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A Poincaré Inequality in a Sobolev Space
with a Variable Exponent
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Abstract Let Ω be a domain in R
N . It is shown that a generalized Poincaré inequality

holds in cones contained in the Sobolev space W 1,p(·)(Ω), where p(·) : Ω → [1,∞[ is a
variable exponent. This inequality is itself a corollary to a more general result about
equivalent norms over such cones. The approach in this paper avoids the difficulty arising
from the possible lack of density of the space D(Ω) in the space {v ∈ W 1,p(·)(Ω); tr v =
0 on ∂Ω}. Two applications are also discussed.
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1 Introduction

All notions and definitions not defined in this introduction are defined in the next section.
Let Ω be a domain in R

N and let Γ := ∂Ω. The usual Lebesgue and Sobolev spaces, i.e., with
a constant exponent p ≥ 1 are denoted Lp(Ω) and W 1,p(Ω), while the Lebesgue and Sobolev
spaces with a variable exponent are denoted Lp( · )(Ω) and W 1,p( · )(Ω), the variable exponent
p( · ) being now any function in the space L∞(Ω) that satisfies p(x) ≥ 1 for almost all x ∈ Ω
(the main properties of these spaces are reviewed in Section 2).

The classical Poincaré inequality in Sobolev spaces with a constant exponent asserts that,
given any real number p ≥ 1, there exists a constant C = C(Ω, p) such that

∫
Ω

|v(x)|p dx ≤ C

N∑
i=1

∫
Ω

|∂iv(x)|p dx for all v ∈ W 1,p
0 (Ω),

where
W 1,p

0 (Ω) := {v ∈ W 1,p(Ω); tr v = 0 on Γ}.
However, as shown in [10], this inequality does not necessarily hold when the constant

exponent p is replaced by a variable exponent p( · ) : Ω → [1,∞[ (even if p ∈ C(Ω) and N = 1;
see also the counter-example given in [7]). As shown by Kováčik and Rákosńık [9], this inequality
does hold for all v ∈ D(Ω) if p ∈ C(Ω) and if the norm ‖ · ‖Lp(Ω) is replaced by the Luxemburg
norm (the appropriate norm when the exponent is variable (see Section 2)).
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Still, this does not provide a satisfactory generalization of the classical Poincaré inequality,
because the equality which holds for a constant exponent p :

D(Ω)
‖·‖W1,p(Ω) = {v ∈ W 1,p(Ω); tr v = 0 on Γ}

is replaced, in the case of a variable exponent p( · ), by the inclusion

D(Ω)
‖·‖

W1,p( · )(Ω) ⊂ {v ∈ W 1,p( · )(Ω); tr v = 0 on Γ},

which may be strict, unless additional assumptions are imposed on the function p( · ). Conse-
quently, even if such a generalized Poincaré inequality can be established for all functions in the
space D(Ω), it cannot be extended in this case by means of a density argument to all functions
in the space W 1,p( · )(Ω) whose traces vanish on Γ.

The purpose of this paper is to provide a way, new to the best of our knowledge, to circum-
vent such shortcomings. Instead of proving the Poincaré inequality for functions in D(Ω) and
then extending it by a density argument (as is often done for a constant exponent), we obtain
the Poincaré inequality as an immediate corollary of an equivalence of norms in ad hoc cones
of the space W 1,p( · )(Ω) (see Theorems 3.1 and 3.2).

This approach has several advantages. Firstly, it can be carried out in the space {v ∈
W 1,p( · )(Ω); tr v = 0 on Γ}, thus avoiding the difficulty arising from the possible lack of density
of the space D(Ω) in this space; secondly, it can be extended at no extra cost to the space
{v ∈ W 1,p( · )(Ω); tr v = 0 on Γ0}, where Γ0 is a subset of Γ with dΓ-measΓ0 > 0 (see Theorem
4.1); thirdly, it allows to establish a Poincaré inequality in ad hoc cones in W 1,p( · )(Ω), and thus
in subsets (associated for instance with a Nemytsky operator (see Theorem 4.2)) that need not
be subspaces.

2 Notations and Preliminaries

All vector and function spaces considered in this paper are real.

