Operator-Valued Fourier Multipliers on Multi-dimensional Hardy Spaces^{*}

Shangquan BU¹

Abstract The author establishes operator-valued Fourier multiplier theorems on multidimensional Hardy spaces $H^p(\mathbb{T}^d; X)$, where $1 \leq p < \infty, d \in \mathbb{N}$, and X is an AUMD Banach space having the property (α). The sufficient condition on the multiplier is a Marcinkiewicz type condition of order 2 using Rademacher boundedness of sets of bounded linear operators. It is also shown that the assumption that X has the property (α) is necessary when $d \geq 2$ even for scalar-valued multipliers. When the underlying Banach space does not have the property (α), a sufficient condition on the multiplier of Marcinkiewicz type of order 2 using a notion of d-Rademacher boundedness is also given.

 Keywords H^p-Spaces, Fourier multiplier, Rademacher boundedness, d-Rademacher boundedness
 2000 MR Subject Classification 42A45, 42B15, 43A17, 46B20

1 Introduction

The aim of this paper is to establish operator-valued Fourier multiplier theorems on the multi-dimensional Hardy spaces $H^p(\mathbb{T}^d; X)$, where $1 \leq p < \infty$, $d \in \mathbb{N}$, $\mathbb{T} = [0, 2\pi]$ and X is a complex Banach space. Recall that the Hardy space $H^p(\mathbb{T}^d; X)$ is the space of all functions $f \in L^p(\mathbb{T}^d; X)$ such that $\widehat{f}(n) = 0$ for all $n = (n_1, n_2, \cdots, n_d) \in \mathbb{Z}^d \setminus \mathbb{N}_0^d$, where $\widehat{f}(n)$ is the Fourier coefficient of f given by

$$\widehat{f}(n) := \int_0^{2\pi} \cdots \int_0^{2\pi} f(t_1, \cdots, t_d) e^{-i(n_1 t_1 + \cdots + n_d t_d)} \frac{\mathrm{d}t_1}{2\pi} \cdots \frac{\mathrm{d}t_d}{2\pi}$$

and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. For $n \geq 0$, we denote the function $t \to e^{int}$ on \mathbb{T} by e_n . $H^p(\mathbb{T}^d; X)$ is equipped with the induced norm $\|\cdot\|_p$ by $L^p(\mathbb{T}^d; X)$ so that it becomes a Banach space. A sequence $(M(n))_{n \in \mathbb{N}_0^d} \subset \mathcal{L}(X)$ is said to be a Fourier multiplier on $H^p(\mathbb{T}^d; X)$, if for all $f \in H^p(\mathbb{T}^d; X)$, there exists a unique $g \in H^p(\mathbb{T}^d; X)$ such that $\widehat{g}(n) = M(n)\widehat{f}(n)$ for all $n \in \mathbb{N}_0^d$, where $\mathcal{L}(X)$ is the space of all bounded linear operators on X. In this case we can find a constant C > 0 independent of f such that $\|g\|_p \leq C \|f\|_p$ by the closed graph theorem.

When X is an AUMD space (see [2]) and d = 1, an operator-valued Fourier multiplier theorem on $H^p(\mathbb{T}; X)$ has been given in [4]: let X be an AUMD space and $1 \leq p < \infty$, let $(M_n)_{n\geq 0} \subset \mathcal{L}(X)$ be such that the sets $\{M_n : n \geq 0\}$, $\{n\Delta^1 M_n : n \geq 0\}$ and $\{n^2\Delta^2 M_n : n \geq 0\}$ of are Rademacher bounded, then $(M_n)_{n\geq 0}$ defines a Fourier multiplier on $H^p(\mathbb{T}; X)$, where $\Delta^1 M_n := M_{n+1} - M_n$ and $\Delta^2 M_n := M_{n+2} - 2M_{n+1} + M_n$ are the first derivative and the second derivative of M_n , respectively. This is the operator-valued analogue of a remarkable

Manuscript received April 24, 2009. Revised December 9, 2010. Published online January 25, 2011.

¹Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.

E-mail: sbu@math.tsinghua.edu.cn

^{*}Project supported by the National Natural Science Foundation of China (No. 10731020) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 200800030059).

result of Blower giving a characterization of the AUMD space in term of scalar-valued Fourier multipliers on $H^1(\mathbb{T}; X)$ (see [2]).

The aim of this paper is to extend the result in [4] to multi-dimensional Hardy spaces $H^p(\mathbb{T}^d; X)$. When the Banach space X has the property (α), the sufficient condition we give is similar to that for $L^p(\mathbb{T}^d; X)$ (see [3]): one requires that the partial derivatives of the multiplier satisfy a Macinkiewicz type condition of order 2 using the Rademacher boundedness (see Theorem 2.2). We also show that the set of bounded operators on $H^p(\mathbb{T}^d; X)$ obtained in this way is Rademacher bounded in $\mathcal{L}(H^d(\mathbb{T}^d; X))$ when the Rademacher boundedness assumption on the multipliers is related to a fixed Rademacher bounded subset of $\mathcal{L}(X)$ (see Theorem 2.2). This strengthens the result in the one dimensional case proved in [4] when X has the property (α). We show that the property (α) is also necessary when considering such type of conditions even for scalar-valued multipliers (see Theorem 2.3).

We also give a sufficient condition for multipliers on $H^p(\mathbb{T}^d; X)$ without assuming that X has the property (α) . In this case, the sufficient condition we give involves a new notion of boundedness concerning sequences of operators, we call it the *d*-Rademacher boundedness. We see that when $(M(n))_{n \in \mathbb{N}^d_0} \subset \mathcal{L}(X)$ is *d*-Rademacher bounded, then it is also Rademacher bounded, the converse implication is true when the underlying Banach space has the property (α) . In particular, we see that part of results obtained when X has the property (α) follow from the general case.

The basic idea to study operator-valued Fourier multipliers on multi-dimensional Hardy spaces $H^p(\mathbb{T}^d; X)$ is the following observation. Let d > 1 and let $M = M(n)_{n \in \mathbb{N}_0^d} \subset \mathcal{L}(X)$ be fixed. For fixed $n_1 \in \mathbb{N}_0$, we let $N_{n_1}(n_2, n_3, \dots, n_d) := M(n_1, n_2, \dots, n_d)$ for $n_j \in \mathbb{N}_0$ $(2 \leq j \leq n)$. Then by the Fubini's theorem, M defines a Fourier multiplier on $H^p(\mathbb{T}^d; X)$ if and only if the sequence $(N_{n_1})_{n_1\geq 0}$ defines a Fourier multiplier on $H^p(\mathbb{T}; H^p(\mathbb{T}^{d-1}; X))$. Thus the result for multi-dimensional Hardy spaces follows from an easy induction argument on $d \in \mathbb{N}$ and the result when d = 1 proved in [4]. We notice that our result is even stronger than that proved in [4].

