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Abstract The systematic development of reduced low-dimensional stochastic climate
models from observations or comprehensive high dimensional climate models is an im-
portant topic for atmospheric low-frequency variability, climate sensitivity, and improved
extended range forecasting. Recently, techniques from applied mathematics have been
utilized to systematically derive normal forms for reduced stochastic climate models for
low-frequency variables. It was shown that dyad and multiplicative triad interactions com-
bine with the climatological linear operator interactions to produce a normal form with
both strong nonlinear cubic dissipation and Correlated Additive and Multiplicative (CAM)
stochastic noise. The probability distribution functions (PDFs) of low frequency climate
variables exhibit small but significant departure from Gaussianity but have asymptotic tails
which decay at most like a Gaussian. Here, rigorous upper bounds with Gaussian decay
are proved for the invariant measure of general normal form stochastic models. Asymptotic
Gaussian lower bounds are also established under suitable hypotheses.
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1 Introduction

There is a recent interest in deriving reduced stochastic models for climate and extended-
range weather prediction. An attractive property of atmospheric low-frequency variability is
that it can be efficiently described by just a few large-scale teleconnection patterns. These
patterns exert a huge impact on surface climate and seasonal predictability. Thus, such re-
duced stochastic models are an attractive alternative for extended range prediction and climate
sensitivity studies because they are computationally much more efficient than state-of-the-art
climate models and were shown to have a comparable prediction skill (see [19]). Because such
reduced models capture the essence of low-frequency processes they allow for a better under-
standing of the climate system. Reduced models can also be used for climate sensitivity and
climate change studies via the fluctuation dissipation theorem (FDT) (see [21, 24, 16]). Thus,
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systematic strategies are essential to successfully developing reduced models. The recently de-
veloped stochastic mode reduction strategy provides a systematic procedure for the derivation
of reduced stochastic models (see [17–20, 22–23]). Using these techniques, a systematic normal
form for reduced climate models which respects the important physical constraints of energy
conservation in the original system has been developed recently (see [18]). These normal forms
predict simultaneously cubic damping and correlated additive and multiplicative noise and this
normal form is confirmed in data for low frequency teleconnection patterns (see [18]).

Much more naive adhoc analysis in [28] suggests a linear correlated additive and multiplica-
tive (CAM) noise model for low frequency climate variables. The linear correlated additive and
multiplicative noise model predicts a PDF whose tails decay according to a power-law. This
certainly contradicts studies which examined a subspace spanned by the first few leading EOFs
from data generated by long integrations of general circulation models in [1] and reanalysis
data in [28, 29]. These studies find only small, though significant deviations from Gaussianity.
These deviations occur most strongly in form of excess skewness and to a much lesser extent
in form of excess kurtosis. Thus, there is not much empirical evidence for power-law decay of
the tails of PDFs of the leading EOFs. However, this argument applies for low-frequency data
(measured by the leading EOFs) and does not rule out the possible usefulness of the linear
CAM model for other climate variables at high frequencies in station data in [30].

Thus, it is interesting to show rigorously that for the normal form in [18] for reduced
stochastic climate models the joint PDF of its stationary distribution exists and has at most
Gaussian decay thanks to the nonlinear cubic damping, and this is the main topic of this
paper. Next, we make some informal remarks to connect this topic with recent mathematical
developments.

Let us assume that the cubic nonlinearity gives strict energy dissipation. The existence and
uniqueness of the pathwise solutions to our reduced climate model are known (see [15]). The
existence of the invariant measure follows from the boundedness of the second moment of the
pathwise solution with the standard tightness argument (see [6]). Moreover, the existence of
the probability density function of this invariant measure was studied in [26].

If we further require that our climate model have additive dyads in all the low frequency
modes such that it has uniformly non-degenerate diffusion, the uniqueness of the invariant mea-
sure follows from strong Feller property and irreducibility of the Markov transition semigroup
in [6] and the smoothness of the density function was obtained in [3, 5]. Recent studies about
global upper bounds of the probability density function in [25, 9] can be applied to our reduced
climate model as well. However, uniformly non-degenerate diffusion is not necessary for the
normal form for the stochastic climate modelling, for example, the 2-dimensional climate model
(3.9) in Section 3.1.1. Moreover, global lower bound of the probability density function under
some boundness assumption on the diffusion coefficients was studied in [4]. However, our cli-
mate model here can always have quadratic diffusion coefficients when there is CAM noise, so
this earlier work cannot apply.

In this paper, we will mainly show that the density function of the stationary statistical
solution (invariant measure) to the reduced stochastic model for N -climate variable has at
most Gaussian decay as long as it belongs to C2 and has power law decay. Moreover, we
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find sufficient conditions such that there exists a Gaussian lower bound which means that the
global decaying rate of the density function can be exactly Gaussian. As a corollary, the global
decaying behavior can be classified rigorously under the uniformly non-degenerate diffusion
assumption. The idea of showing the global decay rate is to construct Gaussian comparison
functions and use the comparison principle argument for the equilibrium Fokker-Planck equation
to show that the tails of the stationary statistical solution t to the reduced stochastic climate
model can be bounded above or bounded below by Gaussian comparison functions with different
variances. Applying the comparison principle argument, we avoid the uniformly non-degenerate
assumption, although we require that the density belong to C2. Numerical evidence shows that
C2 is a reasonable assumption for our climate model, for example, the 2-dimensional climate
model (3.9) in Section 3.1.1. Below, we present the general stochastic large scale geophysical
flow model and its reduced system for the climate variables in Section 2. In Section 3, we
explain our intuition through examples and the main results. Finally, we will present the proof
in Section 4 step by step.

2 Normal Form Stochastic Models for N -Climate Variables

Here, we consider the dynamical core of comprehensive large scale geophysical flow models

du

dt
= F + Lu + B(u, u), (2.1)

where F is a constant forcing, L is linear, B is a quadratically nonlinear operator and conserve
energy (see [17]). An important example of quadratically nonlinear equations of the type as in
(2.1) could be the barotropic flow on a beta plane with topography and mean flow (see [22]).

We can partition the variable u = (u1(t), u2(t), · · · , uN+M (t)) into low-frequency climate
modes

x(t) = (u1(t), u2(t), · · · , uN (t)) ∈ R
N

and high-frequency modes

y(t) = (uN+1(t), uN+2(t), · · · , uN+M (t)) ∈ R
M .

In practical scenario, we could have millions of high-frequency modes, M � N . From the
stochastic mode reduction procedure (see [18, 22]), we know that the triads between xi, yp, yq (p
�= q) produce additional damping, forcing and uncorrelated additive noise which are not essential
to the tail behavior. For simplicity and to concentrate on the phenomena involving the interac-
tions of multiplicative dyads and triads, we will neglect the triads between xi, yp, yq (p �= q) in
discussion. Then, as in [18, 22], we approximate the dyad interaction between high-frequency
modes by using −γp

ε yp + σp√
ε
Ẇp so that (2.1) becomes

dxi

dt
= Fi +

∑
j

(Lijxj + Iijxixj − Ijixjxj)

+
∑

p

(
Lipyp + IM

ip xiyp + IA
ipypyp +

∑
j �=i

Bij,pxjyp

)
,

dyp

dt
= Fp +

∑
j

(
Lpjxj + IM

pj xjxj + IA
pjypxj +

∑
k<j

Bp,kjxkxj

)
− γp

ε
yp +

σp√
ε
Ẇp.