This section gathers various definitions and basic properties related to Lebesgue and Sobolev
spaces with variable exponents. For proofs and references, see [6, 7].

The Lebesgue measure in R
N is denoted dx. Throughout this paper, Ω designates a domain

in R
N , i.e., a bounded and connected open subset of R

N whose boundary Γ is Lipschitz-
continuous, the set Ω being locally on the same side of Γ. A measure, denoted dΓ, can then be
defined on Γ. For details, see, e.g., [1] or [11].

No distinction will be made between dx-measurable, resp. dΓ-measurable, functions and
their equivalence classes modulo the relation of dx-almost everywhere, resp. dΓ-almost every-
where, equality.

A cone (with vertex at the origin) in a vector space V is a subset U of V with the property
that λ ≥ 0 and v ∈ V implies λv ∈ U .

Unless a specific notation is used, ‖ · ‖V denotes the norm in a normed vector space V and
A

‖·‖V designates the closure in V of a subset A of V with respect to the norm ‖ · ‖V .
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Given two normed vector spaces V and W , the notation V ↪→ W , resp. V � W , means that
V ⊂ W and the canonical injection from V into W is continuous, resp. compact.

The notation D(Ω) denotes the space of functions that are infinitely differentiable in Ω and
whose support is a compact subset of Ω. Given a real number p ≥ 1, the notations Lp(Ω),
W 1,p(Ω), and

W 1,p
0 (Ω) := D(Ω)

‖·‖W1,p(Ω) = {v ∈ W 1,p(Ω); tr v = 0 on Γ},

designate the usual Lebesgue and Sobolev spaces; “usual” means here that the exponent p ≥ 1
is a constant.

Given a function p( · ) ∈ L∞(Ω) that satisfies

1 ≤ p− := essinf
x∈Ω

p(x),

the Lebesgue space Lp( · )(Ω) with a variable exponent p( · ) is defined as

Lp( · )(Ω) :=
{
v : Ω → R; v is dx-measurable and

∫
Ω

|v(x)|p(x) dx < ∞
}
.

Likewise, given a function q( · ) ∈ L∞(Γ) that satisfies

1 ≤ essinf
y∈Γ

q(y),

the Lebesgue space Lq( · )(Γ) with a variable exponent q( · ) is defined as

Lq( · )(Γ) :=
{
v : Γ → R; v is dΓ-measurable and

∫
Γ

|v(y)|q(y) dy < ∞
}

.

Theorem 2.1 Let Ω be a domain in R
N .

(a) Let p(·) ∈ L∞(Ω) be such that p− ≥ 1. Equipped with the norm

v ∈ Lp( · )(Ω) → ‖v‖0,p( · ) := inf
{

λ ≥ 0;
∫

Ω

∣∣∣v(x)
λ

∣∣∣p(x)

dx ≤ 1
}
,

the space Lp( · )(Ω) is a separable Banach space. If p− > 1, the space Lp( · )(Ω) is uniformly
convex, hence reflexive.

(b) Let p1( · ) ∈ L∞(Ω) and p2( · ) ∈ L∞(Ω) be such that p−1 ≥ 1 and p−2 ≥ 1. Then

Lp2( · )(Ω) ↪→ Lp1( · )(Ω)

if and only if
p1(x) ≤ p2(x) for almost all x ∈ Ω.

(c) Given p( · ) ∈ L∞(Ω) such that p− > 1, let p′( · ) ∈ L∞(Ω) be defined by

1
p(x)

+
1

p′(x)
= 1 for almost all x ∈ Ω.

Then, given any function u ∈ Lp′( · )(Ω), the linear functional

� : v ∈ Lp( · )(Ω) →
∫

Ω

u(x)v(x) dx ∈ R
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is continuous; conversely, given any continuous linear functional � : Lp( · )(Ω) → R, there exists
one, and only one, function u� ∈ Lp′( · )(Ω) such that

�(v) =
∫

Ω

u�(x)v(x) dx for all v ∈ Lp( · )(Ω).

Remark 2.1 The norm ‖ · ‖0,p( · ), which is often called the Luxemburg norm, reduces to
the norm ‖ · ‖Lp(Ω) if the function p( · ) is constant and equal to p.

