ′(QT ) represents the set of all distributions on QT ; A ↪→ B (or A ↪→↪→ B)
denotes A being continuously (or compactly) embedded in B; fα

x = (fx)α, fα
xx = (fxx)α, fα

xxx =
(fxxx)α, α ∈ R; fτ → (⇀ or ∗

⇀) f in A denotes a sequence {fτ}τ>0 ⊂ A converging strongly
(weakly or weakly star) to f ∈ A as τ → 0.

Our main results are stated as follows.

Theorem 1.1 Let C(x) ∈ L∞(T) and ρ0 be nonnegative measurable function on T with∫
T

ρ4
0dx =

∫
T

C(x)dx and
∫

T
[ρ4

0(ln ρ4
0 − 1) + 1]dx < ∞. Then for any fixed ε > 0, there exists

a weak solution (ρ, V ) to (1.3) such that 0 ≤ ρ ∈ L∞(0, T ; L4(T)), ρ2 ∈ L2(0, T ; H3(T)), ρ4 ∈
W 1, 3

2 (0, T ; H−3(T)),
∫

T
ρ4dx =

∫
T

C(x)dx, V ∈ L6(0, T ; H2(T)) and
∫ T

0

〈∂tρ
4, ϕ〉〈H−3,H3〉dt

= −ε4

∫ T

0

∫
T

ρ4(ln ρ4)xxxϕxxxdxdt + 2ε4

∫ T

0

∫
T

ρ4(ln ρ4)2xxϕxxdxdt

− ε2

2

∫ T

0

∫
T

ρ4(ln ρ4)xxϕxxdxdt −
∫ T

0

∫
T

[(ρ4)x + ρ4Vx]ϕxdxdt (1.8)

for any ϕ ∈ L3(0, T ; H3(T)) and −Vxx = ρ4−C(x) a.e. in QT , where the initial value is satisfied
in the sense of H−3(T).

Remark 1.1 In (1.8), the expressions ρ4(ln ρ4)xxx, ρ4(ln ρ4)2xx, ρ4(ln ρ4)xx are in reality in
the sense of (1.5)–(1.7). For the sake of brevity, in the following these expressions would also
be used.

Since the solution depends on ε, for the sake of explicitness, we relabel ρ, V as ρε, Vε in the
following theorem.

Theorem 1.2 For those solutions obtained in Theorem 1.1, {(ρε, Vε)}ε>0, as ε → 0, there
exists a subsequence which is not relabeled, such that

ρ4
ε⇀n, in L

24
13 (0, T ; W 1, 1211 (T)) ∩ L12(0, T ; L

6
5 (T)), (1.9)

ρ4
ε → n, in L

24
13 (0, T ; C0,λ(T))

(
∀ 0 < λ <

1
12

)
, (1.10)

Vε → V, in L
24
13 (0, T ; H2(T)), (1.11)

∂tρ
4
ε ⇀ ∂tn, in L

3
2 (0, T ; H−3(T)), (1.12)

ε4ρ4
ε(ln ρ4

ε)xxx → 0, in L
12
7 (0, T ; L2(T)), (1.13)

ε4ρ4
ε(ln ρ4

ε)
2
xx → 0, in L

3
2 (0, T ; H−1(T)), (1.14)
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ε2ρ4
ε(ln ρ4

ε)xx → 0, in L
12
7 (0, T ; L2(T)), (1.15)

and (n, V ) is a weak solution of the classical drift-diffusion model in the following sense:

⎧⎪⎨
⎪⎩

∫ T

0

〈∂tn, ϕ〉〈H−3,H3〉dt = −
∫ T

0

∫
T

(nx + nVx)ϕxdxdt, ∀ϕ∈L3(0, T ; H3(T)),

−Vxx = n − C(x), a.e. in QT .

(1.16)

This article is organized as follows. In Section 2, we show the semi-discretization approxi-
mation problem and its solutions. Section 3 contains the uniform entropy estimate which would
be used in the proof of existence. Then in Section 4, we use a compactness argument for fixed
ε > 0 to prove Theorem 1.1. Furthermore in Section 5, we obtain the semiclassical limit by the
uniform estimates in ε. The final section is a summary.

2 Approximate Problem

In this section, we introduce the semi-discretization approximate problem of (1.3) and prove
the following Proposition 2.1 by employing the idea of [25] where the approximate problem of
(1.4) was treated. More precisely, let τ > 0 such that T = Nτ (without loss of generality,
otherwise, let N = [T

τ ] + 1). Hence N = N(τ) ∈ N depends only on τ . We divide the time

interval (0, T ] by (0, T ] =
N⋃

k=1

((k − 1)τ, kτ ]. For any k = 1, 2, · · · , N , given ρk−1 such that∫
T

ρ4
k−1dx =

∫
T

C(x)dx, we will solve the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ4
k − ρ4

k−1

τ
= ε4[(ρ4

k(ln ρ4
k)xxx)xxx + 2(ρ4

k(ln ρ4
k)2xx)xx]

−ε2

2
(ρ4

k(ln ρ4
k)xx)xx + (ρ4

k)xx + (ρ4
k(Vk)x)x, in T,

−(Vk)xx = ρ4
k − C(x), in T,

∫
T

ρ4
kdx =

∫
T

C(x)dx.