The paper is organized as follows. In Section 2, we study the Fourier multipliers on $H^p(\mathbb{T}^d; X)$ when X has the property (α). In Section 3, we treat the case when X has not necessarily the property (α).

2 Multipliers on $H^p(\mathbb{T}^d; X)$ When X Has the Property (α)

 $C \left\| \sum_{j=1}^{n} \varepsilon_{j} x_{j} \right\|_{p}$ for some $1 \le p < \infty$, where $(\varepsilon_{j})_{j \ge 1}$ are Rademacher functions on [0, 1] given by $\varepsilon_{j}(t) = \operatorname{sign}(\sin(2^{j-1}\pi t)).$

 $(t) = \text{sign}(\sin(2^{\omega} - \pi t)).$ We let Rad be the linear span of ε_j . Then Rad $\otimes X$ is the space of all finite sums $\sum_{j\geq 1} \varepsilon_j x_j$,

with $x_j \in X$. For any $1 \leq p < \infty$, we let $\operatorname{Rad}_p(X)$ be the closed subspace of $L^p(\Omega; X)$ spanned by $\operatorname{Rad} \otimes X$, that we equip with the induced norm. We recall that for any $1 \leq p, q < \infty$, the two norms $\|\cdot\|_{\operatorname{Rad}_p(X)}$ and $\|\cdot\|_{\operatorname{Rad}_q(X)}$ are equivalent on $\operatorname{Rad} \otimes X$ (see, e.g., [9, Theorem 1.e.13]). Therefore we will simply denote $\operatorname{Rad}_p(X)$ by $\operatorname{Rad}(X)$. One immediate consequence of this fact is that the Rademacher boundedness does not depend on the parameter $1 \leq p < \infty$ involved in the definition. A sequence $M = (M_n)_{n\geq 1} \subset \mathcal{L}(X)$ is Rademacher bounded if and only if the linear operator T_M defined by $T_M\left(\sum_{j\geq 1} \varepsilon_j x_j\right) = \sum_{j\geq 1} \varepsilon_j M_j x_j$ on $\operatorname{Rad}(X)$ is bounded.

Next, we say that an X-valued martingale $(g_j)_{j\geq 1}$ is analytic if for any $j\geq 1, g_j\in L^1(\mathbb{T}^j;X)$

Operator-Valued Fourier Multipliers on Multi-dimensional Hardy Spaces

and there exist measurable functions $\Phi_i \colon \mathbb{T}^{j-1} \to X$ such that

$$dg_j(\tau) = \Phi_j(t_1, \cdots, t_{j-1}) e^{it_j}, \quad \tau = (t_1, \cdots, t_j) \in \mathbb{T}^j.$$

$$(2.1)$$

By definition, X is an AUMD Banach space if for some $1 \le p < \infty$, there is a constant $K_p > 0$ such that for any X-valued analytic martingale $(g_j)_{j\ge 1}$, for any bounded sequence $(\alpha_j)_{j\ge 1}$ of complex numbers and for any integer $n \ge 1$, we have

$$\left\|\sum_{j=1}^{n} \alpha_j \,\mathrm{d}g_j\right\|_{L^p} \le K_p \sup_{j\ge 1} |\alpha_j| \left\|\sum_{j=1}^{n} \mathrm{d}g_j\right\|_{L^p}.$$
(2.2)

This property does not depend on $1 \leq p < \infty$, and any UMD Banach space is AUMD. Indeed, by definition, for any 1 , X is a UMD Banach space if and only if there is constant $<math>K_p > 0$ such that (2.2) holds for any X-valued martingale with respect to the filtration $(\mathcal{F}_j)_{j\geq 1}$, where $(\mathcal{F}_j)_{j\geq 1}$ is the σ -algebra of Lebesgue measurable subsets of \mathbb{T}^j . Any closed subspace of an AUMD Banach space is AUMD, and the class of AUMD spaces includes L^1 -spaces. Indeed, for any measure space Σ and for any $1 \leq q < \infty$, the space $L^q(\Sigma; X)$ is AUMD provided that X is AUMD.

A Banach space X is said to have the property (α) , if there exists a constant C > 0 such that for all $n \in \mathbb{N}$, $x_{i,j} \in X$ and $\alpha_{i,j} \in \mathbb{C}$, we have

$$\left\|\sum_{i,j=1}^{n}\varepsilon_{i}^{(1)}\varepsilon_{j}^{(2)}\alpha_{i,j}x_{i,j}\right\|_{L^{2}} \leq C \sup_{1\leq i,j\leq n} |\alpha_{i,j}| \left\|\sum_{i,j=1}^{n}\varepsilon_{i}^{(1)}\varepsilon_{j}^{(2)}x_{i,j}\right\|_{L^{2}},$$

where $(\varepsilon_j^{(1)})_{j\geq 1}$ and $(\varepsilon_j^{(2)})_{j\geq 1}$ are two independent sequences of Rademacher functions (see [10]). We notice that the L_2 -norm used in the definition may be replaced by any L_p -norm whenever $1 \leq p < \infty$. Indeed, by the Kahane's inequality (see [9, Theorem 1.e.13]), there exists a constant C_p depending only on $1 \leq p < \infty$, such that

$$\frac{1}{C_p} \left\| \sum_{j \ge 1} \varepsilon_j^{(1)} x_j \right\|_{L^2} \le \left\| \sum_{j \ge 1} \varepsilon_j^{(1)} x_j \right\|_{L^p} \le C_p \left\| \sum_{j \ge 1} \varepsilon_j^{(1)} x_j \right\|_{L^2}$$

for all $x_j \in X$, which implies that

$$\frac{1}{C_p^2} \left\| \sum_{i,j=1}^n \varepsilon_i^{(1)} \varepsilon_j^{(2)} x_{i,j} \right\|_{L^2} \le \left\| \sum_{i,j=1}^n \varepsilon_i^{(1)} \varepsilon_j^{(2)} x_{i,j} \right\|_{L^p} \le C_p^2 \left\| \sum_{i,j=1}^n \varepsilon_i^{(1)} \varepsilon_j^{(2)} x_{i,j} \right\|_{L^2}.$$