Given a function p( · ) ∈ L∞(Ω) that satisfies p− ≥ 1, the Sobolev space W 1,p( · )(Ω) with a
variable exponent p( · ) is defined as

W 1,p( · )(Ω) := {v ∈ Lp( · )(Ω); ∂iv ∈ Lp( · )(Ω), 1 ≤ i ≤ N},

where, for each 1 ≤ i ≤ N , ∂i denotes the distributional derivative operator with respect to the
i-th variable.

Theorem 2.2 Let Ω be a domain in R
N .

(a) Let p( · ) ∈ L∞(Ω) be such that p− ≥ 1. Equipped with the norm

v ∈ W 1,p( · )(Ω) → ‖v‖1,p( · ) := ‖v‖0,p( · ) +
N∑

i=1

‖∂iv‖0,p( · ),

the space W 1,p( · )(Ω) is a separable Banach space. If p− > 1, the space W 1,p( · )(Ω) is reflexive.

(b) Let p1( · ) ∈ L∞(Ω) with p−1 ≥ 1 and p2( · ) ∈ L∞(Ω) with p−2 ≥ 1 be such that

p1(x) ≤ p2(x) for almost all x ∈ Ω.

Then

W 1,p2( · )(Ω) ↪→ W 1,p1( · )(Ω).

(c) Let p( · ) ∈ C(Ω) be such that p− ≥ 1. Given any x ∈ Ω, let

p∗(x) :=
Np(x)

N − p(x)
, if p(x) < N and p∗(x) := ∞, if p(x) ≥ N,

and let there be a function q( · ) ∈ C(Ω) that satisfies

1 ≤ q(x) < p∗(x) for each x ∈ Ω.

Then the following compact injection holds:

W 1,p( · )(Ω) � Lq( · )(Ω).

Thus, in particular,

W 1,p( · )(Ω) � Lp( · )(Ω).

Finally, we state several properties of traces of functions in the space W 1,p( · )(Ω).
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Theorem 2.3 Let Ω be a domain in R
N .

(a) Let p( · ) ∈ L∞(Ω) be such that p− ≥ 1. Since W 1,p( · )(Ω) ↪→ W 1,1(Ω) (see Theorem
2.2(b)), the trace on Γ of any function v ∈ W 1,p( · )(Ω) is well-defined as a function, denoted
tr v, in the space L1(Γ).

(b) Let there be a function p( · ) ∈ C(Ω) that satisfies p− > 1. Given any x ∈ Γ, we let

p∂(x) :=
(N − 1)p(x)
N − p(x)

, if p(x) < N and p∂(x) := ∞, if p(x) ≥ N,

and let there be a function q( · ) ∈ C(Γ) that satisfies

1 ≤ q(x) < p∂(x) for each x ∈ Γ.

Then, given any function v ∈ W 1,p( · )(Ω), tr v ∈ Lq( · )(Γ), the trace operator

tr : W 1,p( · )(Ω) → Lq( · )(Γ)

defined in this fashion is compact. Thus, in particular, the trace operator

tr : W 1,p( · )(Ω) → Lp( · )(Γ)

is compact.

3 Equivalence of Norms and Poincaré Inequality
in a Cone in W 1,p( · )(Ω)

We now establish the main results of this paper, which extend to Sobolev spaces with
variable exponents established by Jebelean and Precup [8] for the usual Sobolev spaces.

Recall that, as a domain in R
N , the open set Ω is in particular connected. So, a function

v ∈ W 1,1(Ω) that satisfies ∂iv = 0 a.e. in Ω, 1 ≤ i ≤ N, is a constant function.

Theorem 3.1 Let Ω be a domain in R
N . Let p( · ) ∈ C(Ω) be such that p− > 1, and let

U 	= {0} be a cone in the space W 1,p( · )(Ω) that is sequentially weakly closed and that does not
contain nonzero constant functions. In other words,

vk ∈ U, k ≥ 1, and vk ⇀ v weakly in W 1,p( · )(Ω) as k → ∞ imply v ∈ U,

v ∈ U and ∂iv = 0 a.e. in Ω, 1 ≤ i ≤ N imply v = 0.