(2.1)

Proposition 2.1 Let C(x)∈L∞(T) and ρk−1 be nonnegative measurable function on T with∫
T

ρ4
k−1dx =

∫
T

C(x)dx and
∫

T
[ρ4

k−1(ln ρ4
k−1 − 1) + 1]dx < ∞. Then (2.1) has a weak solution

(ρk, Vk) ∈ (H3(T))2 satisfying that for any ρk ≥ 0,
∫

T
ρ4

kdx =
∫

T
C(x)dx, and in the sense that,

for any ϕ ∈ H3(T),

∫
T

ρ4
k − ρ4

k−1

τ
ϕdx = −ε4

∫
T

ρ4
k(ln ρ4

k)xxxϕxxxdx + 2ε4

∫
T

ρ4
k(ln ρ4

k)2xxϕxxdx

− ε2

2

∫
T

ρ4
k(ln ρ4

k)xxϕxxdx −
∫

T

[(ρ4
k)x + ρ4

k(Vk)x]ϕxdx, (2.2)

and Vk is a strong solution to −(Vk)xx = ρ4
k − C(x) in T.

Proof Using a general version of Leray-Schauder fixed-point theorem (see [28, Theorem
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B.5, p. 262]), we could solve the following regularized problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ4
k − ρ4

k−1

τ
= ε4[(ρ4

k(ln ρ4
k)xxx)xxx + 2(ρ4

k(ln ρ4
k)2xx)xx] − ε2

2
(ρ4

k(ln ρ4
k)xx)xx

+δ[(ln ρ4
k)xxxxxx − ln ρ4

k] + (ρ4
k)xx + (ρ4

k(Vk)x)x, in T,

−(Vk)xx = ρ4
k − C(x), in T,

∫
T

ρ4
kdx =

∫
T

C(x)dx.

(2.3)

Let ρ ∈ W 2,4(T) ↪→ L∞(T) and σ ∈ [0, 1]. Then there is a unique (up to an additive constant)
solution V ∈ H2(T) to the Poisson problem in (2.3). We introduce

a(w, φ) =
∫

T

[
ε4ρ4wxxxφxxx +

ε2

2
ρ4wxxφxx

+ δ(wxxxφxxx + wφ) + ρ4wxφx

]
dx, ∀ w, φ ∈ H3(T),

F (φ) = −σ

∫
T

[
− 2ε4ρ4(ln ρ4)2xxφxx + ρ4V xφx +

ρ4 − ρ4
k−1

τ
φ
]
dx, ∀φ ∈ H3(T).

Then by Lax-Milgram theorem, there exists a unique w ∈ H3(T) such that a(w, φ) = F (φ) for
any φ ∈ H3(T). Thus we can define a mapping G: W 2,4(T)× [0, 1] → W 2,4(T) by G(ρ, σ) = ρ =
e

w
4 ∈ H3(T). It is easy to check that G(ρ, 0) ≡ 1 for any ρ ∈ W 2,4(T) and G is continuous and

compact. We are left to show the uniform bound of fixed-points. Let (ρ, σ) ∈ W 2,4(T) × [0, 1]
such that G(ρ, σ) = ρ ∈ H3(T), i.e., (ρ, V ) ∈ H3(T)×H2(T), where for the sake of explicitness,
we relabel it as (ρδ, Vδ), satisfies

−(Vδ)xx = ρδ
4 − C(x),

∫
T

ρδ
4dx =

∫
T

C(x)dx (2.4)

and for any φ ∈ H3(T),

σ

∫
T

ρδ
4 − ρ4

k−1

τ
φdx

= −
∫

T

[
ε4ρδ

4(ln ρδ
4)xxxφxxx +

ε2

2
ρδ

4(ln ρδ
4)xxφxx + σρδ

4(Vδ)xφx

+ (ρδ
4)xφx − 2σε4ρδ

4(ln ρδ
4)2xxφxx + δ((ln ρδ

4)xxxφxxx + φ ln ρδ
4)

]
dx. (2.5)

Using ln ρδ
2 ∈ H3(T) as a test function and integration by parts, we deduce that

σ

τ

∫
T

[ρ4
δ(ln ρ4

δ − 1) + 1]dx + ε4

∫
T

[ρ4
δ(ln ρ4

δ)
2
xxx − 2σρ4

δ(ln ρ4
δ)

3
xx]dx +

ε2

2

∫
T

ρ4
δ(ln ρ4

δ)
2
xxdx

+ δ

∫
T

[|(ln ρ4
δ)xxx|2dx + | ln ρ4

δ|2]dx + 4
∫

T

|(ρδ
2)x|2dx + σ

∫
T

ρδ
8dx

≤ σ

τ

∫
T

[ρ4
k−1(ln ρ4

k−1 − 1) + 1]dx + C

∫
T

ρδ
4dx ≤ C. (2.6)
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Here and in the following, C is a constant independent of δ. Observe from [25, Lemma 2.1] that∫
T

[ρ4
δ(ln ρ4

δ)
2
xxx − 2σρ4

δ(ln ρ4
δ)

3
xx]dx ≥

∫
T

[ρ4
δ(ln ρ4

δ)
2
xxx − 2ρ4

δ(ln ρ4
δ)

3
xx]dx

≥ 2
∫

T

[|(ρ2
δ)xxx|2 + |(ρδ)x(ρδ)xx|2 + |(ρ 2

3
δ )x|6]dx. (2.7)

