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Abstract The author establishes operator-valued Fourier multiplier theorems on multi-
dimensional Hardy spaces Hp(Td; X), where 1 ≤ p < ∞, d ∈ N, and X is an AUMD Banach
space having the property (α). The sufficient condition on the multiplier is a Marcinkiewicz
type condition of order 2 using Rademacher boundedness of sets of bounded linear opera-
tors. It is also shown that the assumption that X has the property (α) is necessary when
d ≥ 2 even for scalar-valued multipliers. When the underlying Banach space does not have
the property (α), a sufficient condition on the multiplier of Marcinkiewicz type of order 2
using a notion of d-Rademacher boundedness is also given.
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1 Introduction

The aim of this paper is to establish operator-valued Fourier multiplier theorems on the
multi-dimensional Hardy spaces Hp(Td; X), where 1 ≤ p < ∞, d ∈ N, T = [0, 2π] and X is
a complex Banach space. Recall that the Hardy space Hp(Td; X) is the space of all functions
f ∈ Lp(Td; X) such that f̂(n) = 0 for all n = (n1, n2, · · · , nd) ∈ Zd \ Nd

0, where f̂(n) is the
Fourier coefficient of f given by

f̂(n) :=
∫ 2π

0

· · ·
∫ 2π

0

f(t1, · · · , td) e−i(n1t1+···+ndtd) dt1
2π

· · · dtd
2π

and N0 := N ∪ {0}. For n ≥ 0, we denote the function t → eint on T by en. Hp(Td; X)
is equipped with the induced norm ‖ · ‖p by Lp(Td; X) so that it becomes a Banach space.
A sequence (M(n))n∈Nd

0
⊂ L(X) is said to be a Fourier multiplier on Hp(Td; X), if for all

f ∈ Hp(Td; X), there exists a unique g ∈ Hp(Td; X) such that ĝ(n) = M(n)f̂(n) for all n ∈ Nd
0,

where L(X) is the space of all bounded linear operators on X . In this case we can find a
constant C > 0 independent of f such that ‖g‖p ≤ C‖f‖p by the closed graph theorem.

When X is an AUMD space (see [2]) and d = 1, an operator-valued Fourier multiplier
theorem on Hp(T; X) has been given in [4]: let X be an AUMD space and 1 ≤ p < ∞, let
(Mn)n≥0 ⊂ L(X) be such that the sets {Mn : n ≥ 0}, {nΔ1Mn : n ≥ 0} and {n2Δ2Mn : n ≥
0} are Rademacher bounded, then (Mn)n≥0 defines a Fourier multiplier on Hp(T; X), where
Δ1Mn := Mn+1 − Mn and Δ2Mn := Mn+2 − 2Mn+1 + Mn are the first derivative and the
second derivative of Mn, respectively. This is the operator-valued analogue of a remarkable
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result of Blower giving a characterization of the AUMD space in term of scalar-valued Fourier
multipliers on H1(T; X) (see [2]).

The aim of this paper is to extend the result in [4] to multi-dimensional Hardy spaces
Hp(Td; X). When the Banach space X has the property (α), the sufficient condition we give
is similar to that for Lp(Td; X) (see [3]): one requires that the partial derivatives of the multi-
plier satisfy a Macinkiewicz type condition of order 2 using the Rademacher boundedness (see
Theorem 2.2). We also show that the set of bounded operators on Hp(Td; X) obtained in this
way is Rademacher bounded in L(Hd(Td; X)) when the Rademacher boundedness assumption
on the multipliers is related to a fixed Rademacher bounded subset of L(X) (see Theorem 2.2).
This strengthens the result in the one dimensional case proved in [4] when X has the property
(α). We show that the property (α) is also necessary when considering such type of conditions
even for scalar-valued multipliers (see Theorem 2.3).

We also give a sufficient condition for multipliers on Hp(Td; X) without assuming that X
has the property (α). In this case, the sufficient condition we give involves a new notion of
boundedness concerning sequences of operators, we call it the d-Rademacher boundedness. We
see that when (M(n))n∈Nd

0
⊂ L(X) is d-Rademacher bounded, then it is also Rademacher

bounded, the converse implication is true when the underlying Banach space has the property
(α). In particular, we see that part of results obtained when X has the property (α) follow
from the general case.

The basic idea to study operator-valued Fourier multipliers on multi-dimensional Hardy
spaces Hp(Td; X) is the following observation. Let d > 1 and let M = M(n)n∈Nd

0
⊂ L(X)

be fixed. For fixed n1 ∈ N0, we let Nn1(n2, n3, · · · , nd) := M(n1, n2, · · · , nd) for nj ∈ N0

(2 ≤ j ≤ n). Then by the Fubini’s theorem, M defines a Fourier multiplier on Hp(Td; X) if and
only if the sequence (Nn1)n1≥0 defines a Fourier multiplier on Hp(T; Hp(Td−1; X)). Thus the
result for multi-dimensional Hardy spaces follows from an easy induction argument on d ∈ N

and the result when d = 1 proved in [4]. We notice that our result is even stronger than that
proved in [4].

