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1 Introduction

In 1894, Hurwitz [5] showed that for every irrational number x there exist infinitely many
co-prime integers p and q, with q > 0, such that∣∣∣x − p

q

∣∣∣ <
1√
5

1
q2

,

where the constant 1√
5

is “best possible”, in the sense that it cannot be replaced by a smaller
constant.

Let x be a real irrational number, with regular continued fraction (RCF) expansion

x = a0 +
1

a1 +
1

a2 + · · · + 1
an + · · ·

= [a0; a1, a2, · · · , an, · · · ]. (1.1)

Here we take a0 ∈ Z such that x − a0 ∈ [0, 1), and an ∈ N for n ≥ 1. Finite truncation in (1.1)
yields the convergents pn

qn
, n ≥ 0, i.e.,

pn

qn
= [a0; a1, a2, · · · , an] for n ≥ 1.

The partial coefficients an can be found from the regular continued fraction map T : [0, 1) →
[0, 1), defined by

T (x) :=
{ 1

x

}
=

1
x
−

⌊1
x

⌋
, x �= 0, T (0) := 0,

Manuscript received June 10, 2008. Revised January 21, 2010. Published online January 25, 2011.
1Delft University of Technology and Thomas Stieltjes Institute for Mathematics, EWI, DIAM, Mekelweg
4, 2628 CD Delft, Netherlands. E-mail: c.kraaikamp@tudelft.nl

2Universiteit Leiden and Thomas Stieltjes Institute for Mathematics, Niels Bohrweg 1, 2333 CA Leiden,
Netherlands. E-mail: ionica.smeets@gmail.com



304 C. Kraaikamp and I. Smeets

where �x� denotes the largest integer smaller than or equal to x.
Borel [2] showed that for all n ≥ 1,

min{Θn−1, Θn, Θn+1} <
1√
5
, (1.2)

where the approximation coefficients Θn of x are defined by

Θn = Θn(x) = q2
n

∣∣∣x − pn

qn

∣∣∣ for n ≥ 0. (1.3)

Hurwitz’s result is a direct consequence of Borel’s result, and a classical theorem by Legen-
dre, which states that if p and q are two co-prime integers with q > 0, satisfying

∣∣∣x − p

q

∣∣∣ <
1
2

1
q2

,

then there exists an n ∈ N, such that p = pn and q = qn.

Over the last century Borel’s result (1.2) has been refined in various ways. For example, in
[1, 4, 10], it was shown that

min{Θn−1, Θn, Θn+1} <
1√

a2
n+1 + 4

for n ≥ 0,

while Tong [13] showed that the “conjugate property” holds

max{Θn−1, Θn, Θn+1} >
1√

a2
n+1 + 4

for n ≥ 0.

Also various other results on Diophantine approximation have been obtained, starting with
Dirichlet’s observation from [9], that

∣∣∣x − pn

qn

∣∣∣ <
1

qnqn+1
for n ≥ 0,

which lead to various results in symmetric and asymmetric Diophantine approximation (see,
e.g., [7, 8, 14, 15]).

Define for x irrational the number Cn by

x − pn

qn
=

(−1)n

Cnqnqn+1
for n ≥ 0. (1.4)

Tong [15, 16] derived various properties of the sequence (Cn)n≥0, and of the related sequence
(Dn)n≥0, where

Dn = [an+1; an, · · · , a1] · [an+2; an+3, · · · ] =
1

Cn − 1
for n ≥ 0. (1.5)

Recently, Tong [17] obtained the following theorem, which covers many previous results.
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Theorem 1.1 (see [17]) Let x = [ a0; a1, a2, · · · , an, · · · ] be an irrational number. If r > 1
and R > 1 are two real numbers and

MTong =
1
2

(1
r

+
1
R

+ anan+1

(
1 +

1
r

)(
1 +

1
R

)

+

√[1
r

+
1
R

+ anan+1

(
1 +

1
r

)(
1 +

1
R

)]2

− 4
rR

)
,

then
(1) Dn−2 < r and Dn < R imply Dn−1 > MTong;
(2) Dn−2 > r and Dn > R imply Dn−1 < MTong.

Tong derived a similar result for the sequence Cn, but it is incorrect. We state this result,
give a counterexample and present a correct version of it in Section 6.

In Section 3, we prove the following result.

Theorem 1.2 Let r, R > 1 be reals and put

F =
r(an+1 + 1)

an(an+1 + 1)(r + 1) + 1
and G =

R(an + 1)
(an + 1)an+1(R + 1) + 1

.

If Dn−2 < r and Dn < R, then
(1) if r − an ≥ G and R − an+1 < F , then Dn−1 > an+1+1

R−an+1
,

(2) if r − an < G and R − an+1 ≥ F , then Dn−1 > an+1
r−an

,

(3) in all other cases Dn−1 > MTong.

These bounds are sharp.

