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Abstract The authors study vanishing viscosity limits of solutions to the 3-dimensional
incompressible Navier-Stokes system in general smooth domains with curved boundaries
for a class of slip boundary conditions. In contrast to the case of flat boundaries, where the
uniform convergence in super-norm can be obtained, the asymptotic behavior of viscous
solutions for small viscosity depends on the curvature of the boundary in general. It
is shown, in particular, that the viscous solution converges to that of the ideal Euler
equations in C([0, T ]; H1(Ω)) provided that the initial vorticity vanishes on the boundary
of the domain.
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1 Introduction

In [9], we investigated the vanishing viscosity limit for the 3D Navier-Stokes equations

∂tu− εΔu+ (∇× u) × u+ ∇p = 0, in Ω, (1.1)

∇ · u = 0, in Ω (1.2)

with given initial data and the slip boundary condition

u · n = 0, (∇× u) · τ = 0, on ∂Ω, (1.3)

in a bounded smooth domain Ω, where the positive constant ε is the viscosity coefficient. As
was pointed out in [8], Proposition 4.1 in [9] holds only in the case when the boundary is flat.
For general domains, it should be replaced by the following proposition.

Proposition 1.1 Let u ∈ D(Ω). Then the boundary condition (1.3) is equivalent to u ·n =
0, ∂n(u(x) · τ) = −u(x) · ∂τn(x), where τ is a unit tangential vector on the boundary.
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As a result, the main convergence results in [9] hold only in the case of flat boundary as we
will discuss in Section 2 of this paper.

For general domains, since ∂τn(x) �= 0 in general, Proposition 4.1 and Theorem 4.2 in [9]
may not be true. Although the global existence of weak solutions (see [9, Theorem 6.3]) and
the local uniqueness of strong solutions in an ε-independent time interval (see [9, Theorem 7.2])
remain valid, yet one cannot establish the uniform convergence results in [9, Theorems 7.3, 7.4
and 8.2] for general domains.

The main purpose of the current paper is to clarify the differences between the vanish-
ing viscosity limits for flat and curved boundaries with the slip boundary condition with the
emphasis on domains with curved boundaries. Note that in the case of flat boundaries, the
results in [9] (see also Section 2) imply that not only the viscous flows converge uniformly to
the corresponding ideal flow in L∞([0, T ] × Ω), but also the Euler flow satisfies the same slip
boundary condition (1.3). Thus the boundary layer behavior of the viscous flow is described
precisely in this case. On the other hand, for general domains with curved boundaries, this may
be different. It should be noted that the vanishing viscosity limit problem with general Navier
slip boundary conditions for general 3D smooth domains was studied successfully in the weak
norm, L∞([0, T ], L2(Ω)) (see [3–4]). Since such a norm is too weak to observe the boundary
layer behavior, it is desirable to investigate the vanishing viscosity limit problem in stronger
norms.

Recall that the main approach in [9] is based on that the nonlinearity in (1.1) and the Euler
system satisfy the same boundary condition (1.3) for the flat boundary (see [9, Theorem 4.2]).
Now, this fails to be true in general for domains with curved boundaries, as was shown by a
counter-example in [8]. To treat general domains, we observe that if instead of the slip condition
(1.3), one considers the following boundary conditions:

u · n = 0, ∇× u = 0, on ∂Ω, (1.4)

and in terms of vorticity w = ∇× u, the nonlinearity in both the Navier-Stokes and the Euler
system takes the form

(u · ∇)w − (w · ∇)u,

which vanishes on the boundary if (1.4) holds. Unfortunately, although (1.4) is compatible
for the ideal Euler system, the Navier-Stokes system is over-determined under condition (1.4).
Thus we first consider a related viscous system with suitable boundary conditions motivated by
(1.4), whose solutions are shown to converge uniformly to solutions to the ideal Euler system in
Lp(0, T ;H3(Ω))∩C([0, T ];H2(Ω)) (for velocity fields) by this new observation and the approach
in [9]. Indeed, we are able to prove the convergence of solutions to the following boundary
problem:

∂tω − εΔω + (u · ∇)ω − (ω · ∇)u = 0, in Ω, (1.5)

∇× u = ω + ∇p, in Ω, (1.6)

− Δp = ∇ · ω, in Ω, (1.7)

∇ · u = 0, in Ω (1.8)

with complementary boundary condition

u · n = 0, ω = 0, p = 0, on ∂Ω, (1.9)
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which can be regarded as a singular perturbation of the following system:

∂tω
0 + (u0 · ∇)ω0 − (ω0 · ∇)u0 = 0, in Ω, (1.10)

∇× u0 = ω0 + ∇p0, in Ω, (1.11)

− Δp0 = ∇ · ω0, in Ω, (1.12)

∇ · u0 = 0, in Ω (1.13)

with the same boundary condition

u0 · n = 0, ω0 = 0, p0 = 0, on ∂Ω. (1.14)

We remark that if the domain is periodic, and the initial data ω0 satisfy ∇ · ω0 = 0, it then
follows from (1.5) that ∇ · ω satisfies

∂t(∇ · ω) − εΔ(∇ · ω) + u · ∇(∇ · ω) = 0, in Ω, (1.15)

which implies ∇ · ω = 0, and then ω = ∇× u. This shows that (1.5)–(1.8) is just the vorticity
formulation of the Navier-Stokes system for this initial data. For this reason, we call the system
(1.5)–(1.8) the relaxed Navier-Stokes system. Although in bounded domains, this system is not
equivalent to (1.1), yet the limiting system is indeed the vorticity formulation of the Euler
equations provided that ∇ · w0 = 0 initially.

An interesting corollary of this convergence is that solutions to the Euler equations will
preserve zero vorticity on the boundary in its evolution if it is initially so (see Corollary 3.1 for
details).

To study the strong convergence of the solutions for the Navier-Stokes equations (1.1), we
investigate the Navier-Stokes equations

∂tu− εΔu+ (∇× u) × u+ ∇p = 0, in Ω, (1.16)

∇ · u = 0, in Ω (1.17)

with the slip boundary condition

u · n = 0, (∇× (u − u0)) · τ = 0, on ∂Ω (1.18)

by estimating its deviation from u0 directly, where u0 is the corresponding solution to the Euler
equations with the same initial data and the boundary condition u · n = 0 on ∂Ω, and we will
obtain the following rate of convergence

‖u(ε) − u‖2
1 + ε

∫ T

0

‖u(ε) − u‖2
2dt ≤ Cε2 (1.19)

for the solutions.
In particular, if the initial data are given such that its vorticity vanishes on the boundary,

then the vorticity remains to be zero in the time evolution for solutions to the Euler equations
(see Corollary 3.1 for details). So, the estimate (1.19) is also valid for the original problem
(1.1)–(1.3) for these initial data.

There exist a huge amount of literature on the studies of vanishing viscosity limit problem
for various boundary conditions and systems. We refer to [1, 7–9] for more references.

The rest of the paper is arranged as follows. In the next section, we restate the main results
in [9] for the case of flat boundaries. In Section 3, we investigate the H3 convergence for the
relaxed system (1.5)–(1.8). In Section 4, we give the estimate of strong convergence rate for
the Navier-Stokes equations with the slip boundary condition that its voticity coincides with
that of the Euler equations in the tangential directions on the boundary.
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2 Flat-Boundaries

Let Ω = [0, 1]2per × (0, 1), and denote ∂Ω = {x ∈ Ω; x3 = 0 or x3 = 1}. We will use the
same notations as in [9]. To avoid confusions in applications, we restate the main results in [9]
as follows.

Theorem 2.1 Let u0 ∈ H0
τ (Ω) and T > 0. There exists at least one weak solution u to

(1.1)–(1.3) which satisfies the energy inequality

d
dt

‖u‖2 + 2ε‖∇× u‖2 ≤ 0 (2.1)

in the sense of distribution.