The paper is organized as follows. In Section 2, we study the Fourier multipliers on
Hp(Td; X) when X has the property (α). In Section 3, we treat the case when X has not
necessarily the property (α).

2 Multipliers on Hp(Td; X) When X Has the Property (α)

The notion of Rademacher boundedness is fundamental in the study of operator-valued
Fourier multipliers on Lp spaces or Hp spaces (see [1, 4, 7, 11]). Let X be a Banach space.
A subset M of L(X) is said to be Rademacher bounded (see [1, 3–5, 7, 11]), if there exists

a constant C > 0, such that for all n ∈ N, Tj ∈ M and xj ∈ X , we have
∥∥∥ n∑

j=1

εjTjxj

∥∥∥
p
≤

C
∥∥∥ n∑

j=1

εjxj

∥∥∥
p

for some 1 ≤ p < ∞, where (εj)j≥1 are Rademacher functions on [0, 1] given by

εj(t) = sign(sin(2j−1πt)).
We let Rad be the linear span of εj . Then Rad ⊗ X is the space of all finite sums

∑
j≥1

εjxj ,

with xj ∈ X . For any 1 ≤ p < ∞, we let Radp(X) be the closed subspace of Lp(Ω; X) spanned
by Rad⊗X , that we equip with the induced norm. We recall that for any 1 ≤ p, q < ∞, the two
norms ‖ · ‖Radp(X) and ‖ · ‖Radq(X) are equivalent on Rad ⊗ X (see, e.g., [9, Theorem 1.e.13]).
Therefore we will simply denote Radp(X) by Rad(X). One immediate consequence of this fact
is that the Rademacher boundedness does not depend on the parameter 1 ≤ p < ∞ involved
in the definition. A sequence M = (Mn)n≥1 ⊂ L(X) is Rademacher bounded if and only if the

linear operator TM defined by TM

( ∑
j≥1

εjxj

)
=

∑
j≥1

εjMjxj on Rad(X) is bounded.

Next, we say that an X-valued martingale (gj)j≥1 is analytic if for any j ≥ 1, gj ∈ L1(Tj ; X)
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and there exist measurable functions Φj : Tj−1 → X such that

dgj(τ) = Φj(t1, · · · , tj−1) eitj , τ = (t1, · · · , tj) ∈ T
j . (2.1)

By definition, X is an AUMD Banach space if for some 1 ≤ p < ∞, there is a constant Kp > 0
such that for any X-valued analytic martingale (gj)j≥1, for any bounded sequence (αj)j≥1 of
complex numbers and for any integer n ≥ 1, we have∥∥∥ n∑

j=1

αj dgj

∥∥∥
Lp

≤ Kp sup
j≥1

|αj |
∥∥∥ n∑

j=1

dgj

∥∥∥
Lp

. (2.2)

This property does not depend on 1 ≤ p < ∞, and any UMD Banach space is AUMD. Indeed,
by definition, for any 1 < p < ∞, X is a UMD Banach space if and only if there is constant
Kp > 0 such that (2.2) holds for any X-valued martingale with respect to the filtration (Fj)j≥1,
where (Fj)j≥1 is the σ-algebra of Lebesgue measurable subsets of Tj . Any closed subspace of
an AUMD Banach space is AUMD, and the class of AUMD spaces includes L1-spaces. Indeed,
for any measure space Σ and for any 1 ≤ q < ∞, the space Lq(Σ; X) is AUMD provided that
X is AUMD.

A Banach space X is said to have the property (α), if there exists a constant C > 0 such
that for all n ∈ N, xi,j ∈ X and αi,j ∈ C, we have

∥∥∥ n∑
i,j=1

ε
(1)
i ε

(2)
j αi,jxi,j

∥∥∥
L2

≤ C sup
1≤i,j≤n

|αi,j |
∥∥∥ n∑

i,j=1

ε
(1)
i ε

(2)
j xi,j

∥∥∥
L2

,

where (ε(1)
j )j≥1 and (ε(2)

j )j≥1 are two independent sequences of Rademacher functions (see [10]).
We notice that the L2-norm used in the definition may be replaced by any Lp-norm whenever
1 ≤ p < ∞. Indeed, by the Kahane’s inequality (see [9, Theorem 1.e.13]), there exists a constant
Cp depending only on 1 ≤ p < ∞, such that

1
Cp

∥∥∥ ∑
j≥1

ε
(1)
j xj

∥∥∥
L2

≤
∥∥∥ ∑

j≥1

ε
(1)
j xj

∥∥∥
Lp

≤ Cp

∥∥∥ ∑
j≥1

ε
(1)
j xj

∥∥∥
L2

for all xj ∈ X , which implies that

1
C2

p

∥∥∥ n∑
i,j=1

ε
(1)
i ε

(2)
j xi,j

∥∥∥
L2

≤
∥∥∥ n∑

i,j=1

ε
(1)
i ε

(2)
j xi,j

∥∥∥
Lp

≤ C2
p

∥∥∥ n∑
i,j=1

ε
(1)
i ε

(2)
j xi,j

∥∥∥
L2

.