Therefore in view of the standard elliptic theory,

‖ρ2
δ(ln ρ4

δ)xx‖L2(T) + ‖ρ2
δ‖H3(T) + ‖(ρδ)x(ρδ)xx‖L2(T)

+ ‖(ρ 2
3
δ )x‖L6(T) + δ

1
2 ‖ lnρ4

δ‖H3(T) + ‖Vδ‖H2(T) ≤ M. (2.8)

This implies ‖ lnρδ‖H3(T) ≤ Mδ, where Mδ is a constant independent of σ, and hence
‖ρδ‖H3(T) ≤ Mδ which establishes the uniform bound of fixed-points. So by Leray-Schauder
fixed-point theorem for any δ > 0, we obtain a solution ρδ to G(ρδ, 1) = ρδ, that is, ρδ satisfies
(2.4) and (2.5) for σ = 1. Hence, we obtain the weak solution to (2.3).

Moreover, we also have the same uniform estimates as (2.8) by repeating the proofs above
provided σ = 1 in (2.6). By noting the compact embedding H1+i(T) ↪→↪→ Ci,λ(T) (0 < λ <
1
2 ), i = 1, 2, we establish the convergent results as follows, for a subsequence which is not
relabeled,

ρ2
δ ⇀ ρ2, in H3(T),

Vδ ⇀ V, in H2(T),

ρ2
δ → ρ2, in C2,λ(T),

Vδ → V, in C1,λ(T),

δ ln ρ4
δ → 0, in H3(T).

(2.9)

These formulas imply

ρ4
δ(ln ρ4

δ)xxx ⇀ ρ4(ln ρ4)xxx, in L2(T),

ρ4
δ(ln ρ4

δ)
2
xx ⇀ ρ4(ln ρ4)2xx, in L2(T),

ρ4
δ(ln ρ4

δ)xx ⇀ ρ4(ln ρ4)xx, in L2(T).

(2.10)

On one hand,

ρ4
δ(ln ρ4

δ)xxx ⇀ ρ4(ln ρ4)xxx, in D ′(T),

ρ4
δ(ln ρ4

δ)
2
xx ⇀ ρ4(ln ρ4)2xx, in D ′(T),

ρ4
δ(ln ρ4

δ)xx ⇀ ρ4(ln ρ4)xx, in D ′(T).

(2.11)

Since the proof of (2.11) is similar to but easier than that of (4.11)–(4.13) in the following
Proposition 4.1, we omit the details here for the sake of brevity. On the other hand, we check
the L2-boundedness by employing (1.5)–(1.6), (2.8) and the embedding H3(T) ↪→ W 2,∞(T).

‖ρ4
δ(ln ρ4

δ)xxx‖L2(T) = ‖2ρ2
δ(ρ

2
δ)xxx + 2(ρ2

δ)x(ρ2
δ)xx − 32ρ2

δ(ρδ)x(ρδ)xx‖L2(T)

≤ C(‖ρ2
δ‖L∞(T)‖ρ2

δ‖H3(T) + ‖(ρ2
δ)x‖L∞(T)‖ρ2

δ‖H2(T)

+ ‖ρ2
δ‖L∞(T)‖(ρδ)x(ρδ)xx‖L2(T)) ≤ C,

‖ρ4
δ(ln ρ4

δ)
2
xx‖L2(T) = ‖4(ρ2

δ)
2
xx − 32(ρ2

δ)x(ρδ)x(ρδ)xx‖L2(T)

≤ C(‖(ρ2
δ)xx‖2

L4(T) + ‖(ρ2
δ)x‖L∞(T)‖(ρδ)x(ρδ)xx‖L2(T)) ≤ C,

‖ρ4
δ(ln ρ4

δ)xx‖L2(T) ≤ C(‖ρ2
δ‖L∞(T)‖ρ2

δ(ln ρ4
δ)xx‖L2(T) ≤ C,
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where C is a constant independent of δ. These complete the proof of (2.10).
Passing to the limit δ → 0 in the weak form of (2.3), we complete the proof.

3 Uniform Estimates

Suppose that ρ0 and C(x) satisfy the assumption of Proposition 2.1 for k = 1. We use
Proposition 2.1 iteratively to obtain a sequence of approximate solution (ρk, Vk) ∈ (H3(T))2

(k = 1, 2, · · · , N). From now on, C (or Cε) is supposed to be a constant dependent only on
T, ‖C( · )‖L∞(T), ‖ρ4

0(ln ρ4
0 − 1) + 1‖L1(T) (and ε).