It was shown by Pisier [10] that when X has the property (α) , then the sequence $(\varepsilon_i^{(1)}\varepsilon_j^{(2)})_{i,j\geq 1}$ has the same behavior as a sequence of independent Rademacher functions $(\varepsilon_{i,j})_{i,j\geq 1}$, i.e., for all $1 \leq p < \infty$, there exists a constant C > 0, such that

$$\frac{1}{C} \left\| \sum_{i,j=1}^{n} \varepsilon_{i}^{(1)} \varepsilon_{j}^{(2)} x_{i,j} \right\|_{L^{p}} \leq \left\| \sum_{i,j=1}^{n} \varepsilon_{i,j} x_{i,j} \right\|_{L^{p}} \leq C \left\| \sum_{i,j=1}^{n} \varepsilon_{i}^{(1)} \varepsilon_{j}^{(2)} x_{i,j} \right\|_{L^{p}}$$

for all $n \in \mathbb{N}$ and $x_{i,j} \in X$. This implies in particular that when X has the property (α) , and $(T_{i,j})_{i,j\geq 1} \subset \mathcal{L}(X)$ is Rademacher bounded, then for every $1 \leq p < \infty$, there exists a constant C > 0 depending only on p and the sequence $(T_{i,j})_{i,j\geq 1}$, such that

$$\left\|\sum_{i,j=1}^{n} \varepsilon_{i}^{(1)} \varepsilon_{j}^{(2)} T_{i,j} x_{i,j}\right\|_{L^{p}} \le C \left\|\sum_{i,j=1}^{n} \varepsilon_{i}^{(1)} \varepsilon_{j}^{(2)} x_{i,j}\right\|_{L^{p}}$$
(2.3)

for all $x_{i,j} \in X$ and $n \in \mathbb{N}$. This observation is crucial in the proof of our main result in this section.

We first recall the following known result proved in [4]. Our general result will follow from it and an application of the Fubini's theorem.

Theorem 2.1 (see [4]) Let X be an AUMD space and let $M = (M_n)_{n \ge 0} \subset \mathcal{L}(X)$ be such that the sets

$$\{M_n : n \ge 0\}, \quad \{n\Delta^1 M_n : n \ge 0\} \quad and \quad \{n^2 \Delta^2 M_n : n \ge 0\}$$

are Rademacher bounded subsets. Then M defines a Fourier multiplier on $H^p(\mathbb{T}; X)$ whenever $1 \leq p < \infty$.

To state our main result of this section, we need to introduce some notations. Let $M = (M(n))_{n \in \mathbb{N}_0^d} \subset \mathcal{L}(X)$. For $1 \leq j \leq d$ and $n \in \mathbb{N}_0^d$, we let

$$(D_j^0)M(n) := M(n), \quad (D_j^1)M(n) := M(n+f_j) - M(n)$$

be the partial derivative of M with respect to the *j*-th coordinate, where $f_j := (\delta_{j,h})_{1 \leq h \leq d}$. We define the second partial derivative of M with respect to the *j*-th coordinate by $(D_j^2)M(n) = (D_j^1)M(n + f_j) - (D_j^1)M(n)$. It is easy to verify that when $1 \leq k, j \leq d$ and $\alpha_k, \alpha_j \in \{0, 1, 2\}$, we have $(D_k^{\alpha_j})(D_j^{\alpha_j}M)(n) = (D_j^{\alpha_j})(D_k^{\alpha_k}M)(n)$. Thus we can define the expression

$$\Big(\prod_{1\leq j\leq d} D_j^{\alpha_j}\Big)M(n) := (D_d^{\alpha_d} D_{d-1}^{\alpha_{d-1}} \cdots D_1^{\alpha_1})M(n)$$

without any confusion whenever $\alpha_j \in \{0, 1, 2\}$ $(1 \leq j \leq d)$. For $n = (n_1, n_2, \cdots, n_d) \in \mathbb{N}_0^d$ and $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_d) \in \{0, 1\}^d$, we let $n^{\alpha} := n_1^{\alpha_1} \cdots n_d^{\alpha_d}$.

Now we are ready to state the operator-valued Fourier multiplier theorem on $H^p(\mathbb{T}^d; X)$ when X has the property (α) .

Theorem 2.2 Let X be an AUMD space having the property (α), $1 \leq p < \infty$ and let $\mathcal{M} \subset \mathcal{L}(X)$ be a Rademacher bounded subset. Then every sequence $M = (M(n))_{n \in \mathbb{N}_0^d} \subset \mathcal{L}(X)$ satisfying

$$n^{\alpha} \Big(\prod_{1 \le j \le d} D_j^{\alpha_j}\Big) M(n) \in \mathcal{M}$$
(2.4)

for $\alpha_j \in \{0, 1, 2\}$ $(1 \leq j \leq d)$ and $n \in \mathbb{N}_0^d$, defines a Fourier multiplier on $H^p(\mathbb{T}^d; X)$. Moreover, if we denote by T_M the corresponding bounded linear operator on $H^p(\mathbb{T}^d; X)$, then the set $\{T_M: M = (M(n))_{n \in \mathbb{N}_0^d}$ satisfies (2.4) is Rademacher bounded in $\mathcal{L}(H^p(\mathbb{T}^d; X))$.

We need the following lemma which is exactly Theorem 2.2 when d = 1. Theorem 2.2 will follow from this lemma and an easy induction argument on $d \in \mathbb{N}$. We notice that it strengthens Theorem 2.1 when X has the property (α).

Lemma 2.1 Let X be an AUMD space having the property (α) , $1 \leq p < \infty$ and let $\mathcal{M} \subset \mathcal{L}(X)$ be a Rademacher bounded subset. If we denote by T_M the corresponding bounded linear operator on $H^p(\mathbb{T}; X)$ given by Theorem 2.1 for $M = (M_n)_{n>0} \subset \mathcal{L}(X)$ satisfying

$$M_n \in \mathcal{M}, \quad n\Delta^1 M_n \in \mathcal{M}, \quad n^2 \Delta^2 M_n \in \mathcal{M},$$

$$(2.5)$$

whenever $n \ge 0$, then the set $\{T_M : M = (M_n)_{n\ge 0} \text{ satisfies } (2.5)\}$ is Rademacher bounded in $\mathcal{L}(H^p(\mathbb{T}; X)).$