It was shown by Pisier [10] that when X has the property (α), then the sequence (ε(1)
i ε

(2)
j )i,j≥1

has the same behavior as a sequence of independent Rademacher functions (εi,j)i,j≥1, i.e., for
all 1 ≤ p < ∞, there exists a constant C > 0, such that

1
C

∥∥∥ n∑
i,j=1

ε
(1)
i ε

(2)
j xi,j

∥∥∥
Lp

≤
∥∥∥ n∑

i,j=1

εi,jxi,j

∥∥∥
Lp

≤ C
∥∥∥ n∑

i,j=1

ε
(1)
i ε

(2)
j xi,j

∥∥∥
Lp

for all n ∈ N and xi,j ∈ X . This implies in particular that when X has the property (α), and
(Ti,j)i,j≥1 ⊂ L(X) is Rademacher bounded, then for every 1 ≤ p < ∞, there exists a constant
C > 0 depending only on p and the sequence (Ti,j)i,j≥1, such that

∥∥∥ n∑
i,j=1

ε
(1)
i ε

(2)
j Ti,jxi,j

∥∥∥
Lp

≤ C
∥∥∥ n∑

i,j=1

ε
(1)
i ε

(2)
j xi,j

∥∥∥
Lp

(2.3)

for all xi,j ∈ X and n ∈ N. This observation is crucial in the proof of our main result in this
section.

We first recall the following known result proved in [4]. Our general result will follow from
it and an application of the Fubini’s theorem.
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Theorem 2.1 (see [4]) Let X be an AUMD space and let M = (Mn)n≥0 ⊂ L(X) be such
that the sets

{Mn : n ≥ 0}, {nΔ1Mn : n ≥ 0} and {n2Δ2Mn : n ≥ 0}

are Rademacher bounded subsets. Then M defines a Fourier multiplier on Hp(T; X) whenever
1 ≤ p < ∞.

To state our main result of this section, we need to introduce some notations. Let M =
(M(n))n∈Nd

0
⊂ L(X). For 1 ≤ j ≤ d and n ∈ Nd

0, we let

(D0
j )M(n) := M(n), (D1

j )M(n) := M(n + fj) − M(n)

be the partial derivative of M with respect to the j-th coordinate, where fj := (δj,h)1≤h≤d. We
define the second partial derivative of M with respect to the j-th coordinate by (D2

j )M(n) =
(D1

j )M(n + fj) − (D1
j )M(n). It is easy to verify that when 1 ≤ k, j ≤ d and αk, αj ∈ {0, 1, 2},

we have (Dαk

k )(Dαj

j M)(n) = (Dαj

j )(Dαk

k M)(n). Thus we can define the expression

( ∏
1≤j≤d

D
αj

j

)
M(n) := (Dαd

d D
αd−1
d−1 · · ·Dα1

1 )M(n)

without any confusion whenever αj ∈ {0, 1, 2} (1 ≤ j ≤ d). For n = (n1, n2, · · · , nd) ∈ Nd
0 and

α = (α1, α2, · · · , αd) ∈ {0, 1}d, we let nα := nα1
1 · · ·nαd

d .
Now we are ready to state the operator-valued Fourier multiplier theorem on Hp(Td; X)

when X has the property (α).

Theorem 2.2 Let X be an AUMD space having the property (α), 1 ≤ p < ∞ and let
M ⊂ L(X) be a Rademacher bounded subset. Then every sequence M = (M(n))n∈Nd

0
⊂ L(X)

satisfying
nα

( ∏
1≤j≤d

D
αj

j

)
M(n) ∈ M (2.4)

for αj ∈ {0, 1, 2} (1 ≤ j ≤ d) and n ∈ Nd
0, defines a Fourier multiplier on Hp(Td; X). Moreover,

if we denote by TM the corresponding bounded linear operator on Hp(Td; X), then the set
{TM : M = (M(n))n∈Nd

0
satisfies (2.4)} is Rademacher bounded in L(Hp(Td; X)).

We need the following lemma which is exactly Theorem 2.2 when d = 1. Theorem 2.2 will
follow from this lemma and an easy induction argument on d ∈ N. We notice that it strengthens
Theorem 2.1 when X has the property (α).