Lemma 3.1∫
T

[ρ4
k(ln ρ4

k − 1) + 1]dx + 2ε4τ

∫
T

[|(ρ2
k)xxx|2 + |(ρk)x(ρk)xx|2 + |(ρ 2

3
k )x|6]dx

+
ε2

2
τ

∫
T

|ρ2
k(ln ρ4

k)xx|2dx + 4τ

∫
T

|(ρ2
k)x|2dx + τ

∫
T

ρ8
kdx

≤
∫

T

[ρ4
k−1(ln ρ4

k−1 − 1) + 1]dx + Cτ

∫
T

ρ4
kdx. (3.1)

Proof Using (2.6) and (2.7) with σ = 1, we have

1
τ

∫
T

[ρ4
δ(ln ρ4

δ − 1) + 1]dx + 2ε4

∫
T

[|(ρ2
δ)xxx|2 + |(ρδ)x(ρδ)xx|2 + |(ρ 2

3
δ )x|6]dx

+
ε2

2

∫
T

ρ4
δ(ln ρ4

δ)
2
xxdx + δ

∫
T

[|(ln ρ4
δ)xxx|2dx + | ln ρ4

δ |2]dx + 4
∫

T

|(ρδ
2)x|2dx +

∫
T

ρδ
8dx

≤ 1
τ

∫
T

[ρ4
k−1(ln ρ4

k−1 − 1) + 1]dx + C

∫
T

ρδ
4dx. (3.2)

From (2.9), one has (ρ
2
3
δ )x ⇀ (ρ

2
3
k )x in L6(T) and (ρδ)x(ρδ)xx ⇀ (ρk)x(ρk)xx in L2(T) by [25,

Proposition 6.1]. Therefore, letting δ → 0 in (3.2), we complete the proof.

Define the piecewise function in t in the following sense, ρτ (t, x)
�
= ρk(x), Vτ (t, x)

�
= Vk(x)

for x ∈ T, t ∈ ((k − 1)τ, kτ ] (k = 1, 2, · · · , N). We now obtain the uniform estimates in τ for
ρτ , Vτ .

Proposition 3.1

‖ρτ‖L∞(0,T ;L4(T))∩L8(QT ) + ‖(ρ2
τ )x‖L2(QT ) + ‖ε2(ρ2

τ )xxx‖L2(QT )

+ ‖ε2(ρ
2
3
τ )x‖L6(QT ) + ‖ε2(ρτ )x(ρτ )xx‖L2(QT ) + ‖ερ2

τ (ln ρ4
τ )xx‖L2(QT ) ≤ C, (3.3)

‖ρ2
τ‖L2(0,T ;H1(T)) + ‖ε2ρ2

τ‖L2(0,T ;H3(T)) + ‖ε2ρ
2
3
τ ‖L6(0,T ;W 1,6(T))

+ ‖ε 1
3 ρ2

τ‖L12(0,T ;L∞(T)) + ‖ε 4
3 ρ4

τ (ln ρ4
τ )xx‖

L
12
7 (0,T ;L2(T))

≤ C, (3.4)

‖ε 8
3 ρ4

τ (ln ρ4
τ )2xx‖L

3
2 (0,T ;L1(T))

+ ‖ε 7
3 ρ4

τ (ln ρ4
τ )xxx‖

L
12
7 (0,T ;L2(T))

≤ C, (3.5)

‖ρ2
τ‖L24(0,T ;L4(T)) + ‖Vτ‖L6(0,T ;H2(T)) ≤ Cε. (3.6)

Proof Using the Gronwall’s inequality and Lemma 3.1, we could establish (3.3). Obviously,
we have from (3.3) that

‖ρ2
τ‖L2(0,T ;H1(T)) + ‖ε2ρ2

τ‖L2(0,T ;H3(T)) + ‖ε2ρ
2
3
τ ‖L6(0,T ;W 1,6(T)) ≤ C. (3.7)
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Using the Gagliardo-Nirenberg inequality, we have

‖ρ2
τ‖L∞(T) ≤ C‖ρ2

τ‖
1
6
H3(T)‖ρ2

τ‖
5
6
L2(T),

‖ρ2
τ‖L4(T) ≤ C‖ρ2

τ‖
1
12
H3(T)‖ρ2

τ‖
11
12
L2(T).

This formula and the Hölder inequality, together with (3.3) and (3.7), imply

‖ε 1
3 ρ2

τ‖L12(0,T ;L∞(T)) ≤ C‖ε2ρ2
τ‖

1
6
L2(0,T ;H3(T))‖ρ2

τ‖
5
6
L∞(0,T ;L2(T)) ≤ C,

‖ε 1
6 ρ2

τ‖L24(0,T ;L4(T)) ≤ C‖ε2ρ2
τ‖

1
12
L2(0,T ;H3(T))‖ρ2

τ‖
11
12
L∞(0,T ;L2(T)) ≤ C.

Then

‖ε 4
3 ρ4

τ (ln ρ4
τ )xx‖

L
12
7 (0,T ;L2(T))

≤ C‖ερ2
τ (ln ρ4

τ )xx‖L2(QT )‖ε 1
3 ρ2

τ‖L12(0,T ;L∞(T)) ≤ C.

Obviously, we have ‖ρ4
τ‖L6(0,T ;L∞(T)) ≤ Cε. Consequently, by the standard elliptic estimates,

one has ‖Vτ‖L6(0,T ;H2(T)) ≤ Cε. This completes the proof of (3.4) and (3.6). Now we are left
to investigate (3.5). First, we establish some estimates about ρ2

τ . Employing the Gagliardo-
Nirenberg inequality, one has

‖(ρ2
τ )x‖L2(T) ≤ C‖ρ2

τ‖
1
3
H3(T)‖ρ2

τ‖
2
3
L2(T),

‖(ρ2
τ )xx‖L2(T) ≤ C‖ρ2

τ‖
2
3
H3(T)‖ρ2

τ‖
1
3
L2(T),

‖(ρ2
τ )xx‖L∞(T) ≤ C‖ρ2

τ‖
5
6
H3(T)‖ρ2

τ‖
1
6
L2(T).