Proof For $j \in \mathbb{N}$, let $M^{(j)} = (M^{(j)}(k))_{k\geq 0}$ be a sequence in $\mathcal{L}(X)$ satisfying the condition (2.5). We need to show that there exists a constant C > 0 depending only on \mathcal{M} such that for all $f_j \in H^p(\mathbb{T}; X)$, we have

$$\left\|\sum_{j\geq 1}\varepsilon_j T_{M^{(j)}}f_j\right\|_{L^p} \le C \left\|\sum_{j\geq 1}\varepsilon_j f_j\right\|_{L^p},\tag{2.6}$$

where $T_{M^{(j)}}$ is the bounded linear operator on $H^p(\mathbb{T}; X)$ given by Theorem 2.1. By the Fubini's theorem, we have

$$\begin{split} \left\| \sum_{j \ge 1} \varepsilon_j T_{M^{(j)}} f_j \right\|_{L^p} &= \left\| \sum_{k \ge 0} \left[\sum_{j \ge 1} \varepsilon_j M_k^{(j)} \widehat{f_j}(k) \right] e_k \right\|_{L^p}, \\ \left\| \sum_{j \ge 1} \varepsilon_j f_j \right\|_{L^p} &= \left\| \sum_{k \ge 0} \left[\sum_{j \ge 1} \varepsilon_j \widehat{f_j}(k) \right] e_k \right\|_{L^p}. \end{split}$$

Hence to show (2.6), it will suffice to show that the sequence $(S_k)_{k>0} \in \mathcal{L}(\operatorname{Rad}(X))$ defined by

$$S_k\Big(\sum_{j\ge 1}\varepsilon_j x_j\Big) = \sum_{j\ge 1}\varepsilon_j M_k^{(j)} x_j$$

defines a Fourier multiplier on $H^p(\mathbb{T}; \operatorname{Rad}(X))$. We notice that $\operatorname{Rad}(X)$ is an AUMD space having the property (α) as X is an AUMD space having the property (α) . Therefore, it will suffice to verify that the sequences $(S_k)_{k\geq 0}$, $(k\Delta^1 S_k)_{k\geq 0}$ and $(k^2\Delta^2 S_k)_{k\geq 0}$ are Rademacher bounded in $\mathcal{L}(\operatorname{Rad}(X))$ by Theorem 2.1. For the Rademacher boundedness of $(S_k)_{k\geq 1}$, we need to show that there exists a constant C > 0 such that for $\sum_{j\geq 1} \varepsilon_j x_{k,j} \in \operatorname{Rad}(X)$,

$$\Big\|\sum_{k\geq 0}\varepsilon'_k S_k\Big(\sum_{j\geq 1}\varepsilon_j x_{k,j}\Big)\Big\|_{L^p} \leq C\Big\|\sum_{k\geq 0}\varepsilon'_k\sum_{j\geq 1}\varepsilon_j x_{k,j}\Big\|_{L^p}$$

or equivalently

$$\left\|\sum_{k\geq 0}\sum_{j\geq 1}\varepsilon_{k}'\varepsilon_{j}M_{k}^{(j)}x_{k,j}\right\|_{L^{p}}\leq C\left\|\sum_{k\geq 0}\sum_{j\geq 1}\varepsilon_{k}'\varepsilon_{j}x_{k,j}\right\|_{L^{p}},$$
(2.7)

where $(\varepsilon'_k)_{k\geq 0}$ is another Rademacher function sequence independent of $(\varepsilon_j)_{j\geq 1}$. (2.7) follows from the Rademacher boundedness assumption of the set $\{M_k^{(j)}: j \geq 1, k \geq 0\}$ and inequality (2.3). We have shown that $(S_k)_{k\geq 0}$ is Rademacher bounded. Similar arguments show that the sequences $(k\Delta^1 S_k)_{k\geq 0}$ and $(k^2\Delta^2 S_k)_{k\geq 0}$ are also Rademacher bounded. This finishes the proof.

Proof of Theorem 2.2 When d = 1, the claim is just Lemma 2.1. Now assuming that the statement is true for some $d \in \mathbb{N}$, we are going to show that it remains true for d + 1. To this end, we let $\mathcal{M} \subset \mathcal{L}(X)$ be Rademacher bounded. By the induction hypothesis, each $N = (N(n))_{n \in \mathbb{N}^d_0} \subset \mathcal{L}(X)$ such that

$$\left\{n^{\alpha} \left(\prod_{1 \le j \le d} D_j^{\alpha_j}\right) N(n) : n \in \mathbb{N}_0^d, \ \alpha_j \in \{0, 1, 2\}, \ 1 \le j \le d\right\} \subset \mathcal{M}$$

$$(2.8)$$

defines a Fourier multiplier on $H^p(\mathbb{T}^d; X)$. Moreover, if we denote by T_N the corresponding bounded linear operator on $H^p(\mathbb{T}^d; X)$, the set

$$\mathcal{M}' := \{T_N : N \text{ satisfies } (2.8)\}$$

is Rademacher bounded in $\mathcal{L}(H^p(\mathbb{T}^d;X))$. Now let $M = (M(n))_{n \in \mathbb{N}^{d+1}} \subset \mathcal{L}(X)$ satisfy

$$\left\{ n^{\alpha} \Big(\prod_{1 \le j \le d+1} D_j^{\alpha_j} \Big) M(n) : n \in \mathbb{N}_0^{d+1}, \ \alpha_j \in \{0, 1, 2\}, \ 1 \le j \le d+1 \right\} \subset \mathcal{M}.$$
(2.9)

For fixed $\alpha_1 \in \{0, 1, 2\}$ and $n_1 \in \mathbb{N}_0$, we consider the sequence $N^{\alpha_1, n_1} = (N^{\alpha_1, n_1}(n))_{n \in \mathbb{N}_0^d}$ given by

$$N^{\alpha_1,n_1}(n_2,\cdots,n_{d+1}) = n_1^{\alpha_1} D_1^{\alpha_1} M(n_1,n_2,\cdots,n_{d+1}), \quad n_j \in \mathbb{N}_0, \ 2 \le j \le d+1$$

It is clear that N^{α_1,n_1} satisfies condition (2.8) by assumption (2.9), and thus N^{α_1,n_1} defines a Fourier multiplier on $H^p(\mathbb{T}^d; X)$ and $T_{N^{\alpha_1,n_1}} \in \mathcal{M}'$. This implies that M defines a Fourier multiplier on $H^p(\mathbb{T}; H^p(\mathbb{T}^d; X))$ (which is the same as $H^p(\mathbb{T}^{d+1}; X)$ by the Fubini's theorem) by the known result in the one dimensional case (see Theorem 2.2). Here we have used the fact that the set \mathcal{M}' is Rademacher bounded. Let S_M be the corresponding bounded linear operator on $H^p(\mathbb{T}^{d+1}; X)$. It remains to show that the set $\{S_M : M \text{ satisfies } (2.9)\}$ is Rademacher bounded in $\mathcal{L}(H^p(\mathbb{T}^{d+1}; X))$. This follows from the fact that for $M = (M_n)_{n \in \mathbb{N}_0^{d+1}}$ satisfying (2.9) and $\alpha_1 \in \{0, 1, 2\}, n_1 \in \mathbb{N}_0$, the corresponding bounded linear operator $T_{N^{\alpha_1,n_1}}$ on $H^p(\mathbb{T}^d; X)$ belongs to \mathcal{M}' , and \mathcal{M}' is Rademacher bounded. Therefore, we can apply Lemma 2.1 on $H^p(\mathbb{T}; Z)$ when Z is an AUMD space having the property (α) (we take $Z = H^p(\mathbb{T}^d; X)$). We notice that when X is an AUMD space having the property (α) , $H^p(\mathbb{T}^d; X)$ is also an AUMD space having the property (α) . This completes the proof.