Lemma 2.1 Let X be an AUMD space having the property (α), 1 ≤ p < ∞ and let
M ⊂ L(X) be a Rademacher bounded subset. If we denote by TM the corresponding bounded
linear operator on Hp(T; X) given by Theorem 2.1 for M = (Mn)n≥0 ⊂ L(X) satisfying

Mn ∈ M, nΔ1Mn ∈ M, n2Δ2Mn ∈ M, (2.5)

whenever n ≥ 0, then the set {TM : M = (Mn)n≥0 satisfies (2.5)} is Rademacher bounded in
L(Hp(T; X)).

Proof For j ∈ N, let M (j) = (M (j)(k))k≥0 be a sequence in L(X) satisfying the condition
(2.5). We need to show that there exists a constant C > 0 depending only on M such that for
all fj ∈ Hp(T; X), we have ∥∥∥ ∑

j≥1

εjTM(j)fj

∥∥∥
Lp

≤ C
∥∥∥ ∑

j≥1

εjfj

∥∥∥
Lp

, (2.6)
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where TM(j) is the bounded linear operator on Hp(T; X) given by Theorem 2.1. By the Fubini’s
theorem, we have ∥∥∥ ∑

j≥1

εjTM(j)fj

∥∥∥
Lp

=
∥∥∥ ∑

k≥0

[∑
j≥1

εjM
(j)
k f̂j(k)

]
ek

∥∥∥
Lp

,

∥∥∥ ∑
j≥1

εjfj

∥∥∥
Lp

=
∥∥∥ ∑

k≥0

[∑
j≥1

εj f̂j(k)
]
ek

∥∥∥
Lp

.

Hence to show (2.6), it will suffice to show that the sequence (Sk)k≥0 ∈ L(Rad(X)) defined by

Sk

( ∑
j≥1

εjxj

)
=

∑
j≥1

εjM
(j)
k xj

defines a Fourier multiplier on Hp(T; Rad(X)). We notice that Rad(X) is an AUMD space
having the property (α) as X is an AUMD space having the property (α). Therefore, it will
suffice to verify that the sequences (Sk)k≥0, (kΔ1Sk)k≥0 and (k2Δ2Sk)k≥0 are Rademacher
bounded in L(Rad(X)) by Theorem 2.1. For the Rademacher boundedness of (Sk)k≥1, we need
to show that there exists a constant C > 0 such that for

∑
j≥1

εjxk,j ∈ Rad(X),

∥∥∥ ∑
k≥0

ε′kSk

(∑
j≥1

εjxk,j

)∥∥∥
Lp

≤ C
∥∥∥ ∑

k≥0

ε′k
∑
j≥1

εjxk,j

∥∥∥
Lp

or equivalently ∥∥∥ ∑
k≥0

∑
j≥1

ε′kεjM
(j)
k xk,j

∥∥∥
Lp

≤ C
∥∥∥ ∑

k≥0

∑
j≥1

ε′kεjxk,j

∥∥∥
Lp

, (2.7)

where (ε′k)k≥0 is another Rademacher function sequence independent of (εj)j≥1. (2.7) follows
from the Rademacher boundedness assumption of the set {M (j)

k : j ≥ 1, k ≥ 0} and inequality
(2.3). We have shown that (Sk)k≥0 is Rademacher bounded. Similar arguments show that the
sequences (kΔ1Sk)k≥0 and (k2Δ2Sk)k≥0 are also Rademacher bounded. This finishes the proof.

Proof of Theorem 2.2 When d = 1, the claim is just Lemma 2.1. Now assuming that
the statement is true for some d ∈ N, we are going to show that it remains true for d + 1.
To this end, we let M ⊂ L(X) be Rademacher bounded. By the induction hypothesis, each
N = (N(n))n∈Nd

0
⊂ L(X) such that

{
nα

( ∏
1≤j≤d

D
αj

j

)
N(n) : n ∈ N

d
0, αj ∈ {0, 1, 2}, 1 ≤ j ≤ d

}
⊂ M (2.8)

defines a Fourier multiplier on Hp(Td; X). Moreover, if we denote by TN the corresponding
bounded linear operator on Hp(Td; X), the set

M′ := {TN : N satisfies (2.8)}
is Rademacher bounded in L(Hp(Td; X)). Now let M = (M(n))n∈N

d+1
0

⊂ L(X) satisfy

{
nα

( ∏
1≤j≤d+1

D
αj

j

)
M(n) : n ∈ N

d+1
0 , αj ∈ {0, 1, 2}, 1 ≤ j ≤ d + 1

}
⊂ M. (2.9)