Theorem 2.2 Let u0 ∈ H1
τ (Ω). Then there exists a T ∗ = T ∗(u0) > 0, such that the problem

(1.1)–(1.3) has a unique strong solution u in the interval [0, T ∗) satisfying

u ∈ L2(0, T ;W ) ∩ C([0, T ∗);H1
τ (Ω)), (2.2)

u′ ∈ L2(0, T ;H0
τ (Ω)), (2.3)

‖u‖1 → ∞, as t→ T ∗ (2.4)

for any T ∈ (0, T ∗).
It follows that the energy equation

d
dt

‖ω‖2 + 2ε‖Δu‖2 + 2(∇×B(u), ω) = 0 (2.5)

holds and (2.1) becomes an equation.

Theorem 2.3 The unique strong solution u belongs to C((0, T ∗);W ). Moreover, if u0 ∈ W ,
then

u ∈ L2(0, T ;H3(Ω)) ∩ C([0, T ∗);W ), (2.6)

u′ ∈ L2(0, T ;H1
τ (Ω)), (2.7)

and the energy equation

d
dt

‖v‖2 + 2ε‖∇× v‖2 + 2(−ΔB(u), v) = 0 (2.8)

holds for v = −Δu on the time interval.

Theorem 2.4 The unique strong solution u belongs to C((0, T ∗);H3(Ω)), and if u0 ∈
W ∩H3(Ω), then

u ∈ L2(0, T ;H4(Ω)) ∩ C([0, T ∗);H3(Ω)), (2.9)

u′ ∈ L2(0, T ;W ) (2.10)

and the energy equation

d
dt

‖∇ × v‖2 + 2ε‖Δv‖2 + 2(ΔB(u),Δv) = 0 (2.11)

holds for v = −Δu in the sense of distribution. Moreover, v satisfies

(∇× v) · τ = 0 (2.12)
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for a.e. t ∈ (0, T ).

Theorem 2.5 Let u0 ∈ W ∩ H3(Ω). Then there exists a T0 > 0 such that the strong
solution u(ε) to the Navier-Stokes equations with the initial data u0 converges to the unique
solution u of the Euler equations with the same initial data and the slip boundary condition
u · n = 0 on ∂Ω in the following sense:

u(ε) → u, in Lp(0, T ;H3(Ω)), (2.13)

u(ε) → u, in C([0, T ];H2(Ω)), (2.14)

1 ≤ p <∞, as ε→ 0.

Consequently, we have the following result.

Corollary 2.1 For initial velocity u0 ∈ H3(Ω) ∩W , the unique solution u to the Euler
equations with the slip boundary condition, u · n = 0 on ∂Ω, satisfies an extra condition (∇×
u)τ = 0 on ∂Ω in its maximum existent interval [0, T ).

Finally, we have the following estimate on the rate of the convergence.

Theorem 2.6 Let u0 ∈ H3(Ω) ∩W , and T, T be as above. Then it holds that

‖u(ε) − u‖2
2 ≤ C(T )ε, (2.15)

in the interval [0,min{T, T}].

3 H3 Convergence of the Relaxed System

In this section, we consider the following viscous system:

∂tω − εΔω + (u · ∇)ω − (ω · ∇)u = 0, in Ω, (3.1)

∇× u = ω + ∇p, in Ω, (3.2)

− Δp = ∇ · ω, in Ω, (3.3)

∇ · u = 0, in Ω (3.4)

with suitable initial data and the boundary condition

u · n = 0, ω = 0, p = 0, on ∂Ω. (3.5)

By using a similar approach as in [9], we can pass the zero viscosity limit of the solution to this
problem to get the solution to the Euler equations that satisfies the standard slip condition and
an extra boundary condition of vorticity being zero.