These inequalities and (3.3)–(3.4) imply

‖ε 2
3 (ρ2

τ )x‖L6(0,T ;L2(T)) ≤ C‖ε2ρ2
τ‖

1
3
L2(0,T ;H3(T))‖ρ2

τ‖
2
3
L∞(0,T ;L2(T)) ≤ C, (3.8)

‖ε 4
3 (ρ2

τ )xx‖L3(0,T ;L2(T)) ≤ C‖ε2ρ2
τ‖

2
3
L2(0,T ;H3(T))‖ρ2

τ‖
1
3
L∞(0,T ;L2(T)) ≤ C, (3.9)

‖ε 5
3 (ρ2

τ )xx‖
L

12
5 (0,T ;L∞(T))

≤ C‖ε2ρ2
τ‖

5
6
L2(0,T ;H3(T))‖ρ2

τ‖
1
6
L∞(0,T ;L2(T)) ≤ C. (3.10)

Observe

ρ4
τ (ln ρ4

τ )2xx = 16[ρ2
τ (ρτ )2xx + (ρτ )4x − 2ρτ (ρτ )2x(ρτ )xx]

= 16[ρ2
τ (ρτ )2xx + (ρτ )4x + 2ρτ (ρτ )2x(ρτ )xx] − 64ρτ (ρτ )2x(ρτ )xx

= 4(ρ2
τ )2xx − 64ρτ(ρτ )2x(ρτ )xx, (3.11)

ρ4
τ (ln ρ4

τ )xxx = 2ρ2
τ (ρ2

τ )xxx − 6(ρ2
τ )x(ρ2

τ )xx + 16(ρ2
τ)x(ρτ )2x

= 2ρ2
τ (ρ2

τ )xxx + 2(ρ2
τ )x(ρ2

τ )xx − 8(ρ2
τ )x[(ρ2

τ )xx − 2(ρτ )2x]

= 2ρ2
τ (ρ2

τ )xxx + 2(ρ2
τ )x(ρ2

τ )xx − 16ρτ(ρ2
τ )x(ρτ )xx. (3.12)

Thus one has

‖ε 8
3 ρ4

τ (ln ρ4
τ )2xx‖L

3
2 (0,T ;L1(T))

≤ 4‖ε 4
3 (ρ2

τ )xx‖2
L3(0,T ;L2(T)) + 32‖ε 2

3 (ρ2
τ )x‖L6(0,T ;L2(T))‖ε2(ρτ )x(ρτ )xx‖L2(QT ) ≤ C.
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In view of (3.3)–(3.4), it follows that

‖ε 7
3 ρ4

τ (ln ρ4
τ )xxx‖

L
12
7 (0,T ;L2(T))

≤ 32‖ε 1
3 ρ2

τ‖L12(0,T ;L∞(T))(‖ε2(ρ2
τ )xxx‖L2(QT ) + ‖ε2(ρτ )x(ρτ )xx‖L2(QT ))

+ 2‖ε 2
3 (ρ2

τ )x‖L6(0,T ;L2(T))‖ε 5
3 (ρ2

τ )xx‖
L

12
5 (0,T ;L∞(T))

≤ C.

So, (3.5) follows.

4 Weak Existence

Using a compactness argument and Aubin-Lions lemma (see [27]), we can prove the following
convergent results for ρτ , Vτ (see Proposition 4.1) which will complete the proof of Theorem
1.1. Let ∂τ

t ρ4
τ (t, x) be the difference quotient of ρ4

τ .

Proposition 4.1 For any fixed ε > 0, there exists a subsequence of {(ρτ , Vτ , ∂τ
t ρ4

τ )}τ>0 as
τ → 0, which is not relabeled, such that

ρ2
τ ⇀ ρ2, in L2(0, T ; H3(T)), (4.1)

ρτ
∗
⇀ ρ ≥ 0, in L∞(0, T ; L4(T)), (4.2)

Vτ ⇀ V, in L6(0, T ; H2(T)), (4.3)

ρ4
τ → ρ4, in L

3
2 (0, T ; C2,λ(T))

(
∀ 0 < λ <

1
2

)
, (4.4)

Vτ → V, in L
3
2 (0, T ; H2(T)), (4.5)

∂τ
t ρ4

τ ⇀ ∂tρ
4, in L

3
2 (0, T ; H−3(T)), (4.6)

ρ4
τ (ln ρ4

τ )xxx ⇀ ρ4(ln ρ4)xxx, in L
12
7 (0, T ; L2(T)), (4.7)

ρ4
τ (ln ρ4

τ )2xx ⇀ ρ4(ln ρ4)2xx, in L
3
2 (0, T ; H−1(T)), (4.8)

ρ4
τ (ln ρ4

τ )xx ⇀ ρ4(ln ρ4)xx, in L
12
7 (0, T ; L2(T)). (4.9)

Proof By Proposition 3.1, we deduce that there exists ρ ≥ 0 satisfying (4.1)–(4.3). Let
0 < τ < 1 be fixed. Then for any 0 < h < τ , we have

‖πhρ4
τ − ρ4

τ‖
3
2

L
3
2 (0,T−h;H−3(T))