For fixed α1 ∈ {0, 1, 2} and n1 ∈ N0, we consider the sequence Nα1,n1 = (Nα1,n1(n))n∈Nd
0

given
by

Nα1,n1(n2, · · · , nd+1) = nα1
1 Dα1

1 M(n1, n2, · · · , nd+1), nj ∈ N0, 2 ≤ j ≤ d + 1.
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It is clear that Nα1,n1 satisfies condition (2.8) by assumption (2.9), and thus Nα1,n1 defines
a Fourier multiplier on Hp(Td; X) and TNα1,n1 ∈ M′. This implies that M defines a Fourier
multiplier on Hp(T; Hp(Td; X)) (which is the same as Hp(Td+1; X) by the Fubini’s theorem) by
the known result in the one dimensional case (see Theorem 2.2). Here we have used the fact that
the set M′ is Rademacher bounded. Let SM be the corresponding bounded linear operator on
Hp(Td+1; X). It remains to show that the set {SM : M satisfies (2.9)} is Rademacher bounded
in L(Hp(Td+1; X)). This follows from the fact that for M = (Mn)n∈N

d+1
0

satisfying (2.9) and
α1 ∈ {0, 1, 2}, n1 ∈ N0, the corresponding bounded linear operator TNα1,n1 on Hp(Td; X)
belongs to M′, and M′ is Rademacher bounded. Therefore, we can apply Lemma 2.1 on
Hp(T; Z) when Z is an AUMD space having the property (α) (we take Z = Hp(Td; X)). We
notice that when X is an AUMD space having the property (α), Hp(Td; X) is also an AUMD
space having the property (α). This completes the proof.

The next result shows that the assumption that X has the property (α) is necessary in
Theorem 2.2 when d ≥ 2 even for scalar-valued Fourier multipliers.

Theorem 2.3 Let X be a Banach space and 1 ≤ p < ∞. We assume that each sequence
M(m, n)m,n≥0 ⊂ C such that

sup
m,n≥0

α,β∈{0,1,2}

|mαnβΔα
1 Δβ

2M(m, n)| < ∞ (2.10)

defines a Fourier multiplier on Hp(T2; X). Then X has the property (α).

Proof Let M = M(m, n)m,n≥0 ⊂ C, and

η(M) := sup
m,n≥0

α,β∈{0,1,2}

|mαnβΔα
1 Δβ

2M(m, n)|.

If we denote by TM the bounded linear operator on Hp(Td; X) defined by M , then by the closed
graph theorem, there exists a constant C1 > 0 independent of M , such that ‖TM‖ ≤ C1η(M).
Let φ ∈ C∞

c (R2) be fixed such that φ(1, 1) = 1, 0 ≤ φ ≤ 1 and supp(φ) ⊂ [34 , 5
4 ]2. For k, j ≥ 0,

we let φk,j(s, t) := φ(2−ks, 2−jt) for s, t ∈ R. It is clear that φk,j ∈ C∞
c (R2) and the supports

of φk,j ’s are pairwisely disjoint. For any fixed choice of signs εk,j = ±1, we let ϕ(s, t) =∑
k,j≥0

εk,jφk,j(s, t). It is easy to see that ϕ is C∞ and the sequence M = (ϕ(k, j))k,j≥0 verifies

condition (2.10). By assumption, (ϕ(k, j))k,j≥0 defines a Fourier multiplier on Hp(T2; X).
Hence, there exists a constant C2 > 0 such that for every f ∈ Hp(T2; X), one has∥∥∥ ∑

k,j≥0

ϕ(k, j)f̂(k, j)eke′j
∥∥∥

Lp
≤ C2‖f‖Lp, (2.11)

where ek(s) = eiks and e′j(t) = eijt for (s, t) ∈ T2. Here we use the fact that there exists a
constant C > 0 independent of the εk,j ’s, such that η(M) ≤ C. For xk,j ∈ X , substituting
f =

∑
k,j≥0

e2ke′2j xk,j in (2.11), we deduce that

∥∥∥ ∑
k,j≥0

εk,jxk,je2ke′2j

∥∥∥
Lp

≤ C2

∥∥∥ ∑
k,j≥0

xk,je2ke′2j

∥∥∥
Lp

,

as it is clear that φ(2k, 2j) = εk,j . This is equivalent to say that∥∥∥ ∑
k,j≥0

αk,jxk,jεkε′j
∥∥∥

Lp
≤ C2

∥∥∥ ∑
k,j≥0

xk,jεkε′j
∥∥∥

Lp

for any |αk,j | ≤ 1 by the Pisier’s result (see [10]). Thus X has the property (α).
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Remark 2.1 In [12, Proposition 2], Zimmermann gave a Marcinkiewicz type condition of
order 1 for a scalar sequence to be a Fourier multiplier on Lp(T d; X) when X is a UMD space
with l.u.st. and 1 < p < ∞. It is not hard to verify that the Zimmermann’s result remains
true if we replace the assumption that X has l.u.st. by the weaker assumption that X has the
property (α). The same argument used in the proof of Theorem 2.3 shows that when d ≥ 2, the
assumption that X has the property (α) is also necessary in the corresponding Zimmermann’s
result.