Remark 3.1 The velocity u involved in the system (3.1)–(3.5) satisfies an inhomogeneous
Navier-Stokes system with the slip boundary condition (1.3), i.e.,

∂tu− εΔu+ (∇× u) × u+ ∇q = F, in Ω, (3.6)

∇ · u = 0, in Ω, (3.7)

u · n = 0, (∇× u) · τ = 0, on ∂Ω (3.8)

with F satisfying

∇× F = ∂t(∇p) − εΔ(∇p) + (u · ∇)(∇p) − ((∇p) · ∇)u, in Ω, (3.9)

∇ · F = 0, in Ω, (3.10)

F · n = 0, on ∂Ω. (3.11)
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Denote by A = −Δ the Laplacian with the domain D(A) = H2(Ω) ∩ H1
0 (Ω), and define

Pω = ω + ∇p with p determined by

−Δp = ∇ · ω, in Ω, (3.12)

p = 0, on ∂Ω, (3.13)

and Tg = u determined by

∇× u = g, in Ω, (3.14)

∇ · u = 0, in Ω, (3.15)

u · n = 0, on ∂Ω. (3.16)

Due to the standard elliptic regularity, the linear operator P : D(A
1
2 ) = H1

0 (Ω) → H1
n(Ω) (see

[9] for the definition) is bounded. It follows from Lemma 2.1 in [8] that the linear operator
T : H1

n(Ω) → H2
τ (Ω) (see [9] for the definitions) is bounded. Set

B(ω) = (T (Pω) · ∇)ω − (ω · ∇)T (Pω). (3.17)

Then Sobolev estimates imply

‖(φ · ∇)ψ‖ ≤ c‖φ‖2‖ψ‖1 (3.18)

and

‖(φ · ∇)ψ‖ ≤ c‖φ‖1‖ψ‖2. (3.19)

Hence, we have the following result.

Lemma 3.1 B : D(A
1
2 ) → L2(Ω) is a local Lipschitz continuous mapping.

We then can reduce the problem (3.1)–(3.5) to a semi-linear abstract parabolic system of
the form

ω′ + εAω +B(ω) = 0, (3.20)

in L2(Ω).

Definition 3.1 ω ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω)) (or the triple (ω, u, p)) is said to be

a weak solution to the problem (3.1)–(3.5) in the interval [0, T ) if

(ω′, v) + ε(∇ω,∇v) + (B(ω), v) = 0 (3.21)

holds for all v ∈ H1
0 (Ω), where p and u are determined by solving (3.12)–(3.16) respectively.

To solve (3.20), one has the Galerkin approximations ωm =
m∑
1
ajej with aj solving the

systems

a′j + ελjaj + gj = 0, j = 1, · · · ,m, (3.22)

where {λi} is the list of all eigenvalues of A and ei is the corresponding eigenvector, and gj is
given by

gj(t) = (B(ωm), ej). (3.23)
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Applying the energy equations

d
dt

‖ω‖2 + 2ε‖∇ω‖2 + 2(B(ω), ω) = 0 (3.24)

and

d
dt

‖∇ω‖2 + 2ε‖Aω‖2 + 2(B(ω), Aω) = 0 (3.25)

to the Galerkin approximations, one can prove the following theorem by the standard method.

Theorem 3.1 For given initial data ω0 ∈ L2(Ω), there exists a Tε > 0 such that (3.1)–(3.5)
has a unique solution ω ∈ C([0, Tε);L2(Ω)) ∩ L2(0, Tε;H1

0 (Ω)) in [0, Tε) with initial data ω0,
and if Tε <∞, then

‖∇ω‖ → ∞, as t→ Tε. (3.26)

Moreover, if ω0 ∈ H1
0 (Ω), then the solution ω ∈ C([0, Tε), H1

0 (Ω)) ∩ L2(0, Tε;D(A)).

Now, we derive the L∞(0, T ;D(A)) uniform estimate of the solutions in some fixed time
interval independent of ε for the more regular initial data ω0 ∈ D(A), and prove the main result
of this section.

