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Abstract The authors discuss one type of general forward-backward stochastic differential
equations (FBSDEs) with Itô’s stochastic delayed equations as the forward equations and
anticipated backward stochastic differential equations as the backward equations. The
existence and uniqueness results of the general FBSDEs are obtained. In the framework
of the general FBSDEs in this paper, the explicit form of the optimal control for linear-
quadratic stochastic optimal control problem with delay and the Nash equilibrium point
for nonzero sum differential games problem with delay are obtained.
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1 Introduction

1.1 Background of the problem

It is well-known that linear-quadratic (LQ) problem is one of the most important class of
optimal control and game problems. And the LQ problem was studied by linking to a linear
fully coupled forward-backward stochastic differential equation (FBSDE). The FBSDE can also
be encountered in the optimization problem when we apply stochastic maximum principle and
in mathematic finance when we consider large investor (see [2]).

Hu, Peng [3] and Peng, Wu [7] obtained the existence and uniqueness results for FBSDE
under some monotone conditions. Yong [11] let the method in [3, 7] be systematic and called
it the “continuation method”. Then Wu [9, 10] discussed the application of FBSDEs in LQ
problem and maximum principle for optimal control problem of FBSDE systems. Yu and Ji
[12] used the results of FBSDE to study one kind of LQ nonzero-sum stochastic differential
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game problem. In the previous results, the FBSDE is of the form⎧⎪⎪⎨⎪⎪⎩
dxt = b(t, xt, yt, zt)dt+ σ(t, xt, yt, zt)dBt,

−dyt = f(t, xt, yt, zt)dt− ztdBt,

x0 = a, yT = Φ(xT )

with the classical Itô’s stochastic differential equation (SDE) as the state equation and backward
stochastic differential equation (BSDE) as a dual equation in the control system which is also
called Hamilton system in optimal control theory.

However, the study of various natural and social phenomena shows that the future devel-
opment of many processes depends not only on their present state but also on their previous
history. Such processes can be described mathematically by using the stochastic delayed differ-
ential equations (SDDEs), such as the following form:{

dxt = b(t, xt, xt−δ)dt+ σ(t, xt, xt−δ)dBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

where ϕ : [−δ, 0] → R
n is the initial path of x and δ ≥ 0 is the time delay. This kind of SDDE

can be encountered in population growth problem, economics, biology, automatics and other
areas of human activity. More examples and applications in the related fields can be found in
[1, 4, 5].

A stochastic control system whose state function is described by the solution of SDDE is
called delayed system. Øksendal and Sulem [6] discussed a certain class of stochastic control
systems with delay and they gave the sufficient conditions for the stochastic maximum principle
of this kind of control system. However, to study the delayed optimal control system, it is
natural to introduce the adjoint equation which is a new type of BSDE as following:⎧⎨⎩−dyt = f(t, yt, zt, yt+δ, zt+δ)dt− ztdBt, t ∈ [0, T ],

yt = ξt, zt = ηt, t ∈ [T, T + δ].

Here ξ( · ), η( · ) are two integral functions as the terminal conditions of y, z respectively. Re-
cently, Peng and Yang [8] discussed this kind of BSDE which is called anticipated BSDE. Under
some proper assumptions, they obtained the existence and uniqueness of solution for anticipated
BSDE.

So it is necessary to explore the following general FBSDE:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dxt = b(t, xt, yt, zt, xt−δ)dt+ σ(t, xt, yt, zt, xt−δ)dBt, t ∈ [0, T ],

−dyt = f(t, xt, yt, zt, yt+δ, zt+δ)dt− ztdBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

yt = ξt, zt = ηt, t ∈ [T, T + δ].

Here forward SDE is with delay, BSDE is anticipated, and they form a type of general fully
coupled FBSDE.

In the next section, we deal with this kind of general FBSDE and get the existence and
uniqueness results of the solution. And then, in Section 3, we study an LQ stochastic optimal
control problem with delay. Using the solution of the general FBSDE, we give the explicit
unique optimal control for this problem. In the last section, we continue to study the LQ
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nonzero sum stochastic differential game problem with delay which is more complicated than
the control problem. Using our general FBSDE, we get the Nash equilibrium point for the game
problem. Our paper is the first attempt to study this type of general FBSDE and apply it to
stochastic optimal control and game problem with delay to the authors’ knowledge.

1.2 Notations

Let {Bt}t≥0 be a d-dimensional Brownian motion on a probability space (Ω,F , P ). And let
{Ft}t≥0 be the natural filtration of {Bt}, where F0 contains all P -null sets of F . 0 < T < +∞
is the time horizon. If x belongs to R

n, |x| denotes its Euclidean norm. We will denote by
〈 · , · 〉 the inner product. And the following notations will be used throughout our paper:

C[−δ, 0]n :=
{
ϕt : [−δ, 0] → R

n is continuous and sup
−δ≤t≤0

|ϕt| < +∞
}
,

L2(FT ; Rm) := {ϕ is R
m-valuedFT -measurable random variable s.t. E[ϕ2] < +∞},

L2
F(0, T ; Rn) :=

{
ϕt, 0 ≤ t ≤ T, is an Ft-adapted stochastic process s.t.

E

∫ T

0

|ϕt|2dt < +∞
}
.