= h

N−1∑
k=1

‖ρ4
k+1 − ρ4

k‖
3
2
H−3(T),

where (πhf)(t) = f(t + h), and for any 1 ≤ k ≤ N − 1,

∥∥∥ρ4
k+1 − ρ4

k

τ

∥∥∥
H−3(T)

≤ C(‖ρ4
k+1(ln ρ4

k+1)xxx‖L2(T) + ‖ρ4
k+1(ln ρ4

k+1)
2
xx‖L1(T)

+ ‖ρ4
k+1(ln ρ4

k+1)xx‖L1(T) + ‖(ρ4
k+1)x + ρ4

k+1(Vk+1)x‖L1(T)). (4.10)

Consequently, it follows from (3.1) that ‖πhρ4
τ − ρ4

τ‖L
3
2 (0,T−h;H−3(T))

≤ Cεh
2
3 . We deduce from

(ρ4
τ )xxx = 2ρ2

τ (ρ2
τ )xxx+6(ρ2

τ )x(ρ2
τ )xx, (3.8) and Proposition 3.1 that ‖(ρ4

τ )xxx‖
L

3
2 (0,T ;L2(T))

≤ Cε

and hence ‖ρ4
τ‖L

3
2 (0,T ;H3(T))

≤ Cε. Thus we establish (4.4) by Aubin-Lions lemma and the

compact embedding H3(T) ↪→↪→ C2,λ(T) (0 < λ < 1
2 ). Furthermore, one has (4.5) from (4.4)

by standard elliptic estimates. The estimate (4.10) implies ‖∂τ
t ρ4

τ‖L
3
2 (0,T ;H−3(T))

≤ Cε. The
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Mean Value Theorem of differentials and (4.4) show that ∂τ
t ρ4

τ ⇀ ∂tρ
4 in D ′(QT ). Therefore

(4.6) is proved.
We next prove (4.7)–(4.9). Obviously, (3.3) and (3.5) yields

ρ4
τ (ln ρ4

τ )xxx ⇀ J, in L
12
7 (0, T ; L2(T)),

ρ4
τ (ln ρ4

τ )2xx ⇀ K, in L
3
2 (0, T ; H−1(T)),

ρ4
τ (ln ρ4

τ )xx ⇀ L, in L
12
7 (0, T ; L2(T)).

Hence the proof is completed, provided that

ρ4
τ (ln ρ4

τ )xxx ⇀ ρ4(ln ρ4)xxx, in D ′(QT ), (4.11)

ρ4
τ (ln ρ4

τ )2xx ⇀ ρ4(ln ρ4)2xx, in D ′(QT ), (4.12)

ρ4
τ (ln ρ4

τ )xx ⇀ ρ4(ln ρ4)xx, in D ′(QT ). (4.13)

Now we check these. Firstly, it follows from (4.4) and (a − b)2 ≤ |a2 − b2| (∀ a, b > 0) that

‖ρ2
τ − ρ2‖2

L3(0,T ;L∞(T)) = ‖(ρ2
τ − ρ2)2‖

L
3
2 (0,T ;L∞(T))

≤ ‖ρ4
τ − ρ4‖

L
3
2 (0,T ;L∞(T))

→ 0, (4.14)

‖ρτ − ρ‖2
L6(0,T ;L∞(T)) = ‖(ρτ − ρ)2‖L3(0,T ;L∞(T)) ≤ ‖ρ2

τ − ρ2‖L3(0,T ;L∞(T)) → 0. (4.15)

Applying the Gagliardo-Nirenberg inequality, one has

‖(ρ2
τ − ρ2)x‖L6(T) ≤ C‖ρ2

τ − ρ2‖ 1
3
H3(T)‖ρ2

τ − ρ2‖ 2
3
L∞(T),

‖(ρ2
τ − ρ2)xx‖L3(T) ≤ C‖ρ2

τ − ρ2‖ 2
3
H3(T)‖ρ2

τ − ρ2‖ 1
3
L∞(T).

These estimates and Proposition 3.1 imply the convergent results

‖(ρ2
τ − ρ2)x‖

L
18
7 (0,T ;L6(T))

≤ C‖ρ2
τ − ρ2‖ 1

3
L2(0,T ;H3(T))‖ρ2

τ − ρ2‖ 2
3
L3(0,T ;L∞(T))

≤ Cε‖ρ2
τ − ρ2‖ 2

3
L3(0,T ;L∞(T)) → 0, (4.16)

‖(ρ2
τ − ρ2)xx‖

L
9
4 (0,T ;L3(T))

≤ C‖ρ2
τ − ρ2‖ 2

3
L2(0,T ;H3(T))‖ρ2

τ − ρ2‖ 1
3
L3(0,T ;L2(T))

≤ Cε‖ρ2
τ − ρ2‖ 1

3
L3(0,T ;L∞(T)) → 0. (4.17)

Secondly, we infer from (3.3) that

‖(ρ2
τ )x(ρτ )xx‖

L
24
13 (0,T ;L2(T))

≤ 2‖ρτ‖L24(0,T ;L∞(T))‖(ρτ )x(ρτ )xx‖L2(QT ) ≤ Cε, (4.18)

‖(ρτ )x‖L6(0,T ;L4(T)) =
3
2
‖(ρ 2

3
τ )xρ

1
3
τ ‖L6(0,T ;L4(T))