The next result shows that the assumption that X has the property (α) is necessary in Theorem 2.2 when $d \ge 2$ even for scalar-valued Fourier multipliers.

Theorem 2.3 Let X be a Banach space and $1 \le p < \infty$. We assume that each sequence $M(m,n)_{m,n>0} \subset \mathbb{C}$ such that

$$\sup_{\substack{m,n \ge 0\\ \alpha, \beta \in \{0,1,2\}}} |m^{\alpha} n^{\beta} \Delta_1^{\alpha} \Delta_2^{\beta} M(m,n)| < \infty$$
(2.10)

defines a Fourier multiplier on $H^p(\mathbb{T}^2; X)$. Then X has the property (α).

Proof Let $M = M(m, n)_{m,n \ge 0} \subset \mathbb{C}$, and

$$\eta(M) := \sup_{\substack{m,n \ge 0\\\alpha,\beta \in \{0,1,2\}}} |m^{\alpha}n^{\beta}\Delta_1^{\alpha}\Delta_2^{\beta}M(m,n)|.$$

If we denote by T_M the bounded linear operator on $H^p(\mathbb{T}^d; X)$ defined by M, then by the closed graph theorem, there exists a constant $C_1 > 0$ independent of M, such that $||T_M|| \leq C_1 \eta(M)$. Let $\phi \in C_c^{\infty}(\mathbb{R}^2)$ be fixed such that $\phi(1, 1) = 1, 0 \leq \phi \leq 1$ and $\operatorname{supp}(\phi) \subset [\frac{3}{4}, \frac{5}{4}]^2$. For $k, j \geq 0$, we let $\phi_{k,j}(s,t) := \phi(2^{-k}s, 2^{-j}t)$ for $s, t \in \mathbb{R}$. It is clear that $\phi_{k,j} \in C_c^{\infty}(\mathbb{R}^2)$ and the supports of $\phi_{k,j}$'s are pairwisely disjoint. For any fixed choice of signs $\varepsilon_{k,j} = \pm 1$, we let $\varphi(s,t) = \sum_{k,j\geq 0} \varepsilon_{k,j}\phi_{k,j}(s,t)$. It is easy to see that φ is C^{∞} and the sequence $M = (\varphi(k,j))_{k,j\geq 0}$ verifies

condition (2.10). By assumption, $(\varphi(k,j))_{k,j\geq 0}$ defines a Fourier multiplier on $H^p(\mathbb{T}^2; X)$. Hence, there exists a constant $C_2 > 0$ such that for every $f \in H^p(\mathbb{T}^2; X)$, one has

$$\left\|\sum_{k,j\geq 0}\varphi(k,j)\widehat{f}(k,j)e_{k}e_{j}'\right\|_{L^{p}} \leq C_{2}\|f\|_{L^{p}},$$
(2.11)

where $e_k(s) = e^{iks}$ and $e'_j(t) = e^{ijt}$ for $(s,t) \in \mathbb{T}^2$. Here we use the fact that there exists a constant C > 0 independent of the $\varepsilon_{k,j}$'s, such that $\eta(M) \leq C$. For $x_{k,j} \in X$, substituting $f = \sum_{k,j \geq 0} e_{2^k} e'_{2^j} x_{k,j}$ in (2.11), we deduce that

$$\left\|\sum_{k,j\geq 0}\varepsilon_{k,j}x_{k,j}e_{2^{k}}e_{2^{j}}'\right\|_{L^{p}} \leq C_{2}\left\|\sum_{k,j\geq 0}x_{k,j}e_{2^{k}}e_{2^{j}}'\right\|_{L^{p}},$$

as it is clear that $\phi(2^k, 2^j) = \varepsilon_{k,j}$. This is equivalent to say that

$$\left\|\sum_{k,j\geq 0} \alpha_{k,j} x_{k,j} \varepsilon_k \varepsilon'_j\right\|_{L^p} \le C_2 \left\|\sum_{k,j\geq 0} x_{k,j} \varepsilon_k \varepsilon'_j\right\|_{L^p}$$

for any $|\alpha_{k,j}| \leq 1$ by the Pisier's result (see [10]). Thus X has the property (α).

Remark 2.1 In [12, Proposition 2], Zimmermann gave a Marcinkiewicz type condition of order 1 for a scalar sequence to be a Fourier multiplier on $L^p(T^d; X)$ when X is a UMD space with l.u.st. and $1 . It is not hard to verify that the Zimmermann's result remains true if we replace the assumption that X has l.u.st. by the weaker assumption that X has the property (<math>\alpha$). The same argument used in the proof of Theorem 2.3 shows that when $d \ge 2$, the assumption that X has the property (α) is also necessary in the corresponding Zimmermann's result.

In the last part of this section, we give an operator-valued Fourier multiplier theorem on $H^p(\mathbb{R}^d; X)$. Let X be a Banach space. Given $f \in L^1(\mathbb{R}^d; X)$, the Fourier transform $\mathcal{F}f$ of f is given by $\mathcal{F}f(t) = \int_{\mathbb{R}} f(\xi) e^{-i\xi \cdot t} d\xi$ $(t \in \mathbb{R}^d)$. The inverse Fourier transform is denoted by $\mathcal{F}^{-1}f$ for $f \in L^1(\mathbb{R}^d; X)$. By definition, the Hardy space $H^1(\mathbb{R}^d; X)$ is the closed subspace of $L^1(\mathbb{R}^d; X)$ consisting of all f such that $\mathcal{F}f(t) = 0$ for $t \in \mathbb{R}^d \setminus \mathbb{R}^d$. If $1 \leq p < \infty$, then we denote by $H^p(\mathbb{R}^d; X)$ the closure of $H^1(\mathbb{R}^d; X) \cap L^p(\mathbb{R}^d; X)$ in $L^p(\mathbb{R}; X)$.