2 The General Forward-Backward Differential Equations

Assume that for all t ∈ [0, T ],

b : Ω × [0, T ]× R
n × R

m × R
m×d × L2(Fs; Rn) → L2(Ft; Rn),

σ : Ω × [0, T ]× R
n × R

m × R
m×d × L2(Fs; Rn) → L2(Ft; Rn×d),

f : Ω × [0, T ]× R
n × R

m × R
m×d × L2(Fr; Rm) × L2(Fr′ ; Rm×d) → L2(Ft; Rm),

where s ∈ [−δ, t] and r, r′ ∈ [t, T + δ].
Then we consider the following general forward-backward stochastic differential equation

(FBSDE) with forward equation being SDDE and backward equation being anticipated BSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dxt = b(t, xt, yt, zt, xt−δ)dt+ σ(t, xt, yt, zt, xt−δ)dBt, t ∈ [0, T ],

−dyt = f(t, xt, yt, zt, yt+δ, zt+δ)dt− ztdBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

yT = Φ(xT ), yt = ξt, t ∈ (T, T + δ],

zt = ηt, t ∈ [T, T + δ]

(2.1)

with Φ : Ω × R
n → R

m and ϕt ∈ C[−δ, 0]n, ξt ∈ L2
F(T, T + δ; Rm), ηt ∈ L2

F(T, T + δ; Rm×d).
Given an m× n full-rank matrix G, we will use the notations

u =

⎛⎝xy
z

⎞⎠ ,

⎛⎝x·−δ

y·+δ

z·+δ

⎞⎠ =

⎛⎝αβ
γ

⎞⎠ , A(t, u, α, β, γ) =

⎛⎝−Gτf(t, u, β, γ)
Gb(t, u, α)
Gσ(t, u, α)

⎞⎠ ,

where Gσ = (Gσ1, · · ·, Gσd).

Definition 2.1 A triple of process (X,Y, Z) : Ω×[−δ, T ]×[0, T+δ]×[0, T+δ] → R
n×R

m×
R

m×d is called an adapted solution to FBSDE (2.1) if (X,Y, Z) ∈ L2
F(−δ, T ; Rn) × L2

F(0, T +
δ; Rm) × L2

F(0, T + δ; Rm×d) and satisfies FBSDE (2.1).
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We assume that

(H2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(i) There exists a constant C > 0, s.t.

|A(t, u, α, β, γ) −A(t, u′, α′, β′, γ′)|
≤ C(|u− u′| + |α− α′| + E

Ft [|β − β′| + |γ − γ′|]) for all u, u′, α, α′, β, β′, γ, γ′;

(ii) for each u, α, β, γ, A( · , u, α, β, γ) is in L2
F(0, T );

(iii) Φ(x) is in L2(FT ; Rm) and it is uniformly Lipschitz with respect to x ∈ R
n.

(H2.2)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ T

0

〈A(t, ut, αt, βt, γt) −A(t, ut, αt, βt, γt), u− u〉dt

≤
∫ T

0

[−β1|Gx̂t|2 − β2(|Gτ ŷt|2 + |Gτ ẑt|2)]dt,

〈Φ(x) − Φ(x), G(x− x)〉 ≥ μ1|Gx̂|2

for all u = (x, y, z), u = (x, y, z), x̂ = x − x, ŷ = y − y, ẑ = z − z, where β1, β2 and μ1 are
given nonnegative constants with β1 + β2 > 0, β2 + μ1 > 0. Moreover, we have β1 > 0, μ1 > 0
(resp. β2 > 0) when m > n (resp. n > m).

Theorem 2.1 Let (H2.1) and (H2.2) hold. Then there exists a unique adapted solution
(X,Y, Z) to the general FBSDE (2.1).

Proof Since the initial path of x in [−δ, 0] and the terminal conditions and trajectories of
y, z in [T, T + δ] are given in advance, we only need to consider (xt, yt, zt), 0 ≤ t ≤ T.

Uniqueness First we prove the uniqueness. For 0 ≤ t ≤ T, let ut = (xt, yt, zt) and
ut = (xt, yt, zt) be two solutions of (2.1). We set ût = (xt − xt, yt − yt, zt − zt) = (x̂t, ŷt, ẑt).

Applying the Itô’s formula to 〈Gx̂t, ŷt〉, we have

E〈Φ(xT ) − Φ(xT ), Gx̂T 〉

= E

∫ T

0

〈A(t, ut, αt, βt, γt) −A(t, ut, αt, βt, γt), ût〉dt

≤ −β1E

∫ T

0

〈Gx̂t, Gx̂t〉dt− β2E

∫ T

0

(〈Gτ ŷt, G
τ ŷt〉 + 〈Gτ ẑt, G

τ ẑt, 〉)dt.

By (H2.2), we also have

β1E

∫ T

0

〈Gx̂t, Gx̂t〉dt+ β2E

∫ T

0

(〈Gτ ŷt, G
τ ŷt〉 + 〈Gτ ẑt, G

τ ẑt, 〉)dt+ μ1E〈Gx̂T , Gx̂T 〉 ≤ 0.

We first treat the case where m > n. Then β1 > 0, μ1 > 0, 〈Gx̂t, Gx̂t〉 ≡ 0. In this case, we
have x̂t ≡ 0. Thus xt ≡ xt. Then from the uniqueness of anticipated BSDE (see [8]), it follows
that yt ≡ yt, zt ≡ zt.