The outline of this paper is as follows. We derive elementary properties of the sequence
Dn in Section 2. In Section 3, we prove Theorem 1.2 that gives a sharp lower bound for the
minimum of Dn−1 in case Dn−2 < r and Dn < R for real numbers r, R > 1. We prove a similar
theorem for the case that Dn−2 > r and Dn > R in Section 4. In Section 5, we calculate the
asymptotic frequency that simultaneously Dn−2 > r and Dn > R. Finally, we correct Tong’s
result for Cn in Section 6 and give the sharp bound in this case.

2 The Natural Extension

Define the space Ω = [0, 1) × [0, 1] and define T : Ω → Ω as

T (x, y) =
(1

x
−

⌊ 1
x

⌋
,

1
a1(x) + y

)
.

The following theorem was obtained in 1977 by Nakada et al. [12] (see also [6, 11]).

Theorem 2.1 Let ν be the probability measure on Ω with density d(x, y), given by

d(x, y) =
1

log 2
1

(1 + xy)2
, (x, y) ∈ Ω. (2.1)

Then ν is the invariant measure for T . Furthermore, the dynamical system (Ω, ν, T ) is an
ergodic system.
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The system (Ω, ν, T ) is the natural extension of the ergodic dynamical system ([0, 1), μ, T ),
where μ is the so-called Gauss-measure, the probability measure on [0, 1) with density

d(x) =
1

log 2
1

1 + x
, x ∈ [0, 1).

This natural extension plays a key role in the proofs of various results in this paper.
We write tn and vn for the “future” and “past” of x at time n, respectively,

tn = [0; an+1, an+2, · · · ] and vn = [0; an, · · · , a1]. (2.2)

Furthermore, t0 = x and v0 = 0.
The approximation coefficients may be written in terms of tn and vn

Θn =
tn

1 + tnvn
and Θn−1 =

vn

1 + tnvn
, n ≥ 1.

Lemma 2.1 Let x = [a0; a1, a2, · · · ] be in R\Q and n ≥ 2 be an integer. The variables
Dn−2, Dn−1 and Dn can be expressed in terms of future tn, past vn and digits an and an+1 by

Dn−2 = Dn−2(tn, vn) =
(an + tn)vn

1 − anvn
, (2.3)

Dn−1 = Dn−1(tn, vn) =
1

tnvn
, (2.4)

Dn = Dn(tn, vn) =
(an+1 + vn)tn
1 − an+1tn

. (2.5)

Proof The expression for Dn−1 follows from the definition in (1.5).

Dn−1 = [ an; an−1, · · · , a1 ][ an+1; an+2, · · · ]

=
1

[ 0; an, an−1, · · · , a1 ][ 0; an+1, an+2, · · · ]
=

1
vntn

.

It follows in a similar way that Dn = 1
tn+1

1
vn+1

. Using

tn+1 =
1
tn

− an+1,

vn+1 =
qn

qn+1
=

qn

an+1qn + qn−1
=

1
an+1 + vn

,

we find (2.5). The formula for Dn−2 can be derived in a similar way.

Remark 2.1 Of course, Dn−2, Dn−1 and Dn also depend on x, but we suppress this de-
pendence in our notation.

The following result on the distribution of the sequence (tn, vn)n≥0 is a consequence of the
Ergodic Theorem, and was originally obtained by Bosma et al. [3] (see also [6, Chapter 4]).

Theorem 2.2 For almost all x ∈ [0, 1), the two-dimensional sequence

(tn, vn) = T n(x, 0), n ≥ 0

is distributed over Ω according to the density-function d(t, v), as given in (2.1).
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Consequently, for any Borel measurable set B ⊂ Ω with a boundary of Lebesque measure
zero, one has

lim
n→∞

1
n

n−1∑
k=0

IB(tn, vn) = ν(B), (2.6)

where IB is the indicator function of B. We use this result to derive the following lemma.

Lemma 2.2 For almost all x ∈ [0, 1), and for all R ≥ 1, the limit

lim
n→∞

1
n

#{1 ≤ j ≤ n |Dj(x) ≤ R}

exists, and equals

H(R) = 1 − 1
log 2

(
log

(R + 1
R

)
+

log R

R + 1

)
. (2.7)

Consequently, for almost all x ∈ [0, 1) one has

lim
n→∞

1
n

n−1∑
k=0

Dn(x) = ∞.

Proof By (2.4) and (2.6), for almost every x, the asymptotic frequency that Dn−1 ≤ R is
given by the measure of those points (t, v) in Ω with 1

tv ≤ R. This measure equals

1
log 2

∫ 1

t= 1
R

∫ 1

v= 1
Rt

dv dt

(1 + tv)2

(see also Figure 1).

-

Figure 1 The curve 1
tv

= R on Ω. For (tn, vn) in the gray part, it holds that Dn−1 ≤ R.