Then there exists a constant C = C(U) such that

‖v‖1,p( · ) ≤ C|v|1,p( · ) for all v ∈ U,

where the semi-norm | · |1,p( · ) : W 1,p( · )(Ω) → R is defined by

|v|1,p( · ) :=
N∑

i=1

‖∂iv‖0,p( · ) for all v ∈ W 1,p( · )(Ω).
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Proof Assume that the property is false. Then, for each integer k ≥ 1, there exists a
function wk ∈ U such that

‖wk‖1,p( · ) > k|wk|1,p( · ).

Therefore, the functions vk := wk

‖wk‖ , k ≥ 1, which belong to the cone U since 1
‖wk‖ > 0, satisfy

‖vk‖1,p( · ) = 1 for all k ≥ 1 and |vk|1,p( · ) → 0 as k → ∞.

The sequence (vk)∞k=1 is thus bounded in the reflexive Banach space W 1,p( · )(Ω) (see Theorem
2.2(a)). Therefore, by the Banach-Eberlein-Shmulyan theorem (see, e.g., [12, Chapter 5]), there
exists a subsequence, still denoted (vk)∞k=1 for convenience, that weakly converges in W 1,p( · )(Ω)
as k → ∞ to a limit v that belongs to U , since U is sequentially weakly closed by assumption.

But W 1,p( · )(Ω) � Lp( · )(Ω) (see Theorem 2.2(b)). Hence, (vk)∞k=1 strongly converges in
Lp( · )(Ω) as k → ∞. On the other hand, |vk|1,p( · ) → 0 as k → ∞. Hence, the sequence (vk)∞k=1

is a Cauchy sequence in W 1,p( · )(Ω), which strongly converges to v ∈ U .
Since the semi-norm | · |1,p( · ) : W 1,p( · )(Ω) → R is strongly continuous, it further follows

that
|v|1,p( · ) = lim

k→∞
|vk|1,p( · ) = 0.

Hence, ∂iv = 0 a.e. in Ω, 1 ≤ i ≤ N , and thus v = 0 by assumption. But this contradicts the
relation ‖v‖1,p( · ) = lim

k→∞
‖vk‖1,p( · ) = 1. This completes the proof.

We immediately infer from Theorem 3.1 that, if its assumptions are satisfied, there exists a
constant C = C(U) such that

‖v‖0,p( · ) ≤ C|v|1,p( · ) for all v ∈ U.

This relation constitutes the Poincaré inequality in a Sobolev space with a variable exponent
announced in the title of this paper.

Actually, with a little further ado, we can even characterize the “best” (i.e., the smallest)
constant C appearing in this relation.

Theorem 3.2 Let the assumptions about the set Ω, the function p( · ), and the cone U be
those of Theorem 3.1, and let

μ(U) := inf{|v|1,p( · ); v ∈ U, ‖v‖0,p( · ) = 1}.

Then
μ(U) > 0,

and there exists v ∈ U such that

‖v‖0,p( · ) = 1 and μ(U) = |v|1,p( · ).

Hence
‖v‖0,p( · ) ≤ 1

μ(U)
|v|1,p( · ) for all v ∈ U,

and 1
μ(U) is the best possible constant in this Poincaré inequality.
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Proof Some arguments are the same as in the previous proof and for this reason, will not
be repeated. By definition, there exists a sequence (vk)∞k=1 of elements vk ∈ U such that

‖vk‖0,p( · ) = 1 for all k ≥ 1 and |vk|1,p( · ) → μ(U) as k → ∞.

Since (vk)∞k=1 is then a bounded sequence in W 1,p(·)(Ω), there exists a subsequence, still denoted
(vk)∞k=1 for convenience, and an element v ∈ U such that vk converges weakly to v in W 1,p( · )(Ω)
as k → ∞.

Besides, vk → v in Lp( · )(Ω) as k → ∞, so that

‖v‖0,p( · ) = lim
k→∞

‖vk‖0,p( · ) = 1.

The definition of μ(U) then implies

μ(U) ≤ |v|1,p( · )

on the one hand. Since a semi-norm is sequentially weakly lower semi-continuous,

|v|1,p( · ) ≤ lim inf
k→∞

|vk|1,p( · ) = μ(U),

on the other hand. Hence μ(U) = |v|1,p( · ) and thus μ(U) > 0, for otherwise v would vanish.
But this is impossible since ‖v‖0,p( · ) = 1. This completes the proof.