Now we discuss the second case where m < n, then β2 > 0, 〈Gτ ŷt, G
τ ŷt〉 ≡ 0. In this case,

we have yt ≡ yt. Applying the Itô’s formula to ŷt ≡ 0, it follows that
∫ T

0
|ẑt|dt = 0 which

implies that zt ≡ zt. Finally, from the uniqueness of SDDE (see [4, 5]), it follows that xt ≡ xt.
Similarly to the above two cases, the result can be obtained easily in the case m = n.
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Remark 2.1 From the proof process of uniqueness, (H2.2) can be relaxed as

(H2.2)′

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ T

0

〈A(t, ut, αt, βt, γt) −A(t, ut, αt, βt, γt), u − u〉dt

≤
∫ T

0

[−β1|Gx̂t|2 − β2|Gτ ŷt|2]dt,

〈Φ(x) − Φ(x), G(x − x)〉 ≥ 0,

where β1, β2 are given nonnegative constants with β1+β2 > 0. Moreover, we require that β1 > 0
(resp. β2 > 0), when m > n (resp. n > m).

The proof of existence is more complicated. We will analyze different cases according to
different dimensions of x and y respectively.

First case If m > n, then β1 > 0, μ1 > 0. We consider the following family of generalized
FBSDEs with parameter ε ∈ [0, 1]:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dxε
t = [εb(t, uε

t, x
ε
t−δ) + φt]dt+ [εσ(t, uε

t, x
ε
t−δ) + ψt]dBt, t ∈ [0, T ],

−dyε
t = [(1 − ε)β1Gx

ε
t + εf(t, uε

t, y
ε
t+δ, z

ε
t+δ) + ρt]dt− zε

tdBt, t ∈ [0, T ],

xε
t = ϕt, t ∈ [−δ, 0],

yε
T = εΦ(xε

T ) + (1 − ε)Gxε
T + θ, yε

t = ξt, t ∈ (T, T + δ],

zε
t = ηt, t ∈ [T, T + δ],

(2.2)

where φ, ψ, ρ ∈ L2
F(0, T ) with values in R

n,Rn×d and R
m respectively, and θ ∈ L2(FT ; Rm).

Obviously, when ε = 1 the existence of solution for equation (2.2) implies that for equation
(2.1). From the existence and uniqueness of solutions for SDDE and anticipated BSDE, when
ε = 0, equation (2.2) has a uniqueness solution. In order to prove Theorem 2.1, we give the
following priori estimate for the existence interval of (2.2) with respect to ε ∈ [0, 1].

Lemma 2.1 We assume m > n, (H2.1) and (H2.2). If for some ε0 ∈ [0, 1) there exists a
solution (xε0 , yε0 , zε0) to (2.2), then there exists a positive constant c0 > 0 independent of ε0,
such that for each c ∈ [0, c0] there exists a solution (xε0+c, yε0+c, zε0+c) to generalized FBSDE
(2.2) for ε = ε0 + c.

Proof Since for each ϕt ∈ C[−δ, 0]n, θ ∈ L2(FT ; Rm) and (φ, ψ, ρ) ∈ L2
F(0, T ; Rn×R

n×d ×
R

m), ε0 ∈ [0, 1), there exists a (unique) solution to (2.2), thus for each triple us = (xs, ys, zs) ∈
L2
F(−δ, T ; Rn) × L2

F(0, T + δ; Rm) × L2
F(0, T + δ; Rm×d), there exists a unique triple Us =

(Xs, Ys, Zs) ∈ L2
F(−δ, T ; Rn) × L2

F (0, T + δ; Rm) × L2
F (0, T + δ; Rm×d) satisfying the following

FBSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = [ε0b(t, Ut, Xt−δ) + cb(t, ut, xt−δ) + φt]dt

+[ε0σ(t, Ut, Xt−δ) + cσ(t, ut, xt−δ) + ψt]dBt, t ∈ [0, T ],

−dYt = [(1 − ε0)β1GXt + ε0f(t, Ut, Yt+δ, Zt+δ)

+c(−β1Gxt + f(t, ut, yt+δ, zs+δ)) + ρt]dt− ZtdBt, t ∈ [0, T ],

Xt = ϕt, t ∈ [−δ, 0],
YT = ε0Φ(XT ) + cΦ(xT ) + (1 − ε0)GXT − cGxT + θ, Yt = ξt, t ∈ (T, T + δ],

Zt = ηt, t ∈ [T, T + δ].



284 L. Chen and Z. Wu

We desire to prove that the mapping defined by

Iε0+c(u) = U : L2
F(−δ, T ; Rn) × L2

F(0, T + δ; Rm) × L2
F(0, T + δ; Rm×d)

→ L2
F(−δ, T ; Rn) × L2

F(0, T + δ; Rm) × L2
F(0, T + δ; Rm×d)

is a contraction.
Let u = (x, y, z) ∈ L2

F(−δ, T ; Rn) × L2
F(0, T + δ; Rm) × L2

F (0, T + δ; Rm×d) and U =
(X,Y , Z) = Iε0+c(u). We set û = (x̂, ŷ, ẑ) = (x − x, y − y, z − z), Û = (X̂, Ŷ , Ẑ) = (X −
X,Y − Y , Z − Z). Applying the Itô’s formula to 〈GX̂t, Ŷt〉 yields