In the last part of this section, we give an operator-valued Fourier multiplier theorem on
Hp(Rd; X). Let X be a Banach space. Given f ∈ L1(Rd; X), the Fourier transform Ff of
f is given by Ff(t) =

∫
R

f(ξ)e−iξ·tdξ (t ∈ Rd). The inverse Fourier transform is denoted by
F−1f for f ∈ L1(Rd; X). By definition, the Hardy space H1(Rd; X) is the closed subspace of
L1(Rd; X) consisting of all f such that Ff(t) = 0 for t ∈ Rd \ Rd

+. If 1 ≤ p < ∞, then we
denote by Hp(Rd; X) the closure of H1(Rd; X) ∩ Lp(Rd; X) in Lp(R; X).

Let S+ = S(Rd) ∩Hp(Rd), where S(Rd) is the Schwartz class of rapidly decreasing smooth
functions on Rd. Then an approximating argument shows that S+ is dense in Hp(Rd) (see
[8] for a similar argument). This implies that the tensor product S+ ⊗ X is a dense subspace
of Hp(Rd; X). Now let m : Rd

+ → L(X) be a bounded measurable function, m is said to
be a Fourier multiplier on Hp(Rd; X), if there exists a constant C > 0 such that for all f =
n∑

j=1

fj ⊗ xj ∈ S+ ⊗ X , we have ‖F−1(mFf)‖p ≤ C‖f‖p (note that each term F−1(mFfjxj)

makes sense as fj ∈ S+). In this case there exists a unique bounded linear operator Tm on
Hp(Rd; X) such that for all f ∈ S+ ⊗ X , we have Tmf = F−1(mFf).

In [8, Proposition 4.3], Le Merdy has shown that if 1 ≤ p < ∞ and m : R+ → C is a
bounded continuous function, then m defines a Fourier multiplier on Hp(R; X) if and only if for
each ε > 0, the sequence (m(jε))j≥0 is a Fourier multiplier on Hp(T; X) and the corresponding
bounded linear operators on Hp(T; X) are uniformly bounded for ε > 0. It is easy to verify
that the corresponding result for multi-dimensional Hardy spaces is still valid. This remark
together with Theorem 2.2 gives the following Fourier multiplier theorem on Hp(Td; X).

Theorem 2.4 Let X be an AUMD space having the property (α) and let 1 ≤ p < ∞. Then
each C2d-function m : Rd

+ → L(X) such that the set

{( d∏
j=1

x
αj

j

)( d∏
j=1

∂αj

∂x
αj

j

)
m(x1, · · · , xd) : xj ≥ 0, αj ∈ {0, 1, 2}, 1 ≤ j ≤ d

}

is Rademacher bounded, defines a Fourier multiplier on Hp(Rd; X).

3 The General Case

In this section, the Banach space X has not necessarily the property (α) when studying
Fourier multipliers on Hp(Td; X). Therefore, we need a stronger notion of Rademacher bound-
edness. A sequence (M(n))n∈Nd

0
⊂ L(X) is said to be d-Rademacher bounded, if for some

1 ≤ p < ∞, there exists a constant C > 0 such that for all xn ∈ X , we have∥∥∥ ∑
n=(n1,··· ,nd)∈Nd

0

ε(1)
n1

ε(2)
n2

· · · ε(d)
nd

M(n)xn

∥∥∥
Lp

≤ C
∥∥∥ ∑

n=(n1,··· ,nd)∈Nd
0

ε(1)
n1

ε(2)
n2

· · · ε(d)
nd

xn

∥∥∥
Lp

,

where (ε(j)
n )n≥0 (1 ≤ j ≤ d) are d sequences of Rademacher functions pairwisely independent.

It turns out that this notion is still independent of the choice of 1 ≤ p < ∞ by the Kahane’s
inequality (see [9, Theorem 1.e.13]).

We begin with a result concerning the relations between the Rademacher boundedness and
the d-Rademacher boundedness.
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Lemma 3.1 Let X be a Banach space, (M(n))n∈Nd
0
⊂ L(X) and let d ≥ 2. Then

(1) If (M(n))n∈Nd
0

is d-Rademacher bounded, then it is Rademacher bounded.
(2) If X has the property (α) and (M(n))n∈Nd

0
is Rademacher bounded, then it is d-Rade-

macher bounded.