(2.2)
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Energy conservation requires that dyad interactions satisfy IM
ij = −IM

ji , IA
ij = −IA

ji and triad
interactions satisfy Bij,p+Bji,p+Bp,ij = 0. The working assumption of the stochastic modelling
contains γp > 0, ∀ p, so that the high frequency modes have physical regimes.

The functional form of general stochastic reduced models for climate with dyad interactions
and triad interactions is systematically derived for (2.2) by the normal form stochastic mode
reduction method (see [18]). The dyad interaction terms, IA

ip, produce additional damping,
forcing and uncorrelated additive noise; meanwhile, dyad interaction terms, IM

ip , and triad
interaction terms, Bij,p, produce cubic nonlinearity, correlated additive and multiplicative noises
(see [18, 22, 17]). The reduced model has the Itô form

dxi = F̃idt + Ãixdt + B̃i(x, x)dt

+
∑

p

1
γp

(
IM
ip xi +

∑
j �=i

Bij,pxj

)(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
dt

+
∑

p

(
Lip + IM

ip xi +
∑
j �=i

Bij,pxj

)σp

γp
dWp

+ σAidWAi (2.3)

for i = 1, 2, · · · , N, p = 1, 2, · · · , Np, where the dyad interactions satisfy IM
ij = −IM

ji and triad
interactions satisfy Bij,p + Bji,p + Bp,ij = 0. It is clear that the reduced system contains cubic
nonlinearity, CAM noises, and additive noises and the existence of CAM noise is due to the
presence of the cubic terms. This is the normal form derived in [18]. We can also write it in a
compact form

dx = fdt + ΣdW, (2.4)

where

fi(x) = F̃i + Ãix + B̃i(x, x) +
∑

p

1
γp

(
IM
ip xi +

∑
j �=i

Bij,pxj

)(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
,

g = (gij) =
1
2
ΣΣT,

gii(x) =
∑

p

σ2
p

2γ2
p

(
Lip + IM

ip xi +
∑
k �=i

Bik,pxk

)2

+
σ2

Ai

2
,

gij(x) =
∑

p

σ2
p

2γ2
p

(
Lip + IM

ip xi +
∑
k �=i

Bik,pxk

)(
Ljp + IM

jp xj +
∑
k �=j

Bjk,pxk

)
, i �= j,

dW = (dW1, dW2, · · · , dWNp , dWA1 , dWA2 , · · · , dWAN )T.

3 Main Results and Discussion

First, we give some intuition. The local change in energy is given through Itô’s formula by

d
|x|2
2

= (xT · f(x) + Tr(g(x)))dt + xTΣ(x)dW. (3.1)
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The effective energy dissipation through the cubic term is −xT ·f which has leading quartic
part

Q1(x) =
∑

p

1
γp

(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)2

. (3.2)

The random fluctuations in energy are given by xTΣ(x)dW , so the quartic part of the
variance of the random energy fluctuations is

Q3(x) =
∑

p

σ2
p

2γ2
p

(∑
j

IM
pj x2

j +
∑
k<j

Bp,kjxkxj

)2

. (3.3)

For the upper bound, we need

min
|�ω|=1

Q1(�ω) > 0, (3.4)

i.e., strict energy dissipation from the cubic terms. For the lower bound, we need (3.4) and the
variance of random fluctuation strictly positive

min
|�ω|=1

Q3(�ω) > 0. (3.5)

The following theorem discusses the existence of the density functions.

Theorem 3.1 (Existence of the Probability Density Function) Consider the normal form
climate model (2.4) with drift term f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT.
Given strict energy dissipation through the cubic terms as defined in (3.4), the density function
of the stationary statistical solution to (2.4) exists in a generalized function space.

Our main results Theorems 3.2–3.3 find a Gaussian upper bound and a Gaussian lower bound
under suitable assumptions respectively, by constructing Gaussian comparison functions.

Theorem 3.2 (Gaussian Upper Bound) Consider the normal form reduced climate model
(2.4) with drift term f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the as-
sumptions below, if p(x) is a density function of the stationary statistical solution to (2.4),
then, it has at most Gaussian decay, i.e., there exists a positive real number r and a Gaussian
measure pG(x) satisfying

pG(x) � p(x), ∀ |x| � r,

where

pG(x) =
1√

2πσ2
G

e
− |x|2

2σ2
G , x = (x1, x2, · · · , xN )T ∈ R

N .

These assumptions are
(1) Strict energy dissipation through the cubic terms as defined in (3.4);
(2) Weak polynomial decaying smooth stationary statistical solution: p(x) ∈ C2(RN ), such

that there exists an α with

α >

max
|�ω|=1

Q2(�ω)

min
|�ω|=1

Q1(�ω)
, lim

|x|→+∞
|x|αp(x) = 0,
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where Q1(x) is defined in (3.2), and Q2(x) is the quartic part of −|x|2� · f(x), i.e.,

Q2(x) =
(
−
∑

i

∑
p

IM
ip

1
γp

(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
−
∑

i

∑
p

1
γp

(
2IM

pi xi +
∑
j �=i

Bp,ijxj

)(
IM
ip xi +

∑
j �=i

Bij,pxj

))
|x|2. (3.6)

Theorem 3.3 (Gaussian Lower Bound) Consider the normal form reduced climate model
(2.4) with drift term f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the as-
sumptions below, if p(x) is a density function of the stationary statistical solution to (2.4), then,
it has at least Gaussian decay, i.e., there exist a positive real number r and a Gaussian measure
pL(x) satisfying

p(x) � pL(x), ∀ |x| � r,

where

pL(x) =
1√

2πσ2
L

e
− |x|2

2σ2
L , x = (x1, x2, · · · , xN )T ∈ R

N .

These assumptions are
(1) Strict energy dissipation through the cubic terms as defined in (3.4);
(2) Strictly positive variance of the multiplicative energy fluctuation given in (3.5);
(3) Weak polynomial decaying smooth stationary statistical solution: p(x) ∈ C2(RN ), such

that there exists an α with

α >

max
|�ω|=1

Q2(�ω)

min
|�ω|=1

Q1(�ω)
, lim

|x|→+∞
|x|αp(x) = 0,

where Q1(x) is defined in (3.2), and Q2(x) is defined in (3.6);
(4) p(x) is positive everywhere

inf
|x|≤r

p(x) > 0, ∀ r > 0.

These conditions are readily satisfied in general. For example, both conditions (1)–(2) are
satisfied for the 2-dimensional stochastic climate model (3.9) below in Sections 3.1.1 and 3.3
provided I1I2 �= 0, σ1σ2 �= 0, i.e., nontrivial dyad interactions.

If we further assume that the diffusion part is uniformly non-degenerate, we can classify the
global decaying rate for the density function of the stationary statistical solution rigorously.

Corollary 3.1 Consider the normal form reduced climate model (2.4) with drift term f(x)
and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. There exist a unique density function of the
stationary statistical solution to (2.4), p(x) ∈ C∞, and p(x) has at most Gaussian decay, i.e.,
there exist a positive real number r and Gaussian measures pG(x) satisfying

pG(x) � p(x), ∀ |x| � r,

where

pG(x) =
1√

2πσ2
G

e
− |x|2

2σ2
G , x = (x1, x2, · · · , xN )T ∈ R

N , (3.7)
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given the following assumptions:
(1) Strict energy dissipation through the cubic terms as defined in (3.4);
(2) Uniformly non-degenerate diffusion: The diffusion coefficient matrix g(x) is positive

definite in R
N .