Theorem 3.2 Let ω0 ∈ D(A). Then there exists a T > 0 such that the solution ω(ε) to the
system (3.1)–(3.5) with the initial data ω0 converges to ω0 as ε→ 0+ in the following sense:

ω(ε) → ω0, in Lp(0, T ;H2(Ω)), (3.27)

ω(ε) → ω0, in C([0, T ];H1(Ω)) (3.28)

with 1 ≤ p <∞, and (ω0, p0, u0) satisfying

∂tω
0 + (u0 · ∇)ω0 − (ω0 · ∇)u0 = 0, in Ω, (3.29)

∇× u0 = ω0 + ∇p0, in Ω, (3.30)

− Δp0 = ∇ · ω0, in Ω, (3.31)

∇ · u0 = 0, in Ω (3.32)

and the boundary condition

u0 · n = 0, ω0 = 0, p0 = 0, on ∂Ω. (3.33)

We start with the following observation.

Lemma 3.2 Let ω be smooth and satisfy ω = 0 on the boundary. Then it holds that

B(ω) = 0, on ∂Ω. (3.34)

Proof It follows from ω = 0 on the boundary that

ω · ∇u = 0, on ∂Ω. (3.35)

For any smooth Φ, it holds that

(u · ∇ω) · Φ = u · ∇(ω · Φ) − (u · ∇Φ) · ω. (3.36)
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Since u · n = 0 on ∂Ω, we have

u · ∇(ω · Φ) = 0, (3.37)

and hence the lemma follows.

Now, we prove Theorem 3.2.

Proof of Theorem 3.2 By a similar argument of [9] and Lemma 3.2, we have that
Ψ = −Δω satisfies

∂tΨ − εΔΨ − ΔB(ω) = 0, in Ω, (3.38)

Ψ = 0, on ∂Ω. (3.39)

−ΔB(ω) can be calculated by

−ΔB(ω) = u · ∇(−Δω) +
∑

α=0,1,2

Dαω ·D3−αu. (3.40)

Note that

(u · ∇(−Δω),−Δω) = 0 (3.41)

and

‖u‖s+1 ≤ c‖ω + ∇p‖s ≤ c‖ω‖s. (3.42)

It follows that

d
dt

‖Δω‖2 + ε‖∇(Δω)‖2 ≤ c‖Δω‖3, (3.43)

which implies that there is a T > 0 such that Tε ≥ T and

ω(ε) uniformly bounded in C([0, T ];H2(Ω)), (3.44)

ω′(ε) uniformly bounded in L2(0, T ;H1(Ω)). (3.45)

Hence, there is a subsequence εn of ε and a vector function ω0 such that

ωn → ω0 ∈ Lp(0, T ;H2(Ω)), (3.46)

ωn → ω0, in C([0, T ];H1(Ω)) (3.47)

for all 1 ≤ p <∞, as εn → 0, where ωn = ω(εn) denotes the corresponding solution obtained in
Theorem 3.1. Passing to the limit and combining with the continuity of the operators P, T and
B show that the triple (ω0, p0, u0) satisfies (3.29)–(3.33). A standard estimate on the difference
between two solutions (see also the next section) shows that the solution is unique. Hence, the
convergence of the whole sequence can be obtained and the theorem is proved.

Remark 3.2 The convergence in terms of u is given by

u(ε) → u0, in Lp(0, T ;H3(Ω)), (3.48)

u(ε) → u0, in C([0, T ];H2(Ω)). (3.49)
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Next, we claim that the limit (3.29)–(3.33) is just the vorticity form of the Euler equations
for the initial data satisfying ∇ · (ω0

0) = 0. Indeed, note that

B(ω) = ∇× (ω × u) + (∇ · ω)u. (3.50)

Taking divergence in (3.29) yields

∂t(∇ · ω0) + u0 · ∇(∇ · ω0) = 0, in Ω, (3.51)

which implies

∇ · ω0 = 0, in Ω, (3.52)

if it is initially so. Then, p0 = 0, ∇× u0 = ω0, and then the assertion follows.
The corollary below follows from the uniqueness of the solution to the Euler equations.

Corollary 3.1 Let u be the smooth solution to the Euler equations in [0, T ] with the slip
boundary condition u · n = 0 on ∂Ω and the initial data u0 satisfying ω0 = ∇× u0 = 0 on the
boundary. Then the vorticity satisfies

ω = ∇× u = 0, on ∂Ω (3.53)

in the interval [0, T ].