Proof We only give the proof for the case d = 2, and the proof for the general case is similar.
Suppose that (M(m, n))m,n≥0 is 2-Rademacher bounded. Let (ε(1)

m )m≥0 and (ε(2)
n )n≥0 are two

independent sequences of Rademacher functions, and let (εm,n)m,n≥0 be another sequence of
Rademacher functions independent of (ε(1)

m )m≥0 and (ε(2)
n )n≥0. By the Kahane’s contraction

principle, for all s, t ∈ [0, 1] and xm,n ∈ X ,

∥∥∥ ∑
m,n≥0

εm,nM(m, n)xm,n

∥∥∥2

L2
≤ 4

∥∥∥ ∑
m,n≥0

ε(1)
m (s)ε(2)

n (t)εm,nM(m, n)xm,n

∥∥∥2

L2
.

Integrating both sides on [0, 1]2, we deduce by the Fubini’s theorem that

∥∥∥ ∑
m,n≥0

εm,nM(m, n)xm,n

∥∥∥2

L2

≤ 4
∫ 1

0

∫ 1

0

∫ 1

0

∥∥∥ ∑
m,n≥0

ε(1)
m (s)ε(2)

n (t)εm,n(u)M(m, n)xm,n

∥∥∥2

dudtds

= 4
∫ 1

0

∫ 1

0

∫ 1

0

∥∥∥ ∑
m,n≥0

ε(1)
m (s)ε(2)

n (t)εm,n(u)M(m, n)xm,n

∥∥∥2

dtdsdu

≤ 4C

∫ 1

0

∫ 1

0

∫ 1

0

∥∥∥ ∑
m,n≥0

ε(1)
m (s)ε2

n(t)εm,n(u)xm,n

∥∥∥2

dtdsdu

= 4C

∫ 1

0

∫ 1

0

∫ 1

0

∥∥∥ ∑
m,n≥0

ε(1)
m (s)ε2

n(t)εm,n(u)xm,n

∥∥∥2

dudtds

≤ 16C
∥∥∥ ∑

m,n≥0

εm,nxm,n

∥∥∥2

L2

for some constant C > 0 depending only on (M(m, n))m,n≥0 by the assumption. This shows
that (M(m, n))m,n≥0 is Rademacher bounded.

Conversely, assume that X has the property (α). It was shown by Pisier [10] that in this case,
the sequence (ε(1)

m ε
(2)
n )m,n≥0 has the same behavior as a sequence of independent Rademacher

functions (εm,n)m,n≥0, i.e., for all 1 ≤ p < ∞, there exists a constant C > 0, such that

1
C

∥∥∥ N∑
m,n=1

ε(1)
m ε(2)

n xm,n

∥∥∥
Lp

≤
∥∥∥ N∑

m,n=1

εm,nxm,n

∥∥∥
Lp

≤ C
∥∥∥ N∑

m,n=1

ε(1)
m ε(2)

n xm,n

∥∥∥
Lp

for all N ∈ N and xm,n ∈ X , where ε
(1)
m , ε

(2)
n and εm,n are as in the first part of the proof.

This implies in particular that when X has the property (α), and (Tm,n)m,n≥0 ⊂ L(X) is a
Rademacher bounded sequence, then it is also 2-Rademacher bounded. The proof is completed.

In [3], the authors have shown that the Rademacher boundedness is necessary for a sequence
to be a Fourier multiplier on Lp(Td; X). In the next result we show that the stronger condition
of d-Rademacher boundedness is also necessary for a sequence to be a Fourier multiplier on
Hp(Td; X).
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Proposition 3.1 Let X be a Banach space and let 1 ≤ p < ∞. Assume that the se-
quence (M(n))n∈Nd

0
⊂ L(X) defines a Fourier multiplier on Hp(Td; X). Then (M(n))n∈Nd

0
is

d-Rademacher bounded.

Proof For tj ∈ [0, 2π] (1 ≤ j ≤ d), we have by the Kahane’s inequality that∥∥∥ ∑
nj≥0

ε(1)
n1

· · · ε(d)
nd

M(n1, · · · , nd)xn1,··· ,nd

∥∥∥p

Lp

≤ 2p
∥∥∥ ∑

nj≥0

ε(1)
n1

· · · ε(d)
nd

en1,··· ,nd
(t1, · · · , td)M(n1, · · · , nd)xn1,··· ,nd

∥∥∥p

Lp

,

where ε
(j)
n (1 ≤ j ≤ d) are d sequences of independent Rademacher functions. Integrating on

both sides on [0, 2π]d, using the Fubini’s theorem and the assumption that (M(n))n∈Nd
0
⊂ L(X)

defines a Fourier multiplier on Hp(Td; X), we deduce that∥∥∥ ∑
nj≥0

ε(1)
n1

· · · ε(d)
nd

M(n1, · · · , nd)xn1,··· ,nd

∥∥∥p

Lp

≤ C
∥∥∥ ∑

nj≥0

ε(1)
n1

· · · ε(d)
nd

xn1,··· ,nd

∥∥∥p

Lp

for some constant C > 0 depending only on (M(n))n∈Nd
0
. The proof is completed.