If we further require that the following condition hold:
(3) Strictly positive variance of the multiplicative energy fluctuation given in (3.5).
Then, the global decaying rate of p(x) is exactly Gaussian, i.e., besides (3.7), there exist a

positive real number r and Gaussian measures pL(x) satisfying

pL(x) � p(x), ∀ |x| � r,

where

pL(x) =
1√

2πσ2
L

e
− |x|2

2σ2
L , x = (x1, x2, · · · , xN )T ∈ R

N . (3.8)

The explicit examples with the scalar normal form in Section 3.2 illustrate the necessity
of the structured assumptions in Theorems 3.1–3.3 and the corollary for the smoothness and
Gaussian upper and lower bounds for the invariant measure as discussed in Section 3.3.

3.1 Energy dissipation constraints through the cubic term

In practice the original system has well-behaved PDFs for the low-frequency patterns with
rapidly decaying tails (see [1]). Thus, the nonlinear operator in (2.3) should induce an effective
damping following [18]. This can be shown for the N -dimensional case by multiplying (2.3) by
xi, neglecting the noise terms and all other terms besides the cubic terms, and summing over i

leading to the energy identity
1
2

dE

dt
= −Q1(x),

where Q1(x) =
∑
p

1
γp

(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)2

as defined in (3.2) and E =
∑
i

x2
i .

Stability of the original system now requires that 1
2

dE
dt < 0. This is fulfilled if the homoge-

neous polynomial Q1(x) is positive definite which is given by our first assumption as defined in
(3.4).

3.1.1 Energy dissipation constraints on a 2-dimensional stochastic climate model

There is wide interest in studying the normal form for a 2-dimensional stochastic climate
model (see [18]) following [20, 17, 10] which can be systematically derived from a 4-mode
climate model with triad interaction between x1, x2, y2 and dyad interaction between x1, y2

and x2, y1. This toy model has statistics that are very close to being Gaussian and a strong
nonlinear signature in the form of a double swirl in the mean phase space tendencies of its
low-frequency variables, much like recently identified signatures of nonlinear planetary wave
dynamics in prototype and comprehensive atmospheric general circulation models (GCMs) (see
[10]).
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The 2-dimensional normal form stochastic climate model has cubic damping terms and CAM
noises

dx1 = (B1(x, x) + A1x + F 1)dt

+
1
γ1

b123(b312x1x
2
2 − I2x

3
2)dt − 1

γ2
I2
1x3

1dt

+
σ1

γ1
(L13 + b123x2)dW1 +

σ2

γ2
I1x1dW2,

dx2 = (B2(x, x) + A2x + F 2)dt

+
1
γ1

(b312x1x2 − I2x
2
2)(b213x1 + I2x2)dt

+
σ1

γ1
(b213x1 + I2x2)dW1 +

σ2

γ2
L24dW2.

(3.9)

To mimic the main features of the GCM which has well-behaved PDFs for the low-frequency
patterns with rapidly decaying tails, the nonlinear operator in (3.9) should also induce an
effective damping. Multiplying (3.9) by xi, neglecting the noise terms and all other terms
besides the cubic terms, and summing over i leads to the energy identity

1
2

dE

dt
= − 1

γ2
I2
1x4

1 −
1
γ1

x2
2(b312x1 − I2x2)2.

The energy dissipation requires 1
2

dE
dt < 0 which is equivalent to I1I2 �= 0, so that there are

nontrivial dyad interactions I1 and I2.

3.1.2 The stochastic model with only dyad interaction

The dissipation constraint on the quartic terms in −xT·f is also consistent with [18, Equation
(14)] for the case with only dyads. If we take off the triad interaction in (2.4), the energy

dissipation requirement becomes that
∑
p

1
γp

(∑
j

IM
pj xjxj

)2

is positive definite in R
N . That is

∑
p

1
γp

(∑
j

IM
pj xjxj

)2

= −
∑

i

(∑
j �=i

Ãijx
2
j − Ĩiix

2
i

)
x2

i = (x2)T(Ĩ − Ã)(x2),

where

Ãij =
∑

p

IM
ip IM

pj

γp
, j �= i, Ãii = 0; Ĩii =

∑
p

(IM
ip )2

γp
; Ĩij = 0, j �= i.

So, the energy dissipation requirement becomes that Ĩ − Ã is positive definite on the positive
cone in R

n.

3.2 Why do smoothness and Gaussian decay happen? Examples through the scalar
normal form climate model

What conditions make the Gaussian decay? Roughly, by looking at the Fokker-Planck
equation of the scalar normal form climate model, we have the asymptotic behavior of the
statistical solution p(x)

ln p(x) �
∫

cubic dissipation
quadratic or constant diffusion

, as |x| is large,
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which gives us at most a Gaussian tail.
Let us discuss the scalar case from [18] in detail to get more intuition. Consider the reduced

stochastic model for scalar low frequency climate variable

dx = [F + ax + bx2 − cx3]dt +
∑

p

σp

γp
(L1p − IM

1p x)dWp + σdWA, (3.10)

where c =
∑
p

(IM
1p )2

γp
. As shown in [18], this scalar case is exactly solvable. Since we can

get the explicit decaying stationary statistical solution for this scalar case, the weak decaying
requirement is automatically satisfied. The strict energy dissipation assumption through the
cubic term, i.e., IM

1p �= 0 for some p, is equivalent to the cubic nonlinearity condition c > 0.
The condition, strictly positive variance of the multiplicative energy fluctuation, i.e., σpI

M
1p �= 0

for some p, is equivalent to the presence of the CAM noise B �= 0. And the uniformly non-
degenerate diffusion assumption is equivalent to the existence of the additional additive noise
obtained from the additive dyads and triads, σ �= 0.

The stationary statistical solution to (3.10), p(x), satisfies Fokker Planck equation

− ∂

∂x
[(F + ax + bx2 − cx3)p(x)] +

1
2

∂2

∂x2
[((Bx − A)2 + σ2)p(x)] = 0.

We could integrate the stationary Fokker Planck equation and get

ln
p(x)
p(x0)

=
∫ x

x0

2B(Bx − A) + 2(F + ax + bx2 − cx3)
(Bx − A)2 + σ2

dx.

Let us denote

a1 = 1 − −3A2c + aB2 + 2AbB + cσ2

B4
, b1 = 2bB2 − 4cAB, c1 = cB2,

d =
d1

σ
+ d2σ, d1 =

2A2bB − 2A3c + 2AaB2 + 2B3F

B4
, d2 =

6cA − 2bB

B4
,

A =

∑
p

σp

γp
L1pI

M
1p(∑

p

(
σp

γp
IM
1p

)2) 1
2
, B =

(∑
p

(σp

γp
IM
1p

)2) 1
2
,

γ = −2a1σ=0 = −2
(
1 − −3A2c + aB2 + 2AbB

B4

)
.

Assuming nontrivial cubic nonlinearity c > 0, we get that all the cases have at most Gaussian
decay:

Case 1 CAM term exists B �= 0, and the additive noise exists σ �= 0. Then, p(x) possibly
has some fat tail decay in a finite range, but has Gaussian decay outside of the finite range,

p(x) =
N1

((Bx − A)2 + σ2)a1
ed arctan( Bx−A

σ ) · e−c1x2+b1x

B4 . (3.11)

Case 2 No CAM term B = 0. Then, p(x) has even faster decay than Gaussian,

p(x) = N2e
2

A2+σ2 (Fx+ax2
2 + bx3

3 − cx4
4 )

.