[μ1ε0 + (1 − ε0)]E|GX̂T |2 + β1E

∫ T

0

|GX̂s|2ds+ ε0β2E

∫ T

0

(|Gτ Ŷs|2 + |Gτ Ẑs|2)ds

≤ C1cE|X̂T |2 + C1cE|x̂T |2 + C1c
[
E

∫ T

0

(|x̂t|2 + |ŷt|2 + |ẑt|2)dt

+ E

∫ T

0

(|x̂t−δ|2 + |ŷt+δ|2 + |ẑt+δ|2)dt
]

+ C1cE

∫ T

0

(|X̂t|2 + |Ŷt|2 + |Ẑt|2)dt

≤ C1cE|X̂T |2 + C1cE|x̂T |2 + C1c
[
E

∫ T

0

|x̂t|2dt+ E

∫ T+δ

0

(|ŷt|2 + |ẑt|2)dt
]

+ C1cE

∫ T

0

(|X̂t|2 + |Ŷt|2 + |Ẑt|2)dt. (2.3)

For (Ŷ , Ẑ), in virtue of the estimate of anticipated BSDE, we can derive

E

∫ T

0

(|Ŷt|2 + |Ẑt|2)dt ≤ C1c
[
E

∫ T

0

|xt|2dt+ E

∫ T+δ

0

(|ŷt|2 + |ẑt|2)dt
]

+ C1cE|x̂T |2 + C1E

∫ T

0

|X̂t|2dt+ C1E|X̂T |2dt, (2.4)

where C1 is a constant depending on G, β1, T and Lipschitz’s constant and can be changed line
by line. If μ1 > 0, then μ1ε0 + (1− ε0) ≥ μ, μ = min(1, μ1) > 0. Combining the estimates (2.3)
and (2.4), we have

E

∫ T

−δ

|X̂t|2dt+ E

∫ T+δ

0

(|Ŷt|2 + |Ẑt|2)dt+ E|X̂T |2

≤ Kc
(
E

∫ T

−δ

|x̂t|2dt+ E

∫ T+δ

0

(|ŷt|2 + |ẑt|2)dt+ E|x̂T |2
)
,

where constant K depends only on β1, μ, C1, T . Now we choose c0 = 1
2K . It is clear that, for

each fixed c ∈ [0, c0], the mapping Iε0+c is a contraction in the sense that

E

∫ T

−δ

|X̂t|2dt+ E

∫ T+δ

0

(|Ŷt|2 + |Ẑt|2)dt+ E|X̂T |2

≤ 1
2

(
E

∫ T

−δ

|x̂t|2dt+ E

∫ T+δ

0

(|ŷt|2 + |ẑt|2)dt+ E|x̂T |2
)
.

It follows immediately that this mapping has a unique fixed point, U ε0+c = (Xε0+c, Y ε0+c,
Zε0+c), which is the solution to (2.2) for ε = ε0 + c. The proof is completed.
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Second Case If m < n, then β2 > 0. We consider the following FBSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxε
t = [(1 − ε)β2(−Gτyε

t ) + εb(t, uε
t, x

ε
t−δ) + φt]dt

+[(1 − ε)β2(−Gτzε
t ) + εσ(t, uε

t, x
ε
t−δ) + ψt]dBt, t ∈ [0, T ],

−dyε
t = [εf(t, uε

t, y
ε
t+δ, z

ε
t+δ) + ρt]dt− zε

tdBt, t ∈ [0, T ],

xε
t = ϕt, t ∈ [−δ, 0],

yε
T = εΦ(xε

T ) + θ, yε
t = ξt, t ∈ (T, T + δ],

zε
t = ηt, t ∈ [T, T + δ].

(2.5)

When ε = 0, we know that equation (2.5) has a unique solution. Our purpose is to derive that
there exists a solution to (2.5) when ε = 1, and then we can get the existence of solution to
(2.1). Similarly to Lemma 2.1, we have the following lemma.

Lemma 2.2 Suppose that m < n, and (H2.1), (H2.2) hold. If there exists some ε0 ∈ [0, 1)
such that (2.5) has a solution (xε0 , yε0, zε0), then there is a positive constant c0 independent of
ε0 such that for each c ∈ [0, c0], (xε0+c, yε0+c, zε0+c) also satisfies the equation (2.5).

Third Case m = n. By (H2.2), we only need to consider
( i ) If β1 > 0, β2 ≥ 0, μ1 > 0, we can have the same result like Lemma 2.1;
(ii) If β1 ≥ 0, β2 > 0, μ1 ≥ 0, the same result as Lemma 2.2 can be obtained.
Now we can proceed to give the proof of the existence for Theorem 2.1.
Existence We first treat the case where m > n. When ε = 0, equation (2.2) has a unique

solution. It then follows from Lemma 2.1 that there exists a positive constant c0 depending on
Lipschitz constants, β1, G and T , such that, for each c ∈ [0, c0], equation (2.2) has a unique
solution for ε = c. We can repeat this process for N times with 1 ≤ Nc0 < 1 + c0. It then
follows that FBSDE (2.2) has a unique solution for ε = 1.

In the case where m < n and m = n, our desired result can be obtained similarly. The proof
of Theorem 2.1 is complete.

Remark 2.2 If b and σ in FBSDE (2.1) are independent of zt and β2 > 0 in (H2.2)′, then,
similarly, we can prove that FBSDE (2.1) has a unique solution (xt, yt, zt) under (H2.1) and
(H2.2)′.