≤ C‖(ρ 2
3
τ )x‖L6(QT )‖ρτ‖

1
3
L∞(0,T ;L4(T)) ≤ Cε. (4.19)

Thus

‖(ρτ )2x(ρτ )xx‖
L

3
2 (0,T ;L

4
3 (T))

≤ ‖(ρτ )x‖L6(0,T ;L4(T))‖(ρτ )x(ρτ )xx‖L2(QT ) ≤ Cε. (4.20)

In light of (4.1), (4.14), (4.16) and (4.17) it suffice to verify that

(ρ2
τ )2x ⇀ (ρ2)2x, (ρ2

τ )2xx ⇀ (ρ2)2xx, ρ2
τ (ρ2

τ )xx ⇀ ρ2(ρ2)xx, in D ′(QT ), (4.21)

ρ2
τ (ρ2

τ )xxx ⇀ ρ2(ρ2)xxx, (ρ2
τ )x(ρ2

τ )xx ⇀ (ρ2)x(ρ2)xx, in D ′(QT ) (4.22)
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and also

(ρ2
τ )x(ρτ )xx ⇀ (ρ2)xρxx, (ρτ )x(ρ2

τ )xx ⇀ ρx(ρ2)xx, in D ′(QT ) (4.23)

with the help of (4.15) and (4.19). The first convergence result of (4.23) is worthy of being
proved. In fact, for any ϕ ∈ D(QT ),

∣∣∣
∫

QT

[(ρ2
τ )x(ρτ )xx − (ρ2)xρxx]ϕdxdt

∣∣∣
≤

∣∣∣
∫

QT

[(ρ2
τ )x − (ρ2)x](ρτ )xxϕdxdt

∣∣∣ +
∣∣∣
∫

QT

[(ρτ )xx − ρxx](ρ2)xϕdxdt
∣∣∣ = J1 + J2.

Integrating by parts, we have from (4.15)–(4.17) and (4.1) that

J1 =
∣∣∣
∫

QT

[((ρ2
τ )xx − (ρ2)xx)ϕ + ((ρ2

τ )x − (ρ2)x)ϕx](ρτ )xdxdt
∣∣∣

≤
∣∣∣
∫

QT

((ρ2
τ )xx − (ρ2)xx)ϕ(ρτ )xdxdt

∣∣∣ +
∣∣∣
∫

QT

((ρ2
τ )x − (ρ2)x)ϕx(ρτ )xdxdt

∣∣∣
≤ C‖(ρτ )x‖L6(0,T ;L4(T))(‖(ρ2

τ )xx − (ρ2)xx‖
L

9
4 (0,T ;L3(T))

+ ‖(ρ2
τ )x − (ρ2)x‖

L
18
7 (0,T ;L6(T))

) → 0,

J2 =
∣∣∣
∫

QT

(ρτ − ρ)[(ρ2)xϕ]xxdxdt
∣∣∣ ≤ C‖ρ2‖L2(0,T ;H3(T))‖ρτ − ρ‖L6(0,T ;L∞(T))

≤ Cε‖ρτ − ρ‖L6(0,T ;L∞(T)) → 0.

Note that 6(ρτ )2x(ρτ )xx = [(ρτ )x(ρ2
τ )xx − (ρ2

τ )x(ρτ )xx]x. Then one has from (4.23) that

(ρτ )2x(ρτ )xx ⇀ ρ2
xρxx, in D ′(QT ). (4.24)

Hence, in view of (4.20), we get

(ρτ )2x(ρτ )xx ⇀ ρ2
xρxx, in L

3
2 (0, T ; L

4
3 (T)). (4.25)

Additionally, (4.18) and (4.23) imply

(ρ2
τ )x(ρτ )xx ⇀ (ρ2)xρxx, in L

24
13 (0, T ; L2(T)). (4.26)

Employing (4.15), (4.25) and (4.26), we see that

ρτ (ρ2
τ )x(ρτ )xx ⇀ ρ(ρ2)xρxx, in D ′(QT ), (4.27)

ρτ (ρτ )2x(ρτ )xx ⇀ ρρ2
xρxx, in D ′(QT ). (4.28)

Finally, recalling (3.11)–(3.12) and observing ρ4
τ (ln ρ4

τ )xx = 2ρ2
τ (ρ2

τ )xx − 2(ρ2
τ )2x, we deduce

(4.11)–(4.13) directly from (4.21), (4.22), (4.27) and (4.28).

Proof of Theorem 1.1 Using Proposition 2.1 and Proposition 4.1, it is easy to com-
plete the proof of Theorem 1.1. The initial value is satisfied in the sense of H−3(T) since
W 1, 3

2 (0, T ; H−3(T)) ↪→ C([0, T ]; H−3(T)).



276 X. Q. Chen, L. Chen and C. Y. Sun

5 Semiclassical Limit

Let us turn to discuss the semiclassical limit of the weak solution (ρ, V ) obtained in Theorem
1.1. Since the solution depends on ε, to be precise, we relabel it as (ρε, Vε) throughout this
section. Then we could establish the uniform estimates in ε.