352 Y. Yuan and A. J. Majda

Case 3 CAM term exists B �= 0, but there is no additional additive noise σ = 0. Without
the additive noise, p(x) exists only on half real line, or it has Dirac delta mass. So, this case
is not in the physical regime we are interested in here. However, it is necessary to understand
these different behaviors for the scalar case in order to consider reasonable hypotheses for the
N -dimensional climate model with degenerate diffusions.

Here, the density function has bifurcations:

(1) d1B > 0, ∀γ,

p(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x � A

B ,

e−
|d1|

|B|x−sgn(B)A +
−c1x2+b1x

B4 · |Bx − A|γ∫ +∞
A
B

e−
|d1|

|B|y−sgn(B)A +
−c1y2+b1y

B4 · |By − A|γdy
, x > A

B ;

(2) d1B < 0, ∀γ,

p(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x � A

B ,

e
|d1|

|B|x−sgn(B)A +
−c1x2+b1x

B4 · |Bx − A|γ∫ A
B

−∞ e
|d1|

|B|y−sgn(B)A +
−c1y2+b1y

B4 · |By − A|γdy
, x < A

B ;

(3) d1 = 0, γ � 0,

p(x) =
e

−c1x2+b1x

B4 · |Bx − A|γ∫ +∞
−∞ e

−c1y2+b1y

B4 · |Bx − A|γdy
, x ∈ (−∞, +∞);

(4) d1 = 0, −1 < γ < 0,

p(x) =
e

−c1x2+b1x

B4 · |Bx − A|γ∫ +∞
−∞ e

−c1y2+b1y

B4 · |Bx − A|γdy
, x �= A

B
,

and there is a local integrable singularity such that

p
(A

B

)
= +∞;

(5) d1 = 0, γ � −1,

p(x) = δ
(
x − A

B

)
, −∞ < x < +∞.

Let us check the hypoellipticity of the Fokker Planck operator by Hormander condition in [13]
for this scalar case. We notice that the Hormander condition is equivalent to the bifurcation
condition d1 �= 0.

We conclude that energy dissipation requirement through the cubic term is essential to the
Gaussian decay and the presence of additive noises impacts the existence and regularity of the
stationary statistical solution in the whole phase space.
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3.3 Two conditions on the CAM noises: uniformly non-degenerate diffusion as-
sumption and strictly positive variance of the multiplicative energy fluctuation

There are two possible assumptions on the CAM noises. One is the uniformly non-degenerate
diffusion assumption which requires that the diffusion coefficient matrix g(x) is positive definite
in R

N . The other is strictly positive variance of the multiplicative energy fluctuation as defined
in (3.5).

Under the strict energy dissipation assumption through the cubic nonlinearity as defined
in (3.4), a sufficient condition for the strictly positive variance of the multiplicative energy
fluctuation can be the presence of the nontrivial dyad interaction between high frequency modes,
σp �= 0, ∀p, since the following inequality holds

Q3(x) ≥
(

min
p

σ2
p

2γp

)
Q1(x).

Both these conditions on the CAM noises might not be held in a general reduced climate
model, but they play important roles in a stochastic climate modeling scenario. For example,
in the scalar climate model we discussed in Section 3.2, the uniformly non-degenerate diffusion
assumption is equivalent to the existence of the additional additive noise σ �= 0 obtained from
the additive dyads and triads. It is essential to existence and regularity of the stationary
statistical solution in the whole phase space. Strictly positive variance of the multiplicative
energy fluctuation, i.e., σpI

M
1p �= 0 for some p, implies the presence of the CAM noise B �= 0

which is needed to find a Gaussian lower bound.
We can also check these conditions for the 2-dimensional stochastic climate model (3.9)

which we discussed in Section 3.1.1. We mentioned that this toy model has statistics that are
very close to being Gaussian and a strong nonlinear signature in the form of a double swirl in
the mean phase space tendencies of its low-frequency variables, much like recently identified
signatures of nonlinear planetary wave dynamics in prototype and comprehensive atmospheric
general circulation models (GCMs) (see [10]). The CAM noise coefficients are given by

Σ(x) =

(
σ1
γ1

(L13 + b123x2) σ2
γ2

I1x1

σ1
γ1

(b213x1 + I2x2) σ2
γ2

L24

)
.

The diffusion coefficient matrix has the form g(x) = 1
2Σ(x)Σ(x)T which clearly does not sat-

isfy the uniformly non-degenerate condition. Moreover, on the hyperbolic curve defined by
det(Σ(x)) = 0, this diffusion matrix is degenerate. Furthermore, the quartic part of the vari-
ance of the random energy fluctuation xTg(x)x is given by

Q2D
3 =

σ2
1

2γ2
2

I2
1x4

1 +
σ2

2

2γ2
2

x2
2(b312x1 − I2x2)2.

The strict positivity of Q2D
3 holds as long as there exists nontrivial the dyad interaction, i.e.,

I1I2 �= 0, σ1σ2 �= 0. Since we have learned in Section 3.1.1 that the strict energy dissipation
assumption through the cubic nonlinearity as defined in (3.4) is equivalent to I1I2 �= 0, the
positivity of Q2D

3 can be obtained by assuming the strict energy dissipation and σ1σ2 �= 0.
Although the 2-dimensional stochastic climate model (3.9) does not have a uniform non-

degenerate diffusion, (3.9) has nice and fast decaying invariant probability density functions



354 Y. Yuan and A. J. Majda

under various parameter sets as observed through a rich family of numerical simulations. We
can also check the hypoellipticity of the Fokker Planck operator by Hormander condition (see
[13]). We notice that the Hormander condition holds unless the parameter sets satisfy the
following equation

det

(
σ1
γ1

(L13 + b123x2) σ2
γ2

I1x1

D1(x) D2(x)

)
= 0,

where x = (x1, x2) is on the hyperbolic curve where the diffusion part is degenerate

detΣ(x) = det

( σ1
γ1

(L13 + b123x2) σ2
γ2

I1x1

σ1
γ1

(b213x1 + I2x2) σ2
γ2

L24

)
= 0

and D1(x), D2(x) are cubic drift terms of the 2D model

D1(x) = (B1(x, x) + A1x + F 1) +
1
γ1

b123(b312x1x
2
2 − I2x

3
2)dt − 1

γ2
I2
1x3

1,

D2(x) = (B2(x, x) + A2x + F 2) +
1
γ1

(b312x1x2 − I2x
2
2)(b213x1 + I2x2).

In this paper, we will make reasonable assumptions for the degenerate diffusion case that
the density function is C2 and has power law decay.

4 Proof of the Theorems

The normal form reduced stochastic model for N -climate variables (2.3) is rewritten here
for emphasis

dxi = F̃idt + Ãixdt + B̃i(x, x)dt

+
∑

p

1
γp

(
IM
ip xi +

∑
j �=i

Bij,pxj

)(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
dt

+
∑

p

(
Lip + IM

ip xi +
∑
j �=i

Bij,pxj

)σp

γp
dWp + σAidWAi

for i = 1, 2, · · · , N, p = 1, 2, · · · , Np. The compact form (2.4) is rewritten here as well

dx = fdt + ΣdW,

where

fi(x) = F̃i + Ãix + B̃i(x, x)

+
∑

p

1
γp

(
IM
ip xi +

∑
j �=i

Bij,pxj

)(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
,

g = (gij) =
1
2
ΣΣT,

gii(x) =
∑

p

σ2
p

2γ2
p

(
Lip + IM

ip xi +
∑
k �=i

Bik,pxk

)2

+
σ2

Ai

2
,

gij(x) =
∑

p

σ2
p

2γ2
p

(
Lip + IM

ip xi +
∑
k �=i

Bik,pxk

)(
Ljp + IM

jp xj +
∑
k �=j

Bjk,pxk

)
, i �= j,

dW =
(
dW1, dW2, · · · , dWNp , dWA1 , dWA2 , · · · , dWAN

)T

.
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The drift term satisfies the strict energy dissipation assumption as defined in (3.4) that the

leading order part of −xTf , Q1(x) =
∑
p

1
γp

(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)2

, is positive definite

in R
N .