Moreover, for the application in optimal control and game problem, we consider the following
kind of general FBSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dxt = b(t, xt, Byt, Dzt, xt−δ)dt+ σ(t, xt, Byt, Dzt, xt−δ)dBt, t ∈ [0, T ],

−dyt = f(t, xt, yt, zt, yt+δ, zt+δ)dt− ztdBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

yT = Φ(xT ), yt = ξt, t ∈ (T, T + δ],

zt = ηt, t ∈ [T, T + δ],

(2.6)

where B,D are k × n matrixes. For notational simplification, we assume the dimension of
Brownian motion d = 1. (x, y, z) ∈ R

n ×R
n ×R

n, and b, f, σ have appropriate dimensions. We
also use the notations

u =

⎛⎝xy
z

⎞⎠ ,

⎛⎝x·−δ

y·+δ

z·+δ

⎞⎠ =

⎛⎝αβ
γ

⎞⎠ , A(t, u, α, β, γ) =

⎛⎝−f(t, u, β, γ)
b(t, u, α)
σ(t, u, α)

⎞⎠ ,
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and impose the following monotone conditions:

(H2.3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ T

0

〈A(t, ut, αt, βt, γt) −A(t, ut, αt, βt, γt), u− u〉dt

≤
∫ T

0

[−ν1|x̂t|2 − ν2|Bŷt +Dẑt|2]dt,

〈Φ(x) − Φ(x), G(x − x)〉 ≥ 0

for all u = (x, y, z), u = (x, y, z), x̂ = x − x, ŷ = y − y, ẑ = z − z, where ν1 ≥ 0, ν2 > 0. We
also assume that

(H2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) There exists a constant C > 0, s.t.

|A(t, u, α, β, γ) −A(t, u′, α′, β′, γ′)|
≤ C(|u− u′| + |α− α′| + E

Ft [|β − β′| + |γ − γ′|]) for all u, u′, α, α′, β, β′, γ, γ′;

(ii) for each u, α, β, γ, A(·, u, α, β, γ) is in L2
F(0, T );

(iii) Φ(x) is in L2(FT ; Rm) and it is uniformly Lipschitz with respect to x ∈ R
n;

(iv) ∀x, α, |l(t, x,By,Dz, α) − l(t, x,By′, Dz′, α)| ≤ K[|B(y − y′) +D(z − z′)|],
l = b, σ, K > 0.

Theorem 2.2 Let (H2.3) and (H2.4) hold. Then there exists a unique solution (xt, yt, zt)
satisfying the general FBSDE (2.6).

The proof method of Theorem 2.2 is combined that of Theorem 2.1 with that of Theorem
3.1 in [7]. We omit it.

3 Linear Quadratic Stochastic Optimal Control Problem with Delay

In this section, we consider the following linear control system with delay:{
dxt = (Atxt +Btxt−δ + Ctvt)dt+ (Dtxt + Etxt−δ + Ftvt)dBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],
(3.1)

where ϕ ∈ C[−δ, 0]n is deterministic function; vt (t ∈ [0, T ]) is an Ft-adapted square-integrable
process taking values in U ⊂ R

k (we call such vt admissible control and the set of admissible
control will be denoted by Uad); At, Bt, Ct, Dt, Et, Ft are bounded progressively measurable
matrix-valued processes with appropriate dimensions.

We introduce the classical quadratic optimal control cost function:

J(v( · )) =
1
2

E

[ ∫ T

0

(〈Rtxt, xt〉 + 〈Ntvt, vt〉)dt+ 〈QxT , xT 〉
]
, (3.2)

where Q is the FT -measurable nonnegative symmetric bounded matrix and Rt is n × n non-
negative symmetric bounded progressively measurable matrix-valued process, Nt is positive
symmetric bounded progressively measurable matrix-valued process with the dimension k × k

and the inverse N−1
t is also bounded.

Problem 3.1 Our problem is to find admissible control u( · ) such that

J(u( · )) = inf
v( · )

J(v( · )).
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For the above LQ optimal control problem with delay, we can get the explicit form of the
optimal control by virtue of the solution of the general FBSDE.

Theorem 3.1 The process

ut = −N−1
t (Cτ

t yt + F τ
t zt), t ∈ [0, T ] (3.3)

is the unique optimal control of Problem 3.1, where (xt, yt, zt) is the solution of the following
general FBSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = [Atxt +Btxt−δ − CtN
−1
t (Cτ

t yt + F τ
t zt)]dt

+[Dtxt + Etxt−δ − FtN
−1
t (Cτ

t yt + F τ
t zt)]dBt, t ∈ [0, T ],

−dyt = [Aτ
t yt +Dτ

t zt + E
Ft(Bτ

t+δyt+δ + Eτ
t+δzt+δ)

+Rtxt]dt− ztdBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

yT = QxT , yt = 0, t ∈ (T, T + δ],

zt = 0, t ∈ [T, T + δ].

(3.4)

Proof It is easy to verify that (3.4) satisfies assumptions (H2.3) and (H2.4). Then according
to Theorem 2.2, we know that the general FBSDE (3.4) has a unique solution (xt, yt, zt).