It follows that

H(R) =
1

log 2

∫ 1

1
R

[ v

1 + tv

]1

1
Rt

dt =
1

log 2

[
log 2 − log

R + 1
R

− 1
R + 1

log R
]
,

which may be rewritten as (2.7).
To calculate the expectation of Dn, we use that the density function of Dn is given by

h(x) = H ′(x), so

h(x) =
1

log 2
log x

(x + 1)2
for x ≥ 1.
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We can now easily calculate the expected value of Dn

lim
n→∞

1
n

n−1∑
j=0

Dj(x) =
∫ ∞

1

xh(x) dx = lim
t→∞

∫ t

1

1
log 2

x log x

(x + 1)2
dx = ∞.

Apart for proving metric results on the Dn’s, the natural extension (Ω, ν, T ) is also very
handy to obtain various Borel-type results on the Dn’s.

For a, b ∈ N, consider the rectangle Δa,b =
[

1
b+1 , 1

b

)
×

[
1

a+1 , 1
a

)
⊂ Ω. On this rectangle, we

have an = a and an+1 = b. So (tn, vn) ∈ Δa,b if and only if an = a and an+1 = b . We use a

and b as abbreviation for an and an+1, respectively, if we are working in such a rectangle.
We define two functions from [ 1

b+1 , 1
b ) to R as

fa,r(t) =
r

a(r + 1) + t
and gb,R(t) =

R

t
− b(R + 1). (2.8)

From (2.3) and (2.5), it follows for (tn, vn) ∈ Δa,b that

Dn−2 < r if and only if vn < fa,r(tn),

Dn < R if and only if vn < gb,R(tn).

We introduce the following notation

F =
r(b + 1)

a(b + 1)(r + 1) + 1
and G =

R(a + 1)
(a + 1)b(R + 1) + 1

. (2.9)

We have F = fa,r

(
1

b+1

)
and gb,R(G) = 1

a+1 (see also Figure 2).

Figure 2 The possible intersection points of the graphs of fa,r and gb,R and the boundary
of the rectangle Δa,b, where an = a and an+1 = b.
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Remark 2.2 The position of the graph of fa,r in Δa,b depends on a and r. Obviously, we
always have fa,r

(
1
b

)
< fa,r

(
1

b+1

)
= F < 1

a . Furthermore

fa,r

( 1
b + 1

)
≥ 1

a + 1
if and only if r ≥ a + 1

b+1 ,

fa,r

(1
b

)
≥ 1

a + 1
if and only if r ≥ a + 1

b .

Similarly, the position of the graph of gb,R in Δa,b depends on b and R. We always have G < 1
b .

Furthermore,

G ≥ 1
b + 1

if and only if R ≥ b +
1

a + 1
,

gb,R

( 1
b + 1

)
<

1
a

if and only if R < b +
1
a
,

gb,R

( 1
b + 1

)
≥ 1

a+1 if and only if R ≥ b +
1

a + 1
.

Compare with Figure 2.

We use the following lemma to determine where Dn−1 attains it extreme values.

Lemma 2.3 Let a, b ∈ N, and Dn−1(t, v) = 1
tv for points (t, v) ∈ (0, 1] × (0, 1].

(1) When t is constant, Dn−1 is monotonically decreasing as a function of v.
(2) When v is constant, Dn−1 is monotonically decreasing as a function of t.
(3) Dn−1(t, v) is monotonically decreasing as a function of t on the graph of fa,r.
(4) Dn−1(t, v) is monotonically increasing as a function of t on the graph of gb,R.

Proof The first two statements follow from the trivial observation

∂Dn−1

∂t
< 0 and

∂Dn−1

∂v
< 0. (2.10)

For points (t, v) on the graph of fa,r, we find Dn−1(t, v) = a(r+1)+t
rt and

∂Dn−1

∂t
=

−a(r + 1)
rt2

< 0,

which proves (3).
Finally, for points (t, v) on the graph of gb,R, we find Dn−1(t, v) = 1

R−b(R+1)t . So ∂Dn−1
∂t > 0

and (4) is proved.

Lemma 2.4 On Δa,b, the infimum of Dn−1 is attained in the upper right corner, and its
maximum in the lower left corner. To be more precise

ab < Dn−1 ≤ (a + 1)(b + 1).

Lemma 2.5 Let a, b ∈ N, r, R > 1. Set

L = ab(r + 1)(R + 1), w =
√

4LR + (r − R + L)2) and S =
−L + R − r + w

2b(R + 1)
.



310 C. Kraaikamp and I. Smeets

On R+, the graphs of fa,r and gb,R have one intersection point, which is given by

(S, fa,r(S)) =
(−L + R − r + w

2b(R + 1)
,

2br(R + 1)
L + R − r + w

)
.

The corresponding value for Dn−1 in this point is given by MTong as defined in Theorem 1.1.
For x < S one has fa,r(x) < gb,R(x), while fa,r(x) > gb,R(x) if x > S.