We are going to discuss its moment estimations of the pathwise solutions, stationary statis-
tical solutions (invariant measure), the asymptotic behavior of the probability density function
of the invariant measure, and finally conclude the theorems respectively.

4.1 Moment estimations

The existence and uniqueness of pathwise solutions to our normal form reduced climate
model are known by Krylov [15]. Krylov considered a larger class of equations which includes our
reduced climate model. By introducing the notion of Euler solvability for stochastic differential
problems, Krylov proved some useful estimates for the p-th moments of the solutions. Cerrai
applied Krylov’s idea to SDEs with polynomial drifts in [6]. Theorem 1.2.5 in [6] gave us a
moment estimation with time dependent bound.

Proposition 4.1 Consider the normal form reduced climate model (2.4) with drift term
f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the strict energy dissipation
through the cubic terms as defined in (3.4), (2.4) has a unique N -dimensional pathwise solution
x(t), having continuous trajectories and satisfying

E sup
0≤s≤t

|x(s)|n ≤ an(t)(|x(0)|n + 1), ∀n ≥ 1, (4.1)

where an(t) is a suitable increasing function.

Here, based on Proposition 4.1, we find a uniform bound for all the moments wrt time
evolution.

Proposition 4.2 Consider the normal form reduced climate model (2.4) with drift term
f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the strict energy dissipation
through the cubic terms as defined in (3.4), the pathwise solution of (2.4), x(t), has uniformly
bounded n-th moment in the following sense:

E|x(t)|n ≤ C(n, x(0)), n ≥ 0, (4.2)

where the bound C(n, x(0)) depends on the initial position x(0) and the order of the moment n,
but does not depend on time t.

Proof x(t) satisfies SDE model dx = fdt + ΣdW . The local energy change is given by
(3.1) which is rewritten below for emphasis

d
|x|2
2

= (xTf(x) + Tr(g(x)))dt + xTΣ(x)dW.

Applying Itô’s lemma one more time, we get

d|x|2m = 2m|x|2(m−1)xTf(x)dt

+ [2m|x|2(m−1)Tr(g(x)) + 4m(m − 1)|x|2(m−2)(xTg(x)x)]dt

+ 2m|x|2(m−1)xTΣ(x)dW, ∀m > 2.
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For r ≥ 0, we define the stopping time τr by setting

τr = inf{t ≥ 0, |x(t)| ≥ r}.

Then, we have the pathwise solution

|x(t ∧ τr)|2m

= |x(0)|2m + 2m

∫ t∧τr

0

|x(s)|2(m−1)x(s)Tf(x(s))ds

+
∫ t∧τr

0

[2m|x(s)|2(m−1)Tr(g(x(s))) + 4m(m − 1)|x(s)|2(m−2)(x(s)Tg(x(s))x(s))]ds

+
∫ t∧τr

0

2m|x(s)|2(m−1)x(s)TΣ(x(s))dW (s), ∀m > 2.

The 2m-th moment satisfies

E|x(t ∧ τr)|2m = |x(0)|2m + 2m

∫ t

0

E{χ{τr≥s}|x(s)|2(m−1)x(s)Tf(x(s))}ds

+
∫ t

0

E{χ{τr≥s}2m|x(s)|2(m−1)Tr(g(x(s)))}ds

+ 4m(m − 1)
∫ t

0

E{χ{τr≥s}|x(s)|2(m−2)(x(s)Tg(x(s))x(s))}ds. (4.3)

The strict energy dissipation assumption implies that there exists λ > 0 such that the
leading order part of −xTf , Q1(x), satisfies Q1(x) ≥ λ|x|4.

Applying the strict energy dissipation assumption and Hölder’s inequality, we can estimate
the derivative of the 2m-th moment

d
dt

E|x(t ∧ τr)|2m = 2mE{χ{τr≥t}|x(t)|2(m−1)x(t)Tf(x(t))}
+ E{χ{τr≥t}2m|x(t)|2(m−1)Tr(g(x(t)))}
+ 4m(m − 1)E{χ{τr≥t}|x(s)|2(m−2)(x(t)Tg(x(t))x(t))}

≤ E{χ{τr≥t}(−λ̃|x(t)|2(m+1) + c1(m))} (0 < λ̃ < λ)

≤ E(−λ̃|x(t ∧ τr)|2(m+1) + λ̃r2(m+1)χ{τr<t}) + c1(m)

= −λ̃E|x(t ∧ τr)|2(m+1) + λ̃r2(m+1)P(τr < t) + c1(m)

≤ −λ̃(E|x(t ∧ τr)|2m)1+
1
m + λ̃r2(m+1)P(τr < t) + c1(m)

≤ −λ̃E|x(t ∧ τr)|2m + λ̃r2(m+1)P(τr < t) + c2(m), (4.4)

where the last step is due to the inequality y − y1+a ≤ a

(1+a)1+
1
a

, ∀a > 0, y ∈ R.

This simply implies

E|x(t ∧ τr)|2m ≤ e−λ̃t|x(0)|2m +
∫ t

0

e−λ̃(t−s)(λ̃r2(m+1)P(τr < s) + c2(m))ds

≤ e−λ̃t|x(0)|2m + λ̃

∫ t

0

e−λ̃(t−s)r2(m+1)P(τr < s)ds +
1

λ̃
c2(m). (4.5)
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Thanks to the Chebyschev inequality and (4.1), we get

r2(m+1)P(τr < s) ≤ r2(m+1)P
(

sup
0≤
≤s

|x(�)|2(m+2) ≥ r2(m+2)
)

≤ 1
r2

E sup
0≤
≤s

|x(�)|2(m+2) ≤ 1
r2

a2m(s)(|x(0)|2m + 1). (4.6)

Let r goes to +∞ in (4.5). Due to Fatou’s lemma, we obtain

E|x(t)|2m ≤ e−λ̃t|x(0)|2m +
1

λ̃
c2(m),

which implies E|x(t)|2m ≤ C(m, x(0)), ∀m > 2 for some constant C(m, x(0)) that does not
depend on time t.

Finally, we use Hölder’s inequality to conclude that E|x(t)|n ≤ C(n, x(0)) holds for all
n ≥ 0.

4.2 Existence and uniqueness of the invariant measure

Existence of the invariant measure of our reduced climate model follows from the uniform
boundness of the second moment of the pathwise solution with the standard tightness argument
(see [6]).

Proposition 4.3 (Existence) Consider the normal form reduced climate model (2.4) with
drift term f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the strict energy dis-
sipation assumption through the cubic terms as defined in (3.4), (2.4) has an invariant measure.

And the uniqueness follows from strong Feller property and irreducibility of the Markov
transition semigroup which require nondegenerate CAM noises (see [6]).

Proposition 4.4 (Uniqueness) Consider the normal form reduced climate model (2.4)
with drift term f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the strict energy
dissipation assumption through the cubic terms as defined in (3.4) and uniformly non-degenerate
diffusion that g is uniformly positive definite in R

N , the invariant measure of (2.4) is unique,
ergodic and strongly mixing.