Lemma 5.1

‖ρ2
ε‖L∞(0,T ;L2(T))∩L2(0,T ;H1(T)) + ‖ε 7

3 ρ4
ε(ln ρ4

ε)xxx‖
L

12
7 (0,T ;L2(T))

+ ‖ε 8
3 ρ4

ε(ln ρ4
ε)

2
xx‖L

3
2 (0,T ;H−1(T))

+ ‖ε 4
3 ρ4

ε(ln ρ4
ε)xx‖

L
12
7 (0,T ;L2(T))

≤ C. (5.1)

Furthermore,

‖ρ4
ε‖L

24
13 (0,T ;W 1, 12

11 (T))∩L12(0,T ;L
6
5 (T))

+ ‖Vε‖
L

24
13 (0,T ;H2(T))

+ ‖∂tρ
4
ε‖L

3
2 (0,T ;H−3(T))

≤ C. (5.2)

Proof In view of the weakly lower semi-continuity of norm, we obtain (5.1) from Proposi-
tions 3.1 and 4.1. It follows from the Gagliardo-Nirenberg inequality and (5.1) that ‖ρ2

ε‖L
12
5 (T)

≤
C‖ρ2

ε‖
1
12
H1(T)‖ρ2

ε‖
11
12
L2(T). Hence

‖ρ2
ε‖L24(0,T ;L

12
5 (T))

≤ C‖ρ2
ε‖

1
12
L2(0,T ;H1(T))‖ρ2

ε‖
11
12
L∞(0,T ;L2(T)) ≤ C.

Consequently, we deduce from the Hölder inequality and (5.1) that

‖(ρ4
ε)x‖

L
24
13 (0,T ;L

12
11 (T))

= 2‖ρ2
ε(ρ

2
ε)x‖

L
24
13 (0,T ;L

12
11 (T))

≤ C‖ρ2
ε‖L24(0,T ;L

12
5 (T))

‖(ρ2
ε)x‖L2(QT ) ≤ C.

Thus ‖ρ4
ε‖L

24
13 (0,T ;W 1, 12

11 (T))
≤ C. As a result, using standard elliptic estimates and the embed-

ding W 1, 12
11 (T) ↪→ L∞(T), we find that Vε is uniformly bounded in L

24
13 (0, T ; H2(T)). Therefore

in light of (1.8) and (5.1), it suffices to verify that ‖∂tρ
4
ε‖L

3
2 (0,T ;H−3(T))

≤ C.

Proof of Theorem 1.2 From (5.2), we deduce that there exists n ≥ 0 satisfying (1.9). Also
invoking (5.2) we infer from the compact embedding W 1, 12

11 (T) ↪→↪→ C0,λ(T) (∀ 0 < λ < 1
12 ) and

Aubin-Lions lemma; we obtain (1.10) and hence (1.12). Applying standard elliptic estimates,
(1.10) implies (1.11). In addition, we have the convergence results (1.13)–(1.15) directly from
(5.1). Letting ε → 0 in (1.8), we complete the proof with the help of Lemma 5.1.

6 Summary

We summarize in this section some new points (both results and methods) in this paper
and some interesting problems (physically or mathematically motivated) in this area.

6.1 New Points

(1) New a priori estimates. The only information from the system is from entropy inequality
which was first derived in [25] with only 6th order term. In order to investigate the existence
and semiclassical limit, the first hand estimates from entropy like [25] did are not enough.
Without any additional information, we are able to derive more estimates only by the Sobolev
type inequalities, especially the uniform estimates in ε for classical limit.
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(2) Global existence of weak solution for the whole system. As stated in the introduction, the
leading order equation was studied in [25], where they introduced the main entropy inequality.
But the results obtained there are relatively rough, which means that further estimates are
possible by some delicate Sobolev inequalities and consequently relatively better solutions can
be obtained. We get a priori estimates for the whole system, including lower order terms and
the coupling with Poisson. With more analysis, making use of various versions of the 6th order
term, we are able to prove the global existence of weak solution for the whole system, including
6th order, 4th order and classical parts.

(3) Semiclassical limits. No any semiclassical limit result is obtained for 6th order system
so far. It is a physically interesting topic describing the relation between classical and quantum
models. Mathematically, it reveals the connection between second order PDEs and their higher
order corrections. By new a priori estimates stated above, we are able to show the semiclassical
limit in the weak sense.

6.2 Some interested future problems

(1) Convergence rate estimates. Semiclassical limit shows that the quantum corrected drift
diffusion model converges to the classical drift diffusion model, as discussed in [4] for O(ε2)
order correction and the results in this paper for O(ε4) order correction, both are in the case
of “good” boundary conditions. While a further interesting problem is the convergence rate
analysis, whether the difference between O(ε2) corrected solution and the limiting solution can
be controlled by O(ε2)? And going even further, whether the asymptotic relation holds for the
solutions of quantum corrected drift diffusion. Mathematically, this kind of results will show
the relations between higher order PDEs and their corresponding lower order ones.

(2) Boundary layer analysis. In most cases, we do not have “good” enough boundary
conditions. More interesting problems are the boundary layer analysis. Physically, quantum
effect usually only occurs in a very thin layer in real devices, such as inversion layers in MOS
transistors. Thus, to derive the layer equations for the limiting profile, the reduced problem
is the first step in this direction. Then matched asymptotic analysis and uniform estimates
hopefully will give the mathematical analysis.
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[8] Degond, P., Méhats, F. and Ringhofer, C., Quantum energy-transport and drift-diffusion models, J. Stat.
Phys., 118, 2005, 625–665.
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