Proof Solving
r

a(r + 1) + t
=

R

t
− b(R + 1)

yields

S =
−L + R − r + w

2b(R + 1)
or S =

−L + R − r − w

2b(R + 1)
.

Since L > R, we have the second solution is always negative. So this solution can not be in
Δa,b. The second coordinate follows from substituting S = −L+R−r+w

2b(R+1) in fa,r(t) or gb,R(t).
The corresponding value for Dn−1 in this point is given by

Dn−1

(−L + R − r + w

2b(R + 1)
,

2br(R + 1)
L + R − r + w

)

=
−L − R + r − w

r(L − R + r − w)
=

−L2 + r2 − 2Rr + R2 − 2Lw − w2

r((L − R + r)2 − w2)

=
−2L2 − 2Lw − 2Lr − 2LR

−4RrL
=

1
2

(1
r

+
1
R

+
L

Rr
+

w

Rr

)
= MTong.

Since lim
x↓0

fa,r(x) = r
a(r+1) and lim

x↓0
gb,R(x) = ∞, we immediately have that fa,r(x) < gb,R(x) if

x < S. And because there is only one intersection point on R+, it follows that fa,r(x) > gb,R(x)
if x > S.

Remark 2.3 In view of Remark 2.2 and the last statement of Lemma 2.5, the only possible
configurations for fa,r and gb,R in Δa,b are given in Figure 3.

3 The Case Dn−2 < r and Dn < R

We assume that both Dn−2 and Dn are smaller than some given reals r and R. We prove
Theorem 1.2 from the Introduction.

Proof of Theorem 1.2 We consider the closure of the region containing all points (t, v)
in Δa,b with Dn−2(t, v) < r and Dn(t, v) < R. In Figure 3, we show all possible configurations
of this region.

From (2.10), it follows that the extremum of Dn+1 is attained in a boundary point. Lemma
2.3 implies that we only need to consider the following three points:

(1) The intersection point of the graph of gb,R and the line t = 1
b+1 , given by

(
1

b+1 , R− b
)
.

(2) The intersection point of the graph of fa,r and the line v = 1
a+1 , given by

(
r − a, 1

a+1

)
.

(3) The intersection point of the graphs of fa,r and gb,R, given by MTong.
Assume r − a ≥ G and R − b < F . We know from Lemma 2.5 that the graphs of fa,r and

gb,R can not intersect more than once in Δa,b, thus we are in case (1) (see Figure 3(i) and (ii)).
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-

(a) In case (i) and (ii), we have r − a ≥ G and R − b < F . It is allowed that

R − b < 1
a+1

. In case (i), we have r − a > 1
b

and in case (ii) r − a ≤ 1
b
.

(b) In cases (iii) and (iv), we have r − a < G and R − b ≥ F . It is allowed that

r − a < 1
b+1

. In case (iii) we have R − b > 1
a

and in case (iv) R − b ≤ 1
a
.

(c) In case (v), we have F < 1
a+1

and G < 1
b+1

. Case (vi) contains all other

cases, it can be separated in four subcases (see Figure 6).

Figure 3 The possible configurations of the graphs of fa,r and gb,R on Δa,b. On the grey
parts Dn−2 < r and Dn < R, on the black parts Dn−2 > r and Dn > R.

In this case, the minimum of Dn−1 is given by Dn−1

(
1

b+1 , R− b
)

= b+1
R−b . The intersection point

(S, fa,r(S)) lies to the left of
(

1
b+1 , R − b

)
and from Lemma 2.3 we know that Dn−1 increases

on the graph of ga,r. We conclude that MTong = Dn−1(S, fa,r(S)) is smaller than b+1
R−b .

Assume r − a < G and R − b ≥ F . Then we are in case (2) (see Figure 3(iii) and (iv)), and
the minimum is given by Dn−1 =

(
r − a, 1

a+1

)
= a+1

r−a . A similar argument as before shows
MTong < a+1

r−a .

Otherwise, still assuming there are points (t, v) ∈ Δa,b with Dn−2(t, v) < r and Dn(t, v) < R,
we must be in case (3) (see Figure 3(vi)). The minimum follows from Lemma 2.5.

These bounds are sharp since the minimum is attained in the extreme point.
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Figure 4 Example with r = 2.9 and R = 3.6. The regions where Dn−2 < 2.9 are light
grey, the regions where Dn < 3.6 are dark grey. The intersection where both Dn−2 < 2.9
and Dn < 3.6 is black. The horizontal and vertical black lines are drawn to identify the
strips and have no meaning for the value of Dn−2 and Dn.

Example 3.1 Take r = 2.9 and R = 3.6 (see Figure 4).