Now we are ready to state the operator-valued Fourier multiplier theorem on Hp(Td; X)
when X has not necessarily the property (α).

Theorem 3.1 Let X be an AUMD space, 1 ≤ p < ∞ and let (M(n))n∈Nd
0
⊂ L(X) be such

that the sequences
(
n(α1,··· ,αd)

( d∏
j=1

Δαj

j

)
M(n)

)
n∈Nd

0

are d-Rademacher bounded for αj = 0, 1, 2

(1 ≤ j ≤ d). Then (M(n))n∈Nd
0

defines a Fourier multiplier on Hp(Td; X).

Proof We only give the proof for the case d = 2, and the proof for the general case is similar.
Let (M(m, n))m,n≥0 ⊂ L(X) be such that when α, β = 0, 1, 2, (mαnβ(Δα

1 Δβ
2 )M(m, n))m,n≥0

are 2-Rademacher bounded sequences.
By the Fubini’s theorem, the space Hp(T2; X) and the space Hp(T; Hp(T; X)) may be

naturally identified. To show that (M(m, n))m,n≥0 defines a Fourier multiplier on Hp(T2; X),
it will suffice to show that the sequence Mm ∈ L(Hp(T; X)) defines a Fourier multiplier on
Hp(T; Hp(T; X)), where Mm is defined by

Mm

( ∑
n≥0

xnen

)
:=

∑
n≥0

Mm,nxnen.

We notice that for fixed m ≥ 0, the sequence (Mm,n)n≥0 ⊂ L(X) verifies the sufficient condi-
tion of Theorem 2.1 by the assumptions and Lemma 3.1, thus defines a Fourier multiplier on
Hp(T; X). The space Hp(T; X) is still an AUMD space as X is an AUMD space. To show
that (Mm)m≥0 defines a Fourier multiplier on Hp(T; Hp(T; X)), it suffice to show that the sets
{Mm : m ≥ 0}, {mΔMm : m ≥ 0} and {m2Δ2Mm : m ≥ 0} are Rademacher bounded by
Theorem 2.1. In other words, we have to show that there exists a constant C > 0, such that
for

∑
n≥0

xm,nen ∈ Hp(T; X),

∥∥∥ ∑
m≥0

εm

∑
n≥0

Wm,nxm,nen

∥∥∥
Lp

≤ C
∥∥∥ ∑

m≥0

εm

∑
n≥0

xm,nen

∥∥∥
Lp

,

where (Wm,n)m,n≥0 is one of the sequences (M(m, n))m,n≥0, (m(M(m+1, n)−M(m, n)))m,n≥0

and (m2(M(m+2, n)−2M(m+1, n)+Mm,n))m,n≥0. By the Fubini’s theorem, this is equivalent
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to show that there exists C > 0, such that for all xm,n ∈ X ,∥∥∥ ∑
n≥0

( ∑
m≥0

εmWm,nxm,n

)
en

∥∥∥
Lp

≤ C
∥∥∥ ∑

n≥0

( ∑
m≥0

εmxm,n

)
en

∥∥∥
Lp

.

Hence, we have to show that the sequence (Vn)n≥0 ⊂ L(Rad(X)) verifies the sufficient condition

in Theorem 2.1, where Vn

( ∑
m≥0

εmxm

)
=

∑
m≥0

εmWm,nxm. This is precisely the 2-Rademacher

boundedness of the sequence (M(m, n))m,n≥0. This completes the proof.

Remark 3.1 (1) When the underlying Banach space X has the property (α), a sequence
(M(n))n∈Nd is d-Rademacher bounded if and only if it is Rademacher bounded by Lemma 3.1.
This implies that the first claim of Theorem 2.2 is a consequence of Theorem 3.1.

(2) When X is a UMD space and 1 < p < ∞, a sequence (M(n))n∈Zd is a Fourier multiplier
on Lp(Td; X) if the sequences

(
(n2

1 + · · · + n2
d)

α1+···+αd
2

( d∏
j=1

Δαj

j

)
M(n)

)
n∈Zd

are Rademacher bounded for αj = 0, 1 (1 ≤ j ≤ d) (see [3, 11]). Almost the same argument

used in the proof of Theorem 3.1 shows that if the sequences
(
n(α1,··· ,αd)

( d∏
j=1

Δαj

j

)
M(n)

)
n∈Zd

are d-Rademacher bounded for αj = 0, 1 (1 ≤ j ≤ d), then (M(n))n∈Zd defines a Fourier
multiplier on Lp(Td; X). We do not know whether this sufficient condition is weaker than that
given in [3, 11].
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