We present the main idea of the proof below for completeness (see [6]).
Consider stochastic problem

dξ(t) = f(ξ(t))dt + Σ(ξ(t))dW (t), ξ(0) = x ∈ R
N , (4.7)

where f and g satisfy sufficient assumptions ensuring the existence and uniqueness of the
solution ξ(t, x) and the continuity of the trajectories. For any Borel bounded function ϕ ∈
Bb(RN ), the Markov transition semigroup Pt corresponding to problem (4.7) is defined by

Ptϕ(x) = Eϕ(ξ(t, x)).

We say that a semigroup Pt acting on Bb(RN ) enjoys the Feller property if

ϕ ∈ Cb(RN ) ⇒ Ptϕ ∈ Cb(RN ), t ≥ 0.
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Instead, we say that Pt enjoys the strong Feller property if

ϕ ∈ Bb(RN ) ⇒ Ptϕ ∈ Cb(RN ), t > 0.

A measure μ is invariant for the semigroup Pt, if for any t ≥ 0, P∗
t μ = μ holds, or equivalently,∫

RN

Ptϕ(y)μ(dy) =
∫

RN

ϕ(y)μ(dy).

Markovian transition probability, the law of ξ(t, x), is defined for x ∈ R
N and t ≥ 0 by

Pt(x, A) = PtχA(x),

where A is any Borel set in R
N . Moreover, we say that Pt is irreducible if for every non empty

open set A ⊆ R
N and x ∈ R

N , we have Pt(x, A) > 0, ∀ t.
We recall that a set of probability measures Λ is said to be tight if for any ε > 0, there

exists a compact set Kε ∈ R
N , such that for any μ ∈ Λ,

μ(Kε) ≥ 1 − ε.

The following theorem gives a property of tight subsets.

Theorem 4.1 (Prokhorov) If {μn} is a tight sequence in P (RN ) the collection of probability
measures on R

N , then there exists a subsequence {μni} and probability measure μ in P (RN ),
such that {μni} converges weakly to μ.

For any ν ∈ P (RN ), we define

R∗
t ν =

1
t

∫ t

0

P∗
s νds,

which means that for any Borel bounded function ϕ,∫
RN

ϕ(y)R∗
t ν(dy) =

1
t

∫ t

0

∫
RN

Psϕ(y)ν(dy)ds.

The following theorem describes a method of constructing an invariant measure by using R∗
t ν.

Theorem 4.2 (Krylov-Bogoliubov) Assume that Pt is a Feller semigroup. If for some
ν ∈ P (RN ) and some sequence {tn} increasing to +∞, we have that R∗

tn
ν converges weakly to

some μ ∈ P (RN ), as n → +∞. Then μ is an invariant measure for Pt.

Furthermore, Khas’minskii and Doob give us important tools to study the uniqueness and
asymptotic behavior of the invariant measure.

Theorem 4.3 (see [14]) If the semigroup Pt is a strong Feller and irreducible, then all
probability measures Pt(x, · ), with x ∈ R

N and t > 0, are equivalent.

Theorem 4.4 (see [7]) Let μ be the invariant measure of the semigroup Pt. Assume that
there exists t0 such that all probability measures Pt(x, · ), with x ∈ R

N and t > t0, are mutually
equivalent. Then the following statements hold:

(1) μ is the unique invariant measure for Pt and in particular is ergodic;
(2) μ is equivalent to all the probability measures Pt(x, · ) for any x ∈ R

N and t > t0;
(3) μ is strongly mixing.
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Let us now consider our normal form reduced climate model. Under the strict energy dissi-
pation assumption, one can show that the semigroup Pt for our model has the Feller property
(see [6]). The uniform boundness of the second moment of the pathwise solution is known
by Proposition 4.2. Thus, by Chebyschev inequality, the family of measures {Pt(x0, · )}t≥0

is tight for any fix x0 ∈ R
N . This means that for some ν ∈ P (RN ), the family of measures

{R∗
t ν}t≥0 is tight. By Prokhorov theorem, there exists a sequence {R∗

tn
ν} converging weakly

to some μ ∈ P (RN ), as n → +∞, for some sequence {tn} increasing to +∞. Then, by Krylov-
Bogoliubov theorem, μ is an invariant measure for Pt. This completes the proof of Proposition
4.3 on the existence of the invariant measure of our climate model.

If we further assume that the diffusion part is uniformly non-degenerate, i.e., g = 1
2ΣΣT is

uniformly positive definite in R
N , one can show that the semigroup Pt for our reduced climate

model is strong Feller and irreducible (see [6]). By Khas’minskii’s theorem and Doob’s theorem,
we conclude that the invariant measure of our reduced climate model is unique, ergodic and
strongly mixing. This completes the proof of Proposition 4.4.

4.3 Absolute continuity of the invariant measure

Our aim here is to discuss absolute continuity of the invariant measure with respect to the
Lebesgue measure, in other words, the existence of the density.

The following result is proved in [3, 26].

Proposition 4.5 Consider the normal form reduced climate model (2.4) with drift term
f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the strict energy dissipation
through the cubic terms as defined in (3.4) and uniformly non-degenerate diffusion that g is
uniformly positive definite in R

N , the invariant measure of (2.4) μ is absolutely continuous
with respect to the Lebesgue measure η and the density function

p(x) :=
dμ

dη
> 0, η-a.e., p(x) ∈ Lq

loc(R
N ), ∀ q ∈

[
1,

N

N − 1

)
.

The absolute continuity of the invariant measure follows from the absolute continuity of the
transition probabilities Pt(x, · ). Let us consider the semigroup Pr

t defined by

Pr
t ϕ(x) = Eϕ(ξ(t ∧ τx

r , x)), x ∈ B(0, r), ϕ ∈ Br(RN ),

τx
r = inf{t ≥ 0 : |ξ(t, x)| ≥ r}.

The absolute continuity of the transition probabilities Pt(x, · ) can be obtained by utilizing the
absolute continuity of the transition probabilities Pr

t (x, · ) and taking the limit as r goes to
+∞.

However, if we do not have the uniformly non-degenerate diffusion part, the absolute conti-
nuity of the invariant measure of our normal form reduced climate model is not clear in general.
For example, in the 1-D case (3.10) in Section 3.2, if we do not have the additive noise, we can
have some cases with smooth and integrable densities, we can also find some special parameters
such that the invariant measure has Dirac delta mass. Actually, the following result has been
shown in [3].
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Proposition 4.6 Consider the normal form reduced climate model (2.4) with drift term
f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the strict energy dissipation
through the cubic terms as defined in (3.4), if μ is an invariant measure, then (det(g))

1
N μ has

a density function which belongs to L
N

N−1
loc (RN ).

4.4 Smoothness and Gaussian upper bound assuming uniformly
non-degenerate diffusion

It is important to check the regularity of the probability density function here, since we
finally want to find the global bounds by comparison principle arguments.

Here, we assume that the diffusion part is uniformly non-degenerate. The results in [3]
establish that the density function is positive everywhere and belongs to W 1,q

loc (RN ), ∀ q > N ,
where W k,q(RN ) is the standard Sobolev space of functions on R

N whose generalized derivatives
up to order k are in Lq equipped with its natural norm. Standard local regularity theorems as
in [5] tell us that the weak solution to the elliptic equation with smooth coefficients is smooth.
Thus, our density function is smooth since it satisfies Fokker Planck equation which is a second
order linear elliptic equation. Moreover, we can use [25, 9] to get a Gaussian upper bound
due to the strict energy dissipation through the cubic terms. Let us present the regularity and
global behavior results by applying [3, 5, 25, 9] as the following.