If an = an+1 = 1, then r − an = 1.9, R − an+1 = 2.6, F ≈ 0.66 and G ≈ 0.71. Since
R − an+1 > F , we do not have the case Theorem 1.2(i). Since r − an > G, we are not in case
(ii) either. So in this case Dn−1 > MTong ≈ 2.30. For the following combinations the minimum
is also given by MTong:

an = 1 and an+1 = 2 : Dn−1 > MTong ≈ 4.04.

an = 2 and an+1 = 1 : Dn−1 > MTong ≈ 4.04.

an = 2 and an+1 = 2 : Dn−1 > MTong ≈ 7.48.

an = 2 and an+1 = 3 : Dn−1 > MTong ≈ 10.92.

If an = 1 and an+1 = 3, then F ≈ 0.70 and G ≈ 0.25. So r − an > G and 1
an+1

< R − an+1 < F .
Thus

Dn−1 >
an+1 + 1
R − an+1

≈ 6.67 > MTong ≈ 5.76.

For all other values of an and an+1 either Dn−2 > r or Dn > R, or both.

4 The Case Dn−2 > r and Dn > R

In this section, we study the case that Dn−2 and Dn are larger than given reals r and R,
respectively.

Theorem 4.1 Let r, R > 1 be reals, n ≥ 1 be an integer, and F and G be given as in (2.9).
If Dn−2 > r and Dn > R, then
(1) if r − an ≥ G and R − an+1 < F , then Dn−1 < an+1+1

F ,

(2) if r − an < G and R − an+1 ≥ F , then Dn−1 < an+1
G ,

(3) if r − an < 1
an+1+1 and R − an+1 < 1

an+1 , then Dn−1 < (an + 1)(an+1 + 1),
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(4) in all other cases Dn−1 < MTong.

The bounds are sharp.

Proof The proof is very similar to that of Theorem 1.2. The only “new” case is the one
where r − a < 1

b+1 and R − b < 1
a+1 (see Figure 3(v)). If r − a < 1

b+1 , then the graph of fa,r

lies below Δa,b ⊂ Ω. Similarly, if R − b < 1
a+1 the graph gb,R lies left of Δa,b ⊂ Ω. In this

case, we have that Dn−2 > r and Dn > R for all (tn, vn) ∈ Δa,b. In this case, Dn−1 attains
its maximum in the lower left corner

(
1

b+1 , 1
a+1

)
. For the intersection point (S, fa,r(S)) either

S < 1
b+1 or fa,r(S) < 1

a+1 and from Lemma 2.3, we conclude (a + 1)(b + 1) < MTong.

Example 4.1 We again use r = 2.9 and R = 3.6 (see Figure 5 and Table 1).

Figure 5 Example with r = 2.9 and R = 3.6. The regions where Dn−2 > 2.9 are light
grey, the regions where Dn > 3.6 are dark grey. The intersection where both Dn−2 > 2.9
and Dn > 3.6 is black.

Table 1 The sharp upper bounds and the Tong bounds for Dn−1 for r = 2.9 and R = 3.6.
See Figure 3 for cases (i)–(v) and Figure 6 for (via) and (vic).

an an+1 Case Upper bound for Dn−1 Tong’s upper bound

1 1 (via) 2.30 2.30
1 2 (via) 4.04 4.04
1 3 (i) 5.72 5.76
1 4 (i) 7.07 7.48
1 5, 6, · · · (i) · · · · · ·
1 37 (i) 51.44 64.20
2 1 (vic) 4.04 4.04
2 2 (via) 7.48 7.48
2 3 (via) 10.92 10.92
2 4 (i) 13.79 14.36
2 5, 6, · · · (i) · · · · · ·
2 42 (i) 116.00 144.97
3 1 (iii) 4.04 5.76
3 2 (iii) 7.48 10.92
3 3 (iii) 10.92 16.08
3 4 (v) 13.79 21.23
4, 5, 6 · · · 1, 2, 3 (iii) · · · · · ·
3, 4, 5 · · · 4, 5, 6, · · · (v) · · · · · ·
17 29 (v) 540.00 847.79
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5 Asymptotic Frequencies

Due to Theorem 2.1 and the ergodic theorem, the asymptotic frequency that an event occurs
is equal to the measure of the area of this event in the natural extension. We calculate the
measure of the region where Dn−2 > r and Dn > R. The same calculations can be done in the
easier case where Dn−2 < r and Dn < R.

5.1 The measure of the region where Dn−2 > r and Dn > R in a rectangle Δa,b

We calculate the measure in Δa,b above the graphs of fa,r and gb,R in the six cases from
Figure 3. We denote log 2 times the measure for case (∗) in Δa,b by m

(∗)
a,b.

m
(i)
a,b =

∫ 1
b

1
b+1

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
=

∫ 1
b

1
b+1

[−1
t

1
1 + tv

] 1
a

r
a(r+1)+t

dt

=
∫ 1

b

1
b+1

(−1
t

a

a + t
+

1
t

a(r + 1) + t

(a + t)(r + 1)

)
dt

=
∫ 1

b

1
b+1

(−1
t

+
1

a + t
+

1
t
− r

(a + t)(r + 1)

)
dt

=
∫ 1

b

1
b+1

1
(a + t)(r + 1)

dt =
1

(r + 1)
[log(a + t)]

1
b
1

b+1

=
1

(r + 1)
log

(ab + 1)(b + 1)
(ab + a + 1)b

.