For each v( · ) ∈ Uad, we denote xv
t the corresponding trajectory of system (3.1). Then

J(v( · )) − J(u( · ))

=
1
2

E

[ ∫ T

0

(〈Rtx
v
t , x

v
t 〉 − 〈Rtxt, xt〉 + 〈Ntvt, vt〉 − 〈Ntut, ut〉)dt+ 〈Qxv

T , x
v
T 〉 − 〈QxT , xT 〉

]
=

1
2

E

[ ∫ T

0

(〈Rt(xv
t − xt), xv

t − xt〉 + 〈Nt(vt − ut), vt − ut〉 + 2〈Rtxt, x
v
t − xt〉

+ 2〈Ntut, vt − ut〉)dt+ 〈Q(xv
T − xT ), xv

T − xT 〉 + 2〈QxT , x
v
T − xT 〉

]
.

Applying the Itô’s formula to 〈xv
T −xT , yT 〉 and noticing the initial and terminal conditions,

we get

E〈xv
T − xT , yT 〉 = E

∫ T

0

(〈−Rtxt, x
v
t − xt〉 + 〈Ct(vt − ut), yt〉 + 〈Ft(vt − ut), zt〉)dt.

In fact, the above result is due to the following virtue of the initial and terminal conditions:

E

∫ T

0

[〈Bt(xv
t−δ − xt−δ), yt〉 − 〈EFt(Bτ

t+δyt+δ), xv
t − xt〉]dt

= E

∫ T

0

〈Bt(xv
t−δ − xt−δ), yt〉dt− E

∫ T+δ

δ

〈Bt(xv
t−δ − xt−δ), yt〉dt

= E

∫ δ

0

〈Bt(xv
t−δ − xt−δ), yt〉dt− E

∫ T+δ

T

〈Bt(xv
t−δ − xt−δ), yt〉dt

= 0.

Since Rt and Q are nonnegative, Nt is positive, we have

J(v( · )) − J(u( · )) ≥ E

∫ T

0

(〈Ntut, vt − ut〉 + 〈Ct(vt − ut), yt〉 + 〈F (vt − ut), zt〉)dt = 0.
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So ut = −N−1
t (Cτ

t yt + F τ
t zt) is an optimal control.

The method to prove the uniqueness of the optimal control is classical, which can also be
seen in [10]. For completeness and convenience of the readers, we give the details as follows.

We assume that u1( · ) and u2( · ) are both optimal controls, and the corresponding trajec-
tories are x1( · ) and x2( · ). It is easy to know the trajectories corresponding to u1( · )+u2( · )

2

are x1( · )+x2( · )
2 . Since Nt is positive, Rt and Q are nonnegative, we know that J(u1( · )) =

J(u2( · )) = λ ≥ 0, and from the parallelogram rule, we have

2λ = J(u1( · )) + J(u2( · ))

= 2J
(u1( · ) + u2( · )

2

)
+ E

[ ∫ T

0

(〈
Rt
x1

t − x2
t

2
,
x1

t − x2
t

2

〉
+

〈
Nt
u1

t − u2
t

2
,
u1

t − u2
t

2

〉)
dt

+
〈
Q
x1

T − x2
T

2
,
x1

T − x2
T

2

〉]
≥ 2λ+ E

∫ T

0

〈
Nt
u1

t − u2
t

2
,
u1

t − u2
t

2

〉
dt.

Because of Nt being positive, we have u1( · ) = u2( · ).

4 Linear Quadratic Nonzero Sum Stochastic Differential Games
with Delay

In this section, we study the linear-quadratic nonzero sum stochastic differential game prob-
lem with delay which is more complicated. For notational simplification, we assume the dimen-
sion of Brownian motion d = 1 and only consider the case of two players, which is similar to
that of n players.

The controlled system is⎧⎪⎪⎨⎪⎪⎩
dxv

t = (Atx
v
t +A1

tx
v
t−δ +B1

t v
1
t +B2

t v
2
t + φt)dt

+(Ctx
v
t + C1

t x
v
t−δ +D1

t v
1
t +D2

t v
2
t + ψt)dBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

(4.1)

where ϕ ∈ C[−δ, 0]n, φ, ψ ∈ L2
F(0, T ; Rn); v1

t and v2
t are admissible control process; At, A

1
t , B

1
t ,

B2
t , Ct, C

1
t , D

1
t , D

2
t are Ft-adapted matrix-valued bounded processes with appropriate dimen-

sions.
We denote J1(v( · )), J2(v( · )), v( · ) = (v1( · ), v2( · )), which are the cost functionals corre-

sponding to the players 1 and 2:

J1(v( · )) =
1
2

E

[ ∫ T

0

(〈R1
tx

v
t , x

v
t 〉 + 〈N1

t v
1
t , v

1
t 〉)dt+ 〈Q1xv

T , x
v
T 〉

]
,

J2(v( · )) =
1
2

E

[ ∫ T

0

(〈R2
tx

v
t , x

v
t 〉 + 〈N2

t v
2
t , v

2
t 〉)dt+ 〈Q2xv

T , x
v
T 〉

]
,

where Qi is FT -measurable nonnegative symmetric bounded matrix; Ri
t is Ft-adapted nonneg-

ative symmetric bounded matrix-valued process; N i
t is Ft-adapted positive symmetric bounded

matrix-valued process and the inverse (N i
t )

−1 is also bounded (i = 1, 2).