4 Applications

Our first application is to the case where the cone U in W 1,p( · )(Ω) is a subspace, associated
with a homogeneous Dirichlet condition.

Theorem 4.1 Let Ω be a domain in R
N , let Γ0 be a dΓ-measurable subset of Γ = ∂Ω that

satisfies dΓ-measΓ0 > 0, let p( · ) ∈ C(Ω) be such that p− > 1, and let

U := {v ∈ W 1,p( · )(Ω); tr v = 0 on Γ0},

where the trace operator tr is defined as in Theorem 2.3. Then there exists a constant C = C(U)
such that

‖v‖1,p( · ) ≤ C|v|1,p( · ) for all v ∈ U.

Proof It suffices to verify that the above set U satisfies the assumptions of Theorem 3.1.
To show that U is sequentially weakly closed in W 1,p( · )(Ω), it suffices to show that U is strongly
closed since U is a subspace.

So, let vk ∈ U, k ≥ 1, and v ∈ W 1,p( · )(Ω) be such that vk → v in W 1,p( · )(Ω) as k → ∞.
Then vk → v in W 1,1(Ω) since W 1,p( · )(Ω) ↪→ W 1,1(Ω) (see Theorem 2.2(b)). Consequently,
tr vk → tr v in L1(Γ) as k → ∞, which in turn implies that tr vk|Γ0 → tr v|Γ0 in L1(Γ0). But
tr vk|Γ0 = 0 for all k ≥ 1 and the limit of a sequence in a normed vector space is unique, which
shows that tr v|Γ0 = 0. Hence v ∈ U , which shows that U is closed.

It remains to show that | · |1,p( · ) is a norm over the space U . So, let v ∈ U be such
that |v|1,p( · ) = 0. Then v is a constant function by virtue of the connectedness of the set Ω.
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Therefore its trace on Γ is a constant function that takes the same value, and this value is zero
since the trace vanishes on Γ0 and dΓ-measΓ0 > 0. This completes the proof.

When Γ0 = Γ, Theorem 4.1 thus shows that the following Poincaré inequality holds: There
exists a constant C such that

‖v‖0,p( · ) ≤ C|v|1,p( · ) for all v ∈ W̊ 1,p( · )(Ω),

where
W̊ 1,p( · )(Ω) := {v ∈ W 1,p( · )(Ω); tr v = 0 on Γ}.

But, as indicated in the introduction, the space

W
1,p( · )
0 (Ω) := D(Ω)

‖·‖1,p( · )

may be only strictly contained in the space W̊ 1,p( · )(Ω). Hence in this case, establishing the
Poincaré inequality for all functions in D(Ω) would yield the same inequality for all functions
in W

1,p( · )
0 (Ω), but not for all functions in W̊ 1,p( · )(Ω).

Remark 4.1 For a constant exponent p, Theorem 4.1 is well-known; see, e.g., [3, Theorem
1.2.1] or [2, Theorem 2.15] (in both cases, p = 2, but the proof is similar for any p ≥ 1).

Remark 4.2 The spaces W
1,p( · )
0 (Ω) and W̊

1,p( · )
0 (Ω) coincide if the function p( · ) ∈ L∞(Ω)

with p− ≥ 1 satisfies the following Diening-Fan-Zhao-Zhikov condition (so named after Diening
[4], Fan and Zhao [7], and Zhikov [13]): There exists a constant C such that

|p(x) − p(y)| ≤ C

| ln ‖x − y‖| for all x, y ∈ Ω such that ‖x − y‖ <
1
2
,

where ‖ · ‖ denotes the Euclidean norm in R
N .

Our second application is to “genuine” cones U (i.e., which are not subspaces) of a specific
form.

Theorem 4.2 Let Ω be a domain in R
N , let p( · ) ∈ C(Ω) with p− > 1, let q( · ) ∈ C(Ω) with

q− > 1 be such that
q(x) < p∗(x) for all x ∈ Ω,

where the function p∗ : Ω → R is defined in Theorem 2.2(c), and let the function q′( · ) ∈ C(Ω)
be defined by

1
q(x)

+
1

q′(x)
= 1 for all x ∈ Ω.