Next we compute m
(v)
a,b, because it is handy for finding m

(ii)
a,b .

m
(v)
a,b =

∫ 1
b

1
b+1

∫ 1
a

1
a+1

dv dt

(1 + tv)2
= log

(ab + 1)(ab + a + b + 2)
(ab + a + 1)(ab + b + 1)

.

For m
(ii)
a,b , we subtract the measure of the region in Δa,b below the graph of fa,r from m

(v)
a,b.

m
(ii)
a,b = m

(v)
a,b −

∫ r−a

1
b+1

∫ fa,r(t)

1
a+1

dv dt

(1 + tv)2

= log
(ab + 1)(ab + a + b + 2)
(ab + b + 1)(ab + a + 1)

− r

r + 1
log

r(b + 1)
ab + a + 1

− log
ab + a + b + 2
(b + 1)(r + 1)

= log
(ab + 1)(b + 1)(r + 1)

(ab + b + 1)(ab + a + 1)
− r

r + 1
log

r(b + 1)
ab + a + 1

.

In the computation of m
(iii)
a,b , we use that v = gb,R(t) if and only if t = R

v+b(R+1) , so

m
(iii)
a,b =

∫ 1
a

1
a+1

∫ 1
b

R
b(R+1)+v

dt dv

(1 + tv)2
=

1
(R + 1)

log
(ab + 1)(a + 1)
(ab + b + 1)a

.

Note that m
(iii)
a,b is m

(i)
a,b with a interchanged with b and r replaced by R.
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For m
(iv)
a,b , we find using the same techniques as before

m
(iv)
a,b = m

(v)
a,b −

∫ R−b

1
a+1

∫ R
b(R+1)+v

1
b+1

dt dv

(1 + tv)2

= log
(ab + 1)(a + 1)(R + 1)
(ab + a + 1)(ab + b + 1)

− R

R + 1
log

R(a + 1)
ab + b + 1

,

which is m
(ii)
a,b where a is interchanged with b and r replaced by R.

In case (vi), there are four possibilities for the measure of the part above the graphs of fa,r

and gb,R, depending on where the graphs intersect with Δa,b (see Figure 6).

Figure 6 The four possible configurations for case (vi).

Denote G1 = Ra
ab(R+1)+1 (found from solving gb,R(G1) = 1

a ) and recall from Lemma 2.5 that
S is the first coordinate of the intersection point of the graphs of fa,r and gb,R. In this case,
we have that (S, fa,r(S)) ∈ Δa,b.

(via) If r − a ≥ 1
b and R − b ≥ 1

a , then

m
(via)
a,b =

∫ S

G1

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
+

∫ 1
b

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
.

(vib) If r − a ≥ 1
b and R − b < 1

a , then

m
(vib)
a,b =

∫ S

1
b+1

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
+

∫ 1
b

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
.

(vic) If r − a < 1
b and R − b ≥ 1

a , then

m
(vic)
a,b =

∫ S

G1

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
+

∫ r−a

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
+

∫ 1
b

r−a

∫ 1
a

1
a+1

dv dt

(1 + tv)2
.
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(vid) If r − a < 1
b and R − b < 1

a , then

m
(vid)
a,b =

∫ S

1
b+1

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
+

∫ r−a

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
+

∫ 1
b

r−a

∫ 1
a

1
a+1

dv dt

(1 + tv)2
.

Using the following intergrals:

∫ S

x

∫ 1
a

gb,R(t)

dv dt

(1 + tv)2
=

1
R + 1

log
S(1 − bx)
x(1 − bS)

+ log
x(S + a)
S(x + a)

,

∫ y

S

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
=

1
r + 1

log
a + y

a + S
,

∫ 1
b

r−a

∫ 1
a

1
a+1

dv dt

(1 + tv)2
= log

(ab + 1)(r + 1)
(ab + b + 1)r

,

we find that

m
(via)
a,b =

1
R + 1

log
S(1 − bG1)
G1(1 − bS)

+
1

r + 1
log

ab + 1
(a + S)b

+ log
G1(S + a)
S(G1 + a)

,

m
(vib)
a,b =

1
R + 1

log
S

1 − bS
+

1
r + 1

log
ab + 1

(a + S)b
+ log

S + a

S(ab + a + 1)
,

m
(vic)
a,b =

1
R + 1

log
S(1 − bG1)
G1(1 − bS)

+
1

r + 1
log

r

a + S
+ log

G1(S + a)(ab + 1)(r + 1)
S(G1 + a)(ab + b + 1)r

,

m
(vid)
a,b =

1
R + 1

log
S

1 − bS
+

1
r + 1

log
r

a + S
+ log

(S + a)(ab + 1)(r + 1)
S(ab + a + 1)(ab + b + 1)r

.