Let $S_+ = S(\mathbb{R}^d) \cap H^p(\mathbb{R}^d)$, where $S(\mathbb{R}^d)$ is the Schwartz class of rapidly decreasing smooth functions on \mathbb{R}^d . Then an approximating argument shows that S_+ is dense in $H^p(\mathbb{R}^d)$ (see [8] for a similar argument). This implies that the tensor product $S_+ \otimes X$ is a dense subspace of $H^p(\mathbb{R}^d; X)$. Now let $m : \mathbb{R}^d_+ \to \mathcal{L}(X)$ be a bounded measurable function, m is said to be a Fourier multiplier on $H^p(\mathbb{R}^d; X)$, if there exists a constant C > 0 such that for all f = $\sum_{j=1}^n f_j \otimes x_j \in S_+ \otimes X$, we have $\|\mathcal{F}^{-1}(m\mathcal{F}f)\|_p \leq C\|f\|_p$ (note that each term $\mathcal{F}^{-1}(m\mathcal{F}f_jx_j)$) makes sense as $f_i \in S_+$). In this case there exists a unique bounded linear operator T_m on

makes sense as $f_j \in S_+$). In this case there exists a unique bounded linear operator T_m on $H^p(\mathbb{R}^d; X)$ such that for all $f \in S_+ \otimes X$, we have $T_m f = \mathcal{F}^{-1}(m\mathcal{F}f)$.

In [8, Proposition 4.3], Le Merdy has shown that if $1 \leq p < \infty$ and $m : \mathbb{R}_+ \to \mathbb{C}$ is a bounded continuous function, then m defines a Fourier multiplier on $H^p(\mathbb{R}; X)$ if and only if for each $\epsilon > 0$, the sequence $(m(j\epsilon))_{j\geq 0}$ is a Fourier multiplier on $H^p(\mathbb{T}; X)$ and the corresponding bounded linear operators on $H^p(\mathbb{T}; X)$ are uniformly bounded for $\epsilon > 0$. It is easy to verify that the corresponding result for multi-dimensional Hardy spaces is still valid. This remark together with Theorem 2.2 gives the following Fourier multiplier theorem on $H^p(\mathbb{T}^d; X)$.

Theorem 2.4 Let X be an AUMD space having the property (α) and let $1 \leq p < \infty$. Then each C^{2d} -function $m : \mathbb{R}^d_+ \to \mathcal{L}(X)$ such that the set

$$\left\{ \left(\prod_{j=1}^{d} x_j^{\alpha_j}\right) \left(\prod_{j=1}^{d} \frac{\partial^{\alpha_j}}{\partial x_j^{\alpha_j}}\right) m(x_1, \cdots, x_d) : x_j \ge 0, \ \alpha_j \in \{0, 1, 2\}, \ 1 \le j \le d \right\}$$

is Rademacher bounded, defines a Fourier multiplier on $H^p(\mathbb{R}^d; X)$.

3 The General Case

In this section, the Banach space X has not necessarily the property (α) when studying Fourier multipliers on $H^p(\mathbb{T}^d; X)$. Therefore, we need a stronger notion of Rademacher boundedness. A sequence $(M(n))_{n \in \mathbb{N}_0^d} \subset \mathcal{L}(X)$ is said to be *d*-Rademacher bounded, if for some $1 \leq p < \infty$, there exists a constant C > 0 such that for all $x_n \in X$, we have

$$\left\|\sum_{n=(n_1,\cdots,n_d)\in\mathbb{N}_0^d}\varepsilon_{n_1}^{(1)}\varepsilon_{n_2}^{(2)}\cdots\varepsilon_{n_d}^{(d)}M(n)x_n\right\|_{L^p}\leq C\left\|\sum_{n=(n_1,\cdots,n_d)\in\mathbb{N}_0^d}\varepsilon_{n_1}^{(1)}\varepsilon_{n_2}^{(2)}\cdots\varepsilon_{n_d}^{(d)}x_n\right\|_{L^p},$$

where $(\varepsilon_n^{(j)})_{n\geq 0}$ $(1\leq j\leq d)$ are d sequences of Rademacher functions pairwisely independent. It turns out that this notion is still independent of the choice of $1\leq p<\infty$ by the Kahane's inequality (see [9, Theorem 1.e.13]).

We begin with a result concerning the relations between the Rademacher boundedness and the d-Rademacher boundedness.

Lemma 3.1 Let X be a Banach space, $(M(n))_{n \in \mathbb{N}_0^d} \subset \mathcal{L}(X)$ and let $d \geq 2$. Then

(1) If $(M(n))_{n \in \mathbb{N}^d_0}$ is d-Rademacher bounded, then it is Rademacher bounded.

(2) If X has the property (α) and $(M(n))_{n \in \mathbb{N}_0^d}$ is Rademacher bounded, then it is d-Rademacher bounded.

Proof We only give the proof for the case d = 2, and the proof for the general case is similar. Suppose that $(M(m,n))_{m,n\geq 0}$ is 2-Rademacher bounded. Let $(\varepsilon_m^{(1)})_{m\geq 0}$ and $(\varepsilon_n^{(2)})_{n\geq 0}$ are two independent sequences of Rademacher functions, and let $(\varepsilon_{m,n})_{m,n\geq 0}$ be another sequence of Rademacher functions independent of $(\varepsilon_m^{(1)})_{m\geq 0}$ and $(\varepsilon_n^{(2)})_{n\geq 0}$. By the Kahane's contraction principle, for all $s, t \in [0, 1]$ and $x_{m,n} \in X$,

$$\left\|\sum_{m,n\geq 0}\varepsilon_{m,n}M(m,n)x_{m,n}\right\|_{L^2}^2 \leq 4\left\|\sum_{m,n\geq 0}\varepsilon_m^{(1)}(s)\varepsilon_n^{(2)}(t)\varepsilon_{m,n}M(m,n)x_{m,n}\right\|_{L^2}^2.$$