Problem 4.1 The problem is to look for admissible control (u1( · ), u2( · )) which is called
the Nash equilibrium point of the delayed game, such that

J1(u1( · ), u2( · )) ≤ J1(v1( · ), u2( · )), J2(u1( · ), u2( · )) ≤ J2(u1( · ), v2( · )).
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Theorem 4.1 (u1( · ), u2( · )) is a Nash equilibrium point for the above game Problem 4.1,
if and only if (u1( · ), u2( · )) has the form

(u1
t , u

2
t ) = (−(N1

t )−1[(B1
t )τy1

t + (D1
t )

τz1
t ],−(N2

t )−1[(B2
t )τy2

t + (D2
t )

τz2
t ]), t ∈ [0, T ],

with (xt, y
1
t , y

2
t , z

1
t , z

2
t ) being the solution of the following general FBSDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = {Atxt +A1
txt−δ −B1

t (N1
t )−1[(B1

t )τy1
t + (D1

t )
τz1

t ]

−B2
t (N2

t )−1[(B2
t )τy2

t + (D2
t )

τz2
t ] + φt}dt

+{Ctxt + C1
t xt−δ −D1

t (N
1
t )−1[(B1

t )τy1
t + (D1

t )
τz1

t ]

−D2
t (N2

t )−1[(B2
t )τy2

t + (D2
t )τz2

t ] + ψt}dBt, t ∈ [0, T ],

−dy1
t = [Aτ

t y
1
tC

τ
t z

1
t + E

Ft [(A1
t+δ)

τy1
t+δ + (C1

t+δ)
τz1

t+δ]

+R1
txt]dt− z1

t dBt, t ∈ [0, T ],

−dy2
t = [Aτ

t y
2
tC

τ
t z

2
t + E

Ft [(A2
t+δ)

τy2
t+δ + (C2

t+δ)
τz2

t+δ]

+R2
txt]dt− z2

t dBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

y1
T = Q1xT , y1

T = Q2xT , y1
t = y2

t = 0, t ∈ (T, T + δ],

z1
t = z2

t = 0, t ∈ [T, T + δ].

(4.2)

Proof From the definition of Nash equilibrium point and Theorem 3.1, we know that the
following three statements are equivalent:

( i ) (u1( · ), u2( · )) is a Nash equilibrium point for our game problem;
(ii) ui( · ) is an optimal control for the following control problem with delay (i = 1, 2)⎧⎪⎪⎨⎪⎪⎩

dxt = [Atxt +A1
txt−δ +Bi

tv
i
t +Bj

tu
j
t + φt]dt

+[Ctxt + C1
t xt−δ +Di

tv
i
t +Dj

tu
j
t + ψt]dBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

(4.3)

with the cost functional

Juj

(vi( · )) =
1
2

E

[ ∫ T

0

(〈Ri
txt, xt〉 + 〈N i

tv
i
t, v

i
t〉)dt+ 〈QixT , xT 〉

]
,

where j = 1, 2, but j �= i.

(iii) ui
t = −(N i

t )−1[(Bi
t)τyi

t + (Di
t)τzi

t], t ∈ [0, T ], and (xt, y
i
t, z

i
t) satisfies the following

general FBSDE (i = 1, 2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = [Atxt +A1
txt−δ +Bi

tu
i
t +Bj

tu
j
t + φt]dt

+[Ctxt + C1
t xt−δ +Di

tu
i
t +Dj

tu
j
t + ψt]dBt, t ∈ [0, T ],

−dyi
t = {Aτ

t y
i
t + Cτ

t z
i
t + E

Fs [(A1
t+δ)

τyi
t+δ + (C1

t+δ)
τzi

t+δ]

+Ri
txt}dt− zi

tdBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

yi
T = QixT , yi

t = 0, t ∈ (T, T + δ],

zi
t = 0, t ∈ [T, T + δ].

(4.4)



290 L. Chen and Z. Wu

Combining cases for i = 1 and i = 2, we can rewrite (4.4) as (4.2). Our desired result is
proved.

Remark 4.1 FBSDE (4.2) seems very complicated and it is not easy to get the existence
and uniqueness of its solution. However, if it has a unique solution, our game problem with
delay also has a unique Nash equilibrium point. For some particular cases, we can derive the
following results.

Theorem 4.2 (a) For the case that D1
t ≡ D2

t ≡ 0 in system (4.1) and for i = 1, 2, the
matricial process Bi

t(N i
t )−1(Bi

t)τ is independent of t satisfying

Bi
t(N

i
t )

−1(Bi
t)

τS = SBi
t(N

i
t )

−1(Bi
t)

τ , S = Aτ
t , C

τ
t , (A

1
t )

τ , (C1
t )τ .

Then

(u1
t , u

2
t ) = (−(N1

t )−1(B1
t )τy1

t ,−(N2
t )−1(B2

t )τy2
t ), t ∈ [0, T ]

is the unique Nash equilibrium point for the game Problem 4.1.
(b) For the case that B1

t ≡ B2
t ≡ 0 in system (4.1) and for i = 1, 2, the matricial process

Di
t(N i

t )−1(Di
t)τ is independent of t satisfying

Di
t(N

i
t )

−1(Di
t)

τS = SDi
t(N

i
t )

−1(Di
t)

τ , S = Aτ
t , C

τ
t , (A

1
t )

τ , (C1
t )τ .

Then

(u1
t , u

2
t ) = (−(N1

t )−1(D1
t )τz1

t ,−(N2
t )−1(D2

t )τz2
t ), t ∈ [0, T ]

is the unique Nash equilibrium point for the game Problem 4.1.