Let f : Ω × R → R be a Carathéodory function (i.e., such that f(x, · ) ∈ C(R) for almost all
x ∈ Ω and f( · , s) : Ω → R is measurable for all s ∈ R) such that, for each λ ≥ 0, there exist
two constants C−

λ and C+
λ with the property that

C−
λ f(x, s) ≤ f(x, λs) ≤ C+

λ f(x, s) for almost all x ∈ Ω and all s ∈ R,

and such that there exist a non-negative function a ∈ Lq′( · )(Ω) and a constant b ≥ 0 such that

|f(x, s)| ≤ a(x) + b|s|q(x)−1 for almost all x ∈ Ω and all s ∈ R.



A Poincaré Inequality in a Sobolev Space with a Variable Exponent 341

Finally, assume that the set

U :=
{
v ∈ W 1,p( · )(Ω);

∫
Ω

f(x, v(x)) dx = 0
}

does not contain nonzero constant functions. Then there exists a constant C = C(U) such that

‖v‖1,p( · ) ≤ C|v|1,p( · ) for all v ∈ U.

Proof Again it suffices to verify that the above set U satisfies the assumption of Theorem
3.1. First, the existence of the constants C−

λ and C+
λ for each λ ≥ 0 and the definition of the

set U together imply that U is a cone. It thus remains to verify that U is sequentially weakly
closed. Because

|f(x, s)| ≤ a(x) + b|s|q(x)/q′(x) for almost all x ∈ Ω and all s ∈ R,

the associated Nemytsky operator Nf , defined for any function v ∈ Lq( · )(Ω) by

Nfv(x) = f(x, v(x)) for almost all x ∈ Ω,

maps Lq( · )(Ω) into Lq′( · )(Ω), and is continuous between these two spaces (see [7, Theorem
1.16]).

The mapping

v ∈ Lq( · )(Ω) →
∫

Ω

f(x, v(x)) dx ∈ R

is thus continuous, as composed of the continuous mappings Nf : Lq( · )(Ω) → Lq′( · )(Ω) and
g ∈ Lq′( · )(Ω) → ∫

Ω
g(x) dx ∈ R (while the latter mapping is continuous following Theorem

2.1(c) and the observation that the constant function equalling to one belongs to Lq( · )(Ω)).
Let then vk ∈ U, k ≥ 1, and v ∈ W 1,p( · )(Ω) be such that vk converges weakly to v in

W 1,p( · )(Ω) as k → ∞. Consequently, vk → v in Lq( · )(Ω) since W 1,p( · )(Ω) � Lq( · )(Ω) (see
Theorem 2.2(c)), which in turn implies that

∫
Ω

f(x, v(x)) dx = lim
k→∞

∫
Ω

f(x, vk(x)) dx = 0.

Therefore v ∈ U , which shows that U is sequentially weakly closed. This completes the proof.

Remark 4.3 An example of a function f : Ω × R → R that satisfies the assumptions of
Theorem 4.2 is given by (x, s) ∈ Ω × R → f(x, s) := |s|q(x)−2s, since in this case the existence
of the constants C−

λ and C+
λ for each λ ≥ 0 follows the inequalities λq+ ≤ λq(x) ≤ λq−

for all
x ∈ Ω if 0 ≤ λ ≤ 1 and λq− ≤ λq(x) ≤ λq+

for all x ∈ Ω if 1 < λ, where q+ := sup
x∈Ω

|q(x)|, and

|f(x, s)| = |s|q(x)−1 for almost all x ∈ Ω and all s ∈ R. For a constant exponent p, functions of
this type naturally appear in the analysis of the p-Laplace operator (see, e.g., [5, 8]).

Remark 4.4 Theorem 2.1(c) shows that the same conclusion holds if the set U is of the
more general form U =

{
v ∈ W 1,p( · )(Ω);

∫
Ω

h(x)f(x, v(x)) dx = 0
}
, where h is a given non-

negative function in the space Lq( · )(Ω).
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