Proposition 4.7 Consider the normal form reduced climate model (2.4) with drift term
f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the strict energy dissipation
through the cubic terms as defined in (3.4) and uniformly non-degenerate diffusion that g is
uniformly positive definite in R

N , the density function of the stationary statistical solution to
(2.4), p(x), has the following properties:

(1) p(x) ∈ C∞(RN );
(2) p(x) is positive everywhere

inf
|x|≤r

p(x) > 0, ∀ r > 0;

(3) p(x) has at most Gaussian decay, i.e., there exists a positive real number r and a
Gaussian measure pG(x) satisfying

pG(x) � p(x), ∀ |x| � r,

where

pG(x) =
1√

2πσ2
G

e
− |x|2

2σ2
G , x = (x1, x2, · · · , xN )T ∈ R

N . (4.8)

4.5 Gaussian upper bound by comparison principle argument

Here, we find a Gaussian upper bound for the density function of the stationary statistical
solution of the normal form reduced climate model (2.4), given the strict energy dissipation
through the cubic terms as defined in (3.4) and sufficient smoothness of the density function.

The smoothness and Gaussian upper bound are known by Proposition 4.7 assuming uni-
formly non-degenerate diffusion. When it comes to the case with degenerate diffusion, the
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regularity of the density is not clear in general, since the density can have delta mass some-
times (see 1-D case). However, in some important climate models, for example the 2-D climate
model (3.9) in Section 3.1.1, the diffusion part is not uniformly non-degenerate either. But a
rich family of numerical simulations show that the probability density functions of their invari-
ant measures exist, and have smoothness and fast decay under various parameter sets. We also
learn from Section 3.3 that for a rich family of parameter sets, the Fokker Planck operator is
hypoelliptic by Hormander condition. So, it will be reasonable to assume that p(x) ∈ C2(RN )
and has at most power law decay.

Proposition 4.8 Consider the normal form reduced climate model (2.4) with drift term
f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the assumptions below, if p(x)
is a density function of the stationary statistical solution to (2.4), then it has at most Gaussian
decay, i.e., there exists a positive real number r and a Gaussian measure pG(x) satisfying

pG(x) � p(x), ∀ |x| � r,

where

pG(x) =
1√

2πσ2
G

e
− |x|2

2σ2
G , x = (x1, x2, · · · , xN )T ∈ R

N .

These assumptions are
(1) Strict energy dissipation through the cubic terms as defined in (3.4);
(2) Weak polynomial decaying smooth stationary statistical solution: p(x) ∈ C2(RN ), such

that there exists an α with

α >

max
|�ω|=1

Q2(�ω)

min
|�ω|=1

Q1(�ω)
, lim

|x|→+∞
|x|αp(x) = 0,

where Q1(x) is defined in (3.2), and Q2(x) is defined in (3.6).

Proof Assume that p(x) is the probability density function of the stationary statistical
solution (invariant measure) of the reduced stochastic model for N -climate variables which is
rewritten here for emphasis

dxi = F̃idt + Ãixdt + B̃i(x, x)dt

+
∑

p

1
γp

(
IM
ip xi +

∑
j �=i

Bij,pxj

)(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
dt

+
∑

p

(
Lip + IM

ip xi +
∑
j �=i

Bij,pxj

)σp

γp
dWp + σAidWAi .

The density p(x) satisfies Fokker-Planck equation in the strong sense assuming p(x) ∈ C2(RN )
which is satisfied under strict energy dissipation assumption,

0 = LFPp = −∇ · [f(x)p(x)] + ∇2[g(x)p(x)] =
∑

i

∑
j

gijpxixj +
∑

i

bipxi + hp, (4.9)
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where ( · )xi denotes the first derivative and ( · )xixj denotes the second derivative, and

fi(x) = F̃i + Ãix + B̃i(x, x)

+
∑

p

1
γp

(
IM
ip xi +

∑
j �=i

Bij,pxj

)(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
,

gii(x) =
∑

p

σ2
p

2γ2
p

(
Lip + IM

ip xi +
∑
k �=i

Bik,pxk

)2

+
σ2

Ai

2
,

gij(x) =
∑

p

σ2
p

2γ2
p

(
Lip + IM

ip xi +
∑
k �=i

Bik,pxk

)(
Ljp + IM

jp xj +
∑
k �=j

Bjk,pxk

)
, i �= j,

bi(x) =
∑

j

(gij + gji)xj − fi(x),

h(x) =
∑

i

∑
j

(gij)xixj −
∑

i

(fi)xi .

Our idea is to construct a Gaussian comparison function pG(x) = 1√
2πσ2

G

e
− |x|2

2σ2
G such that it

can control the tails of the stationary statistical solution of the reduced stochastic climate model.
In terms of mathematics, we want to use the comparison principle procedure for the above
equilibrium Fokker-Planck equation, the second order elliptic partial differential equations, to
show that pG(x) − p(x) > 0 for |x| large enough.

However, since pG(x) does not monotonically depend on σG, it is not easy to directly pick
the variance parameter σG for the Gaussian comparison function pG(x). Instead, we use an

intermediate function u = e
− |x|2

2σ2
0 which has Gaussian shape but is not normalized. It will be

easier to show that there exists a large enough constant C0 such that C0u(x)− p(x) > 0 for |x|
large enough, since we can adjust C0 and σG separately and monotonically.

Another difficulty is that the comparison principle procedure requires h(x) in (4.9) to be
non-positive for all |x| large enough, but it is not the case in our problem. Thus, we apply
the comparison principle procedure to a new function v(x) = C0u(x)−p(x)

ω(x) , where ω = |x|−α.
Moreover, we are going to utilize the fact that v(x) decays to 0 as |x| goes to +∞, which can
be obtained by using the power law upper bound of p(x).

Step 1 We want to choose an α large enough such that LFPω < 0 for all |x| > r, where r

is fixed and large.
We compute the derivatives of ω for x �= 0,

ωxi =
−αxi

|x|2 ω,

ωxixi = (−α|x|−2 + α(α + 2)x2
i |x|−4)ω,

ωxixj = (α(α + 2)|x|−4xixj)ω, j �= i.

Then, we observe that the cubic dissipation term dominates the asymptotic behavior of LFPω

as x large,

LFPω =
∑

i

∑
j

gijωxixj +
∑

i

biωxi + hω
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=
(
−
∑

i

(fi)xi |x|2 − α
(
−
∑

i

fixi

)
+ O(|x|3)

)
ω|x|−2

= (Q2(x) − αQ1(x) + O(|x|3))ω|x|−2,

where O(|x|3)
|x|3 is bounded as x goes to ∞; Q1(x) is the leading order part of −∑

i

fixi, as defined

in (3.2),

Q1(x) = −
∑

i

xi

∑
p

1
γp

(
IM
ip xi +

∑
j �=i

Bij,pxj

)(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
= −

∑
p

1
γp

∑
i

(
IM
ip xixi +

∑
j �=i

Bij,pxjxi

)(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
=
∑

p

1
γp

(∑
i

IM
pi xixi −

∑
i

∑
j<i

(Bij,p + Bji,p)xjxi

)(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
=
∑

p

1
γp

(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)2

; (4.10)

Q2(x) is the leading order part of −∑
i

(fi)xi |x|2, as defined in (3.6),

Q2(x) =
(
−
∑

i

∑
p

IM
ip

1
γp

(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)
−
∑

i

∑
p

1
γp

(
2IM

pi xi +
∑
j �=i

Bp,ijxj

)(
IM
ip xi +

∑
j �=i

Bij,pxj

))
|x|2.