Proof We only prove (a). (b) can be proved by the similar method. Under the assumption
of (a), FBSDE (4.2) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = [Atxt +A1
txt−δ −B1

t (N1
t )−1(B1

t )τy1
t

−B2
t (N2

t )−1 · (B2
t )τy2

t + φt]dt+ (Ctxt + C1
t xt−δ + ψt)dBt, t ∈ [0, T ],

−dy1
t = {Aτ

t y
1
t + Cτ

t z
1
t + E

Ft [(A1
t+δ)

τy1
t+δ + (C1

t+δ)
τz1

t+δ] +R1
txt}dt

−z1
t dBt, t ∈ [0, T ],

−dy2
t = {Aτ

t y
2
t + Cτ

t z
2
t + E

Ft [(A2
t+δ)

τy2
t+δ + (C2

t+δ)
τz2

t+δ] +R2
txt}dt

−z2
t dBt, t ∈ [0, T ],

xt = ϕt, t ∈ [−δ, 0],

y1
T = Q1xT , y1

T = Q2xT , y1
t = y2

t = 0, t ∈ (T, T + δ],

z1
t = z2

t = 0, t ∈ [T, T + δ].

(4.5)

We set

Xt = xt,

Yt = B1
t (N1

t )−1(B1
t )τy1

t +B2
t (N2

t )−1(B2
t )τy2

t ,

Zt = B1
t (N1

t )−1(B1
t )τz1

t +B2
t (N2

t )−1(B2
t )τz2

t ,
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where (xt, y
1
t , y

2
t , z

1
t , z

2
t ) satisfies (4.5). By the commutation relation between matrix, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = [AtXt + A1
tXt−δ − Yt + φt]dt+ [CtXt + C1

t Xt−δ + ψt]dBt, t ∈ [0, T ],

−dYt = {Aτ
t Yt + Cτ

t Zt + E
Ft [(A1

t+δ)
τYt+δ + (C1

t+δ)
τZt+δ]

+[B1
t (N1

t )−1(B1
t )τR1

t +B2
t (N2

t )−1(B2
t )τR2

t ]Xt}dt− ZtdBt, t ∈ [0, T ],

Xt = ϕt, t ∈ [−δ, 0],

YT = [B1
t (N1

t )−1(B1
t )τQ1 +B2

t (N2
t )−1(B2

t )τQ2]XT , Yt = 0, t ∈ (T, T + δ],

Zt = 0, t ∈ [T, T + δ].

(4.6)

On the other hand, if (Xt, Yt, Zt) is the solution of the above equations, we can let xt = Xt in
(4.5). Then we get (y1

t , y
2
t , z

1
t , z

2
t ) from the following anticipated BSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dy1
t = {Aτ

t y
1
t + Cτ

t z
1
t + E

Ft [(A1
t+δ)

τy1
t+δ + (C1

t+δ)
τz1

t+δ] +R1
txt}dt

−z1
t dBt, t ∈ [0, T ],

−dy2
t = {Aτ

t y
2
t + Cτ

t z
2
t + E

Ft [(A2
t+δ)

τy2
t+δ + (C2

t+δ)
τz2

t+δ] +R2
txt}dt

−z2
t dBt, t ∈ [0, T ],

y1
T = Q1xT , y1

T = Q2xT , y1
t = y2

t = 0, t ∈ (T, T + δ],

z1
t = z2

t = 0, t ∈ [T, T + δ].

(4.7)

If we can prove that (Yt, Zt) is in the form

Yt = B1
t (N1

t )−1(B1
t )τy1

t +B2
t (N2

t )−1(B2
t )τy2

t ,

Zt = B1
t (N1

t )−1(B1
t )τz1

t +B2
t (N2

t )−1(B2
t )τz2

t ,

then we can assert that (4.5) has a solution. In order to prove that, we let

Y t = B1
t (N1

t )−1(B1
t )τy1

t +B2
t (N2

t )−1(B2
t )τy2

t ,

Zt = B1
t (N1

t )−1(B1
t )τz1

t +B2
t (N2

t )−1(B2
t )τz2

t .

Hence, we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−dY t = {Aτ
t Y t + Cτ

t Zt + E
Ft [(A1

t+δ)
τY t+δ + (C1

t+δ)
τZt+δ]

+[B1
t (N1

t )−1(B1
t )τR1

t + B2
t (N2

t )−1(B2
t )τR2

t ]Xt}dt− ZtdBt, t ∈ [0, T ],

Y T = [B1
t (N1

t )−1(B1
t )τQ1 +B2

t (N2
t )−1(B2

t )τQ2]XT , Y t = 0, t ∈ (T, T + δ],

Zt = 0, t ∈ [T, T + δ].

(4.8)

As a result of the uniqueness of the solution of the anticipated BSDE (see [8]), we have

Yt = Y t = B1
t (N1

t )−1(B1
t )τy1

t +B2
t (N2

t )−1(B2
t )τy2

t ,

Zt = Zt = B1
t (N1

t )−1(B1
t )τz1

t +B2
t (N2

t )−1(B2
t )τz2

t .

This implies that the existence and uniqueness of (4.5) is equivalent to the existence and
uniqueness of (4.6). It is easy to check that FBSDE (4.6) satisfies (H2.1) and (H2.2)′. From
Remark 2.2 we know that the general FBSDE (4.6) has a unique solution. So the general
FBSDE (4.5) has a unique solution. Combining Theorem 4.1, we prove that (a) holds.
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