Remark 3.3 This corollary may also be obtained from the Euler-Lagrangian particle path
by considering the ordinary differential equation

Dω

dt
= ω · ∇u, (3.54)

on the boundary, since the condition u · n = 0 on the boundary, so the particle will stay on the
boundary (see [2]).

4 Strong Convergence for the Navier-Stokes Equations

In this section, we return to the original vanishing viscosity limit problem. Specifically, we
consider the Navier-Stokes equations

∂tu− εΔu+ (∇× u) × u+ ∇p = 0, in Ω, (4.1)

∇ · u = 0, in Ω (4.2)

with the slip boundary condition that its vorticity coincides with that of the solutions to the
Euler equations in the tangential directions, namely

u · n = 0, (∇× (u− u0)) · τ = 0, on ∂Ω, (4.3)

where u0 is the corresponding solution to the Euler equations

∂tu
0 + (∇× u0) × u0 + ∇p0 = 0, in Ω, (4.4)

∇ · u0 = 0, in Ω, (4.5)

u0 · n = 0, on ∂Ω. (4.6)

Then the main results in this section can be stated as follows.
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Theorem 4.1 Let u0 ∈ H3 and u0 · n = 0 on the boundary, and u0 be the smooth solution
to the Euler equations with u0(0) = u0 in the time interval [0, T ]. Then for ε small enough, the
strong solution to the boundary value problem (4.1)–(4.3) of the Navier-Stokes equations has a
unique solution u = u(ε) ∈ C([0, T ], H1(Ω))∩L2(0, T ;H2(Ω)) with the same initial data in the
same interval, and

sup
0≤t≤T

‖u(ε) − u‖2
1 + ε

∫ T

0

‖u(ε) − u‖2
2dt ≤ Cε2. (4.7)

Proof We begin by considering the following system:

∂tw − εΔw +B0(w, t) − εΔu0 + ∇q = 0, in Ω, (4.8)

∇ · w = 0, in Ω, (4.9)

w · n = 0, (∇× w) · τ = 0, on ∂Ω (4.10)

with the initial data w(0) = 0, where

B0(w, t) = (∇× u0) × w + (∇× w) × u0 + (∇× w) × w. (4.11)

Note that the solution to the Euler equations u0 has been determined in [0, T ], and the system
(4.8)–(4.10) differs from the system (1.1)–(1.3) only in replacing the nonlinearity by a time
dependent one. So in the similar way as in the proof of the existence and uniqueness of the
strong solution to Navier-stokes equations (1.1)–(1.3) stated in [9], we can show that the problem
(4.8)–(4.10) has a unique (strong) solution w = w(ε) ∈ C([0, Tε), H1(Ω)) ∩ L2((0, Tε);H2(Ω))
with w(0) = 0 in a time interval [0, Tε) for some Tε ≤ T and if Tε < T , then ‖w‖1 → ∞ as
t→ Tε.

We then estimate w. Taking the L2(Ω) inner product of (4.8) with −Δw, noting that

(Φ,−Δw) = (∇× Φ,∇× w) (4.12)

for all Φ ∈ H1(Ω) due to the boundary condition (∇ × w) × n = 0 and integrating by parts,
one has

d
dt

‖∇× w‖2 + 2ε‖Δw‖2 + 2(∇× (B0(w, T ),∇× w) = −2ε((∇×)3u0,∇× w). (4.13)

Direct calculation yields

∇× (B0(w, t)) = [w,∇× u0] + [u0,∇× w] + [w,∇× w], (4.14)

where

[ϕ, ψ] = (ϕ · ∇)ψ − (ψ · ∇)ϕ. (4.15)

Note that

((u0 · ∇)(∇× w),∇× w) = 0, (4.16)