Integrating both sides on $[0, 1]^2$, we deduce by the Fubini's theorem that

$$\begin{split} & \left\|\sum_{m,n\geq 0}\varepsilon_{m,n}M(m,n)x_{m,n}\right\|_{L^{2}}^{2} \\ &\leq 4\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}\left\|\sum_{m,n\geq 0}\varepsilon_{m}^{(1)}(s)\varepsilon_{n}^{(2)}(t)\varepsilon_{m,n}(u)M(m,n)x_{m,n}\right\|^{2}\mathrm{d}u\mathrm{d}t\mathrm{d}s \\ &= 4\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}\left\|\sum_{m,n\geq 0}\varepsilon_{m}^{(1)}(s)\varepsilon_{n}^{(2)}(t)\varepsilon_{m,n}(u)M(m,n)x_{m,n}\right\|^{2}\mathrm{d}t\mathrm{d}s\mathrm{d}u \\ &\leq 4C\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}\left\|\sum_{m,n\geq 0}\varepsilon_{m}^{(1)}(s)\varepsilon_{n}^{2}(t)\varepsilon_{m,n}(u)x_{m,n}\right\|^{2}\mathrm{d}t\mathrm{d}s\mathrm{d}u \\ &= 4C\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}\left\|\sum_{m,n\geq 0}\varepsilon_{m}^{(1)}(s)\varepsilon_{n}^{2}(t)\varepsilon_{m,n}(u)x_{m,n}\right\|^{2}\mathrm{d}u\mathrm{d}t\mathrm{d}s \\ &\leq 16C\left\|\sum_{m,n\geq 0}\varepsilon_{m,n}x_{m,n}\right\|_{L^{2}}^{2} \end{split}$$

for some constant C > 0 depending only on $(M(m, n))_{m,n \ge 0}$ by the assumption. This shows that $(M(m, n))_{m,n \ge 0}$ is Rademacher bounded.

Conversely, assume that X has the property (α). It was shown by Pisier [10] that in this case, the sequence $(\varepsilon_m^{(1)} \varepsilon_n^{(2)})_{m,n\geq 0}$ has the same behavior as a sequence of independent Rademacher functions $(\varepsilon_{m,n})_{m,n\geq 0}$, i.e., for all $1 \leq p < \infty$, there exists a constant C > 0, such that

$$\frac{1}{C} \left\| \sum_{m,n=1}^{N} \varepsilon_m^{(1)} \varepsilon_n^{(2)} x_{m,n} \right\|_{L^p} \le \left\| \sum_{m,n=1}^{N} \varepsilon_{m,n} x_{m,n} \right\|_{L^p} \le C \left\| \sum_{m,n=1}^{N} \varepsilon_m^{(1)} \varepsilon_n^{(2)} x_{m,n} \right\|_{L^p}$$

for all $N \in \mathbb{N}$ and $x_{m,n} \in X$, where $\varepsilon_m^{(1)}$, $\varepsilon_n^{(2)}$ and $\varepsilon_{m,n}$ are as in the first part of the proof. This implies in particular that when X has the property (α), and $(T_{m,n})_{m,n\geq 0} \subset \mathcal{L}(X)$ is a Rademacher bounded sequence, then it is also 2-Rademacher bounded. The proof is completed.

In [3], the authors have shown that the Rademacher boundedness is necessary for a sequence to be a Fourier multiplier on $L^p(\mathbb{T}^d; X)$. In the next result we show that the stronger condition of *d*-Rademacher boundedness is also necessary for a sequence to be a Fourier multiplier on $H^p(\mathbb{T}^d; X)$. **Proposition 3.1** Let X be a Banach space and let $1 \leq p < \infty$. Assume that the sequence $(M(n))_{n \in \mathbb{N}_0^d} \subset \mathcal{L}(X)$ defines a Fourier multiplier on $H^p(\mathbb{T}^d; X)$. Then $(M(n))_{n \in \mathbb{N}_0^d}$ is *d*-Rademacher bounded.

Proof For $t_j \in [0, 2\pi]$ $(1 \le j \le d)$, we have by the Kahane's inequality that

$$\left\|\sum_{n_j\geq 0}\varepsilon_{n_1}^{(1)}\cdots\varepsilon_{n_d}^{(d)}M(n_1,\cdots,n_d)x_{n_1,\cdots,n_d}\right\|_{L_p}^p$$

$$\leq 2^p \left\|\sum_{n_j\geq 0}\varepsilon_{n_1}^{(1)}\cdots\varepsilon_{n_d}^{(d)}e_{n_1,\cdots,n_d}(t_1,\cdots,t_d)M(n_1,\cdots,n_d)x_{n_1,\cdots,n_d}\right\|_{L_p}^p,$$

where $\varepsilon_n^{(j)}$ $(1 \leq j \leq d)$ are d sequences of independent Rademacher functions. Integrating on both sides on $[0, 2\pi]^d$, using the Fubini's theorem and the assumption that $(M(n))_{n \in \mathbb{N}_0^d} \subset \mathcal{L}(X)$ defines a Fourier multiplier on $H^p(\mathbb{T}^d; X)$, we deduce that

$$\left\|\sum_{n_j \ge 0} \varepsilon_{n_1}^{(1)} \cdots \varepsilon_{n_d}^{(d)} M(n_1, \cdots, n_d) x_{n_1, \cdots, n_d}\right\|_{L_p}^p \le C \left\|\sum_{n_j \ge 0} \varepsilon_{n_1}^{(1)} \cdots \varepsilon_{n_d}^{(d)} x_{n_1, \cdots, n_d}\right\|_{L_p}^p$$

for some constant C > 0 depending only on $(M(n))_{n \in \mathbb{N}^d}$. The proof is completed.

Now we are ready to state the operator-valued Fourier multiplier theorem on $H^p(\mathbb{T}^d; X)$ when X has not necessarily the property (α) .

Theorem 3.1 Let X be an AUMD space, $1 \le p < \infty$ and let $(M(n))_{n \in \mathbb{N}_0^d} \subset \mathcal{L}(X)$ be such that the sequences $\left(n^{(\alpha_1, \cdots, \alpha_d)} \left(\prod_{j=1}^d \Delta_j^{\alpha_j}\right) M(n)\right)_{n \in \mathbb{N}_0^d}$ are d-Rademacher bounded for $\alpha_j = 0, 1, 2$ $(1 \le j \le d)$. Then $(M(n))_{n \in \mathbb{N}_0^d}$ defines a Fourier multiplier on $H^p(\mathbb{T}^d; X)$.

Proof We only give the proof for the case d = 2, and the proof for the general case is similar. Let $(M(m,n))_{m,n\geq 0} \subset \mathcal{L}(X)$ be such that when $\alpha, \beta = 0, 1, 2, (m^{\alpha}n^{\beta}(\Delta_{1}^{\alpha}\Delta_{2}^{\beta})M(m,n))_{m,n\geq 0}$ are 2-Rademacher bounded sequences.