5.2 The total measure of the region where Dn−2 > r and Dn > R
in the natural extension

For every r > 1 and R > 1 the asymptotic frequency that Dn−2 > r and Dn > R can
be found by adding a finite number of integrals. Let {x} = x − �x� and 1A be the indicator
function of A, i.e.,

1A =
{

1, if condition A is satisfied,
0, else.

Theorem 5.1 For almost all x ∈ [0, 1), and for all r, R ≥ 1, we have that

log 2 lim
n→∞

1
n

#{2 ≤ j ≤ n + 1; Dj−2 > r and Dj > R}

exists and equals

	r
−1∑
a=1

∞∑
b=	R
+1

m
(i)
a,b +

	r
−1∑
a=1

(1({R}≤F )m
(i)
a,	R
 + 1({R}≥ 1

a )m
(via)
a,	R
 + 1(F<{R}< 1

a )m
(vib)
a,	R
)

+
	r
−1∑
a=1

	R
−1∑
b=1

m
(via)
a,b +

∞∑
b=	R
+1

(1({r}≥ 1
b )m

(i)
	r
,b + 1( 1

b+1 <{r}< 1
b )m

(ii)
	r
,b) + Mr,R

+
	R
−1∑

b=1

(1({r}≤G)m
(iii)
	r
,b + 1({r}≥ 1

b )m
(via)
	r
,b + 1(G<{r}< 1

b )m
(vic)
	r
,b) +

∞∑
a=	r
+1

∞∑
b=	R
+1

m
(v)
a,b
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+
∞∑

a=	r
+1

(1({R}≥ 1
a )m

(iii)
a,	R
 + 1({R}≥ 1

a )m
(via)
a,	R
 + 1(F<{R}< 1

a )m
(vib)
a,	R
) +

∞∑
a=	r
+1

	R
−1∑
b=1

m
(iii)
a,b ,

where Mr,R is the measure of the regions where Dn−2 > r and Dn > R in Δ	r
,	R
.

Proof Let a, b ≥ 1 be integers. We denote strips with constant an or an+1 by

Ha = [0, 1]×
[ 1
a + 1

,
1
a

]
and Vb =

[ 1
b + 1

,
1
b

]
× [0, 1].

For a < �r�, the curve v = fa,r(t) is entirely inside the rectangle Ha and (depending on the
position of the curve v = gb,R(t)) we are either in case (i) or (vi) (see Figure 3 and Remark 2.2).
If a > �r� the curve v = fa,r(t) is entirely underneath Ha and we are in case (iii), (iv) or (v).
For a = �r� the curve v = fa,r(t) is partially inside and partially underneath H	r
. In this
strip, we can have each of the six cases.

Similarly, for b < �R�, the curve of v = gb,R(t) is entirely inside the rectangle Vb and
(depending on the position of the curve v = gb,R(t)) we are in case (iii) or (vi). For b > �R�
the curve v = gb,R(t) is left of Vb and we are in case (i), (ii) or (v) . For b = �R�, the curve
v = gb,R(t) is partially inside and partially left of V	R
 and we can have each of the six cases.

We use the strips H	r
 and V	R
 to divide Ω in nine rectangles. Each of the nine terms in
the sum in the proposition gives the measure of the region where Dn−2 > r and Dn > R on
one of those rectangles. We work from left to right and from top to bottom. The results follow
from (2.6), Remark 2.2, Theorem 4.1 and the above. For instance, the first rectangle is given
by

[
0, 1

	R+1

)
×

[
1

	r
 , 1
)

and we see that for every Δa,b in this rectangle we are in case (i).

Remark 5.1 All the infinite sums are just finite integrals, for example

	r
−1∑
a=1

∞∑
b=	R
+1

m
(i)
a,b =

∫ 1
�R�+1

0

∫ 1
a

fa,r(t)

dv dt

(1 + tv)2
. (5.1)

Example 5.1 In this example, we compute the asymptotic frequency that simultaneously
Dn−2 > 2.9 and Dn > 3.6 (see Figure 5 and Table 2). Also compare with Table 1 where some
of the upper bounds for this case are listed.

Table 2 The probabilities that Dn−2 > 2.9 and Dn > 3.6 in the various cases.

an an+1 Case asymptotic frequency

1 1 (via) 0.047
1 2 (via) 0.025
1 > 2 (i) 0.106
2 1 (vic) 0.025
2 2 (via) 0.013
2 3 (via) 0.090
2 > 3 (i) 0.044

> 2 1 (iii) 0.097
> 2 2 (iii) 0.050
> 2 3 (iii) 0.034
> 2 > 3 (v) 0.115
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Summing over the cases yields that for almost all x ∈ [0, 1) \ Q the asymptotic frequency
that simultaneously Dn−2 > 2.9 and Dn > 3.6 is 0.64.