((w · ∇)(∇× w),∇× w) = 0 (4.17)

and

|((w · ∇)(∇× u0),∇× w)| ≤ c‖w‖2
1‖u0‖3, (4.18)

|(((∇× u0) · ∇)w,∇× w)| ≤ c‖w‖2
1‖u0‖3, (4.19)

|(((∇× w) · ∇)u0,∇× w)| ≤ c‖w‖2
1‖u0‖3, (4.20)

|(((∇× w) · ∇)w,∇× w)| ≤ c‖w‖ 3
2
1 ‖w‖

3
2
2 , (4.21)
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due to the Sobolev’s inequality.
Since u is the smooth solution to the Euler equations so that ‖u0‖3 ≤ C in [0, T ], it follows

that

|(∇× (B0(w, t)),∇× w)| ≤ C(‖w‖2
1 + ‖w‖ 3

2
1 ‖w‖

3
2
2 ). (4.22)

So the Young’s inequality yields

d
dt

‖∇ × w‖2 + ε‖Δw‖2 ≤ C(‖w‖2
1 + ε−3‖w‖6

1 + ε2). (4.23)

This, together with w(0) = 0, implies

‖w‖2
1 + ε

∫ T

0

‖w‖2
2dt ≤ Cε2, (4.24)

in the interval [0, T ] for ε small enough. Thus, (4.7) follows and the theorem is proved.

Note that Corollary 3.1 implies that the initial zero vorticity on the boundary is preserved
by the Euler flows. Consequently, Theorem 4.1 gives the following uniform convergence for the
original problem (1.1)–(1.3).

Corollary 4.1 Let u0 ∈ H3(Ω) ∩W satisfying ∇× u0 = 0 on the boundary, and u0 be the
smooth solution to the Euler equations in the time interval [0, T ] with initial data u0 and the
non-slip boundary condition (4.6). Then for ε small enough, the strong solution to the problem
(1.1)–(1.3) of the Navier-Stokes equations with the same initial data exists in the same interval
such that

‖u(ε) − u‖2
1 + ε

∫ T

0

‖u(ε) − u‖2
2dt ≤ Cε2 (4.25)

holds in the interval [0, T ].

Remark 4.1 This result is weaker than that for flat boundaries (see Theorem 2.6), but
stronger than that was obtained in [3] (see also [4]), where they proved the following convergence
estimate:

‖u(ε) − u‖2 + ε

∫ T

0

‖u(ε) − u‖2
1dt ≤ Cε2 (4.26)

for general Navier-slip boundary conditions and general smooth domains.

Remark 4.2 It should be noted that in the proof of Theorem 4.1, only the tangential
vorticity of the solution to the Euler equations was used. However, it seems not clear to us
whether zero tangential vorticity on the boundary can be preserved by smooth Euler flows with
the slip condition (4.6) for general domains. Indeed, let X(t) be any Lagrangian particle path.
Since u · n = 0 on the boundary, it follows that X(t) remains on the boundary, i.e., X(t) ∈ ∂Ω
for all t ∈ [0, T ] if X(0) ∈ ∂Ω. Denote by {τ1, τ2, n} the local coordinate near the boundary. It
follows that

D(ω · τi)
dt

= S(u)ω · τi + ω · Dτi
dt

. (4.27)

Note that τi = τi(X(t)) does not involve the variable t directly. It follows that

ω · Dτi
dt

= ω · (u · ∇)τi. (4.28)
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Write

ω = ωT + (ω · n)n = (ω · τi)τi + (ω · n)n. (4.29)

Then

D(ω · τi)
dt

= S(u)ωT · τi + ωT (u · ∇)τi +N, (4.30)

where

N = (ω · n)(S(u)n · τi + n · (u · ∇)τi). (4.31)

Direct calculation gives

N = −(ω · n)(2S(n)u+ ωT × n) · τi, (4.32)

where 2S = ∇ + ∇⊥. It holds that

D(ω · τi)
dt

= aij(u)ω · τj − 2(ω · n)S(n)u · τi. (4.33)

Since (ω · n)S(n)u · τi may not be zero in general, we have that ω · τ may not remain zero even
it is zero initially.
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