By the Fubini's theorem, the space $H^p(\mathbb{T}^2; X)$ and the space $H^p(\mathbb{T}; H^p(\mathbb{T}; X))$ may be naturally identified. To show that $(M(m, n))_{m,n\geq 0}$ defines a Fourier multiplier on $H^p(\mathbb{T}^2; X)$, it will suffice to show that the sequence $M_m \in \mathcal{L}(H^p(\mathbb{T}; X))$ defines a Fourier multiplier on $H^p(\mathbb{T}; H^p(\mathbb{T}; X))$, where M_m is defined by

$$M_m\left(\sum_{n\geq 0} x_n e_n\right) := \sum_{n\geq 0} M_{m,n} x_n e_n.$$

We notice that for fixed $m \ge 0$, the sequence $(M_{m,n})_{n\ge 0} \subset \mathcal{L}(X)$ verifies the sufficient condition of Theorem 2.1 by the assumptions and Lemma 3.1, thus defines a Fourier multiplier on $H^p(\mathbb{T}; X)$. The space $H^p(\mathbb{T}; X)$ is still an AUMD space as X is an AUMD space. To show that $(M_m)_{m\ge 0}$ defines a Fourier multiplier on $H^p(\mathbb{T}; H^p(\mathbb{T}; X))$, it suffice to show that the sets $\{M_m : m \ge 0\}$, $\{m\Delta M_m : m \ge 0\}$ and $\{m^2\Delta^2 M_m : m \ge 0\}$ are Rademacher bounded by Theorem 2.1. In other words, we have to show that there exists a constant C > 0, such that for $\sum_{n \ge 0} x_{m,n}e_n \in H^p(\mathbb{T}; X)$,

 $n \ge 0$

$$\left\|\sum_{m\geq 0}\varepsilon_m\sum_{n\geq 0}W_{m,n}x_{m,n}e_n\right\|_{L^p}\leq C\left\|\sum_{m\geq 0}\varepsilon_m\sum_{n\geq 0}x_{m,n}e_n\right\|_{L^p},$$

where $(W_{m,n})_{m,n\geq 0}$ is one of the sequences $(M(m,n))_{m,n\geq 0}$, $(m(M(m+1,n)-M(m,n)))_{m,n\geq 0}$ and $(m^2(M(m+2,n)-2M(m+1,n)+M_{m,n}))_{m,n\geq 0}$. By the Fubini's theorem, this is equivalent to show that there exists C > 0, such that for all $x_{m,n} \in X$,

$$\left\|\sum_{n\geq 0} \left(\sum_{m\geq 0} \varepsilon_m W_{m,n} x_{m,n}\right) e_n\right\|_{L^p} \leq C \left\|\sum_{n\geq 0} \left(\sum_{m\geq 0} \varepsilon_m x_{m,n}\right) e_n\right\|_{L^p}.$$

Hence, we have to show that the sequence $(V_n)_{n\geq 0} \subset \mathcal{L}(\operatorname{Rad}(X))$ verifies the sufficient condition in Theorem 2.1, where $V_n\left(\sum_{m\geq 0} \varepsilon_m x_m\right) = \sum_{m\geq 0} \varepsilon_m W_{m,n} x_m$. This is precisely the 2-Rademacher boundedness of the sequence $(M(m, n))_{m,n\geq 0}$. This completes the proof.

Remark 3.1 (1) When the underlying Banach space X has the property (α) , a sequence $(M(n))_{n \in \mathbb{N}^d}$ is d-Rademacher bounded if and only if it is Rademacher bounded by Lemma 3.1. This implies that the first claim of Theorem 2.2 is a consequence of Theorem 3.1.

(2) When X is a UMD space and $1 , a sequence <math>(M(n))_{n \in \mathbb{Z}^d}$ is a Fourier multiplier on $L^p(\mathbb{T}^d; X)$ if the sequences

$$\left(\left(n_1^2 + \dots + n_d^2\right)^{\frac{\alpha_1 + \dots + \alpha_d}{2}} \left(\prod_{j=1}^d \Delta_j^{\alpha_j}\right) M(n)\right)_{n \in \mathbb{Z}^d}$$

are Rademacher bounded for $\alpha_j = 0, 1$ $(1 \le j \le d)$ (see [3, 11]). Almost the same argument used in the proof of Theorem 3.1 shows that if the sequences $\left(n^{(\alpha_1, \dots, \alpha_d)} \left(\prod_{j=1}^d \Delta_j^{\alpha_j}\right) M(n)\right)_{n \in \mathbb{Z}^d}$ are *d*-Rademacher bounded for $\alpha_j = 0, 1$ $(1 \le j \le d)$, then $(M(n))_{n \in \mathbb{Z}^d}$ defines a Fourier multiplier on $L^p(\mathbb{T}^d; X)$. We do not know whether this sufficient condition is weaker than that given in [3, 11].

References

- Arendt, W. and Bu, S. Q., The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z., 240, 2002, 311–343.
- [2] Blower, G., A multiplier characterization of analytic UMD spaces, Studia Math., 96, 1990, 117–124.
- Bu, S. Q. and Kim, J.-M., Operator-valued Fourier multiplier theorems on L_p-spaces on T^d, Arch. Math. (Basel), 82, 2004, 404–414.
- Bu, S. Q. and Le Merdy, C., H^p-maximal regularity and operator valued multipliers on Hardy spaces, Canad. J. Math., 59(6), 2007, 1207–1222.
- [5] Clément, P., de Pagter, B., Sukochev, F. A. and Witvliet, M., Schauder decomposition and multiplier theorems, *Studia Math.*, 138, 2000, 135–163.
- [6] Edgar, G. A., Analytic martingale convergence, J. Funct. Anal., 69, 1986, 268-280.
- [7] Hytönen, T. P., Convolutions, multipliers and maximal regularity on vector-valued Hardy spaces, J. Evol. Equ., 5, 2005, 205–225.
- [8] Le Merdy, C., Two results about H[∞] functional calculus on analytic UMD Banach spaces, J. Aust. Math. Soc., 74, 2003, 351–378.
- [9] Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces II, Springer-Verlag, Berlin, 1979.
- [10] Pisier, G., Some results on Banach spaces without local unconditional structure, Compos. Math., 37, 1978, 3–19.
- [11] Strkalj, Z. and Weis, L., On operator-valued Fourier multipliers theorems, Trans. Amer. Math. Soc., 359(8), 2007, 3529–3547.
- [12] Zimmermann, F., On vector-valued Fourier multiplier theorems, Studia Math., 93, 1989, 201–222.

302