We can also compute the conditional probability that MTong is the sharp bound. Given
Dn−2 > 2.9 and Dn > 3.6, the conditional probability that MTong is the sharp bound is 0.31.

6 Results for Cn

In [17], Tong states the following result as theorem without a proof.

Let t > 1, T > 1 be two real numbers and

K =
1
2

( 1
t − 1

+
1

T − 1
+ anan+1t T +

√( 1
t − 1

+
1

T − 1
+ anan+1tT

)2

− 4
(t − 1)(T − 1)

)
.

Then

(1) Cn−2 < t, Cn < T imply Cn−1 > K;

(2) Cn−2 > t, Cn > T imply Cn−1 < K.

This statement is not correct; assume for instance that Cn−2 < 1.1 and Cn < 1.4, and
that an = an+1 = 1. Part (1) of Tong’s result then implies that Cn−1 > 11.94. However, by
definition Cn−1 ∈ (1, 2), so this bound is clearly wrong.

In this section, we give the correct result. The bounds in our theorems are sharp. We start
with the case that both Cn−2 and Cn are larger than given reals, this is related to the case
where Dn−2 and Dn are smaller than given numbers.

Theorem 6.1 Let t, T ∈ (1, 2) and put

F ′ =
an+1 + 1

(anan+1 + an + 1)t − 1
, G′ =

an + 1
(anan+1 + an+1 + 1)T − 1

,

L′ = t + T + anan+1tT − 2.

Assume Cn−2 > t and Cn > T . We have

(1) if 1
t−1 − an ≥ G′ and 1

T−1 − an+1 < F ′, then Cn−1 < T
(an+1+1)(T−1) ,

(2) if 1
t−1 − an < G′ and 1

T−1 − an+1 ≥ F ′, then Cn−1 < t
(an+1)(t−1) ,

(3) in all other cases, Cn−1 < 1 + L′−
√

L′2−4(t−1)(T−1)

2(t−1)(T−1) .

The bounds are sharp.

Proof The proof follows from the fact that Cn = 1 + 1
Dn

and Theorem 1.2. If Cn−2 > t,
then Dn−2 = 1

Cn−2−1 < 1
t−1 and likewise if Cn > T , then Dn < 1

T−1 . Set r = 1
t−1 and R = 1

T−1 .
It directly follows from (2.9) that F = F ′ and G = G′.

Consider case (1). The condition 1
t−1 −an ≥ G′ is equivalent to r−an ≥ G and 1

an+1 ≤ 1
T−1

−an+1 < F ′ is equivalent to 1
an+1 ≤ R − an+1 < F in part (1) of Theorem 1.2. We find that

Cn−1 <
1

T−1 − an+1

an+1 + 1
+ 1 =

T

(an+1 + 1)(T − 1)
.
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The proof of the second case is similar. For the third case we use Theorem 1.1 for MTong.

Cn−1 < 1 +
1

MTong

= 1 +
2

t + T + anan+1tT − 2 +
√

[t + T + anan+1tT − 2]2 − 4(t − 1)(T − 1)

= 1 +
2

L′ +
√

L′2 − 4(t − 1)(T − 1)
· L′ −

√
L′2 − 4(t − 1)(T − 1)

L′ −
√

L′2 − 4(t − 1)(T − 1)

= 1 +
L′ −

√
L′2 − 4(t − 1)(T − 1)
2(t − 1)(T − 1)

.

Example 6.1 Take t = 1.1, T = 1.4 and an = an+1 = 1. We find that F ′ = 0.870, G′ =
0.625 and L′ = 2.04. Since 1

T−1 − an+1 = 3
2 > F ′, the case (1) of Theorem 6.1 does not apply.

The second case does not apply either, since 1
t−1 − an = 9 > G′. So we are in case (3) and

Cn−1 < 1.50.

We state the next theorem without a proof, since it is similar to that of Theorem 6.1. The
only difference is that the proof is based on Theorem 4.1 instead of Theorem 1.2.

Theorem 6.2 Let t, T ∈ (1, 2) and F ′, G′ and L′ be as defined in Theorem 6.1. Assume
Cn−2 < t and Cn < T . We have

(1) if 1
t−1 − an ≥ G′ and 1

T−1 − an+1 < F ′, then Cn−1 > 1 + F ′
an+1+1 ,

(2) if G′ ≤ 1
t−1 − an and 1

T−1 − an+1 < F ′, then Cn−1 > 1 + G′
an+1 ,

(3) if 1
t−1 − an < 1

an+1+1 and 1
T−1 − an+1 < 1

an+1 , then Cn−1 > 1 + 1
(an+1)(an+1+1) ,

(4) in all other cases, Cn−1 > 1 + L′−
√

L′2−4(t−1)(T−1)

2(t−1)(T−1) .

The bounds are sharp.
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