By energy dissipation requirement, Q1(x) ≥ λ|x|4. Moreover, there exists a positive constant
μ, such that Q2(x) ≤ μ|x|4. Now, let us choose α big enough such that α > μ

λ . Then we get

LFPω ≤ ((μ − αλ)|x|4 + O(|x|3))ω|x|−2 < 0,

as |x| large enough.

Step 2 We want to choose a σ0 large enough such that LFP u < 0 (∀|x| > r), where r is

fixed and large, u(x) = e
− |x|2

2σ2
0 .

We compute the derivatives of u

∇u = − x

σ2
0

u, uxixi =
(x2

i

σ4
0

− 1
σ2

0

)
u, uxixj =

xixj

σ4
0

u, j �= i.

Now, the cubic dissipation term and the quadratic diffusion term both play important roles in
the asymptotic behavior of LFPu,

LFPu =
∑

i

∑
j

gijuxixj +
∑

i

biuxi + hu

=
(∑

i

∑
j

gij
xixj

σ4
0

−
−∑

i

fixi

σ2
0

+ O(|x|3)
)
u

=
(Q3(x)

σ4
0

− Q1(x)
σ2

0

+ O(|x|3)
)
u,
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where O(|x|3)
|x|3 is bounded as x goes to ∞. Here, Q1(x) is the leading order part of −∑

i

fixi, as

defined in (3.2); Q3(x) is the leading order part of
∑
i

∑
j

gijxixj , as defined in (3.3),

Q3(x) =
∑

i

∑
j

∑
p

σ2
p

2γ2
p

(
IM
ip xi +

∑
k �=i

Bik,pxk

)(
IM
jp xj +

∑
k �=j

Bjk,pxk

)
xixj

=
∑

i

∑
j

∑
p

σ2
p

2γ2
p

(
IM
ip xixi +

∑
k �=i

Bik,pxkxi

)(
IM
jp xjxj +

∑
k �=j

Bjk,pxkxj

)
=
∑

p

σ2
p

2γ2
p

∑
i

∑
j

(
IM
ip xixi +

∑
k �=i

Bik,pxkxi

)(
IM
jp xjxj +

∑
k �=j

Bjk,pxkxj

)
=
∑

p

σ2
p

2γ2
p

(∑
i

(
IM
ip x2

i +
∑
j �=i

Bij,pxixj

))2

=
∑

p

σ2
p

2γ2
p

(∑
j

IM
pj xjxj +

∑
k<j

Bp,kjxkxj

)2

.

By strict energy dissipation assumption, we know that there exists a λ > 0, such that
Q1(x) � λ|x|4 for all x ∈ R

n. Moreover, Q3(x) is a semi-positive definite homogeneous polyno-
mial with degree 4, there exists a μ′ > 0, such that Q3(x) ≤ μ′|x|4 for all x ∈ R

n.
Now, we can choose σ2

0 > μ′

λ such that LFPu < 0, ∀ |x| > r, as r is large enough.

Step 3 In this step, we show that there is a C0 so that C0u(x) ≥ p(x).
Consider the domain D = {|x| > r}, r is large enough such that LFPu < 0, LFPω <

0, LFPp = 0 in D.

Choose C0 big enough such that C0e
− r2

2σ2
0 > max

|x|=r
p(x). Set v(x) = C0u(x)−p(x)

ω(x) , we have

LFP(vω) < 0, x ∈ D and v(x) > 0, |x| = r.

Moreover, weak power law decay of p(x) says |x|αp(x) → 0 as |x| → ∞. So, |v(x)| → 0 as
|x| → ∞. Thus, v(x) is bounded in D.

Assume that there exists an x0 ∈ D, such that v(x0) < 0. There must be some point y0 ∈ D

such that
v(y0) = min

D
v(x) < 0

by continuity of v.
Thus, we should have

∑
i

∑
j

gijvxixj (y0) � 0 (since (gij) is a semi-positive definite matrix),

∇v(y0) = 0, v(y0) < 0. Therefore, at y0,

LFP(vω) = (LFPω)v +
∑

i

(
biω + 2

∑
j

gijωxj

)
vxi + ω

∑
i

∑
j

gijvxixj � 0.

Since we know LFP(vω) < 0, this gives a contradiction.
Therefore, we must have v(x) � 0 in D, that is

p(x) � C0e
− |x|2

2σ2
0 , ∀ |x| � r.
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Step 4 Now we use Step 3 to dominate p(x) by the Gaussian comparison function pG(x).

Choose σG > σ0. Then for |x| large, we have

pG(x) =
1√

2πσ2
G

e
− |x|2

2σ2
G > C0e

− |x|2
2σ2

0 = C0u ≥ p(x).

4.6 Gaussian lower bound by comparison principle argument

Here, we find sufficient conditions such that there exists a Gaussian lower bound for the
density function of the stationary statistical solution to the normal form reduced climate model
(2.4).

Proposition 4.9 Consider the normal form reduced climate model (2.4) with drift term
f(x) and diffusion coefficients g(x) = (gij(x)) = 1

2ΣΣT. Given the assumptions below, if p(x)
is a density function of the stationary statistical solution of (2.4), then, it has at least Gaussian
decay, i.e., there exists a positive real number r and a Gaussian measure pL(x) satisfying

p(x) � pL(x), ∀ |x| � r,

where

pL(x) =
1√

2πσ2
L

e
− |x|2

2σ2
L , x = (x1, x2, · · · , xN )T ∈ R

N .

These assumptions are

(1) Strict energy dissipation through the cubic terms as defined in (3.4);
(2) Strictly positive variance of the multiplicative energy fluctuation given in (3.5);

(3) Weak polynomial decaying smooth stationary statistical solution: p(x) ∈ C2(RN ), such
that there exists an α with

α >

max
|�ω|=1

Q2(�ω)

min
|�ω|=1

Q1(�ω)
, lim

|x|→+∞
|x|αp(x) = 0,

where Q1(x) is defined in (3.2), and Q2(x) is defined in (3.6);

(4) p(x) is positive everywhere

inf
|x|≤r

p(x) > 0, ∀ r > 0.

The proof will be similar to the comparison principle argument for Gaussian upper bound
in Section 4.5. Let us use the same notation as in Section 4.5.

Step 1 By Step 1 in Section 4.5, we have the fact that there exists an α, such that LFPω < 0
for all |x| > r, where ω = |x|−α, r is fixed and large.

Step 2 We want to choose a small enough σ0 > 0 such that LFPu > 0, ∀|x| > r, where r

is fixed and large, u(x) = e
− |x|2

2σ2
0 .
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Applying the same calculation in Step 2, Section 4.5, we get

LFPu =
∑

i

∑
j

gijuxixj +
∑

i

biuxi + hu

=
(∑

i

∑
j

gij
xixj

σ4
0

− −∑i fixi

σ2
0

+ O(|x|3)
)
u

=
(Q3(x)

σ4
0

− Q1(x)
σ2

0

+ O(|x|3)
)
u,

where O(|x|3)
|x|3 is bounded as x goes to ∞. Here, Q1(x) is the leading order part of −∑

i

fixi, as

defined in (3.2); Q3(x) is the leading order part of
∑
i

∑
j

gijxixj , as defined in (3.3).

By conditions (1)–(2), Q1(x), Q3(x) are positive definite homogeneous polynomials with
degree 4 in R

N , so there exists an η > 0, such that Q3(x) ≥ η|x|4 for all x ∈ R
N , and there

exists a λ′ > 0, such that Q1(x) � λ′|x|4 for all x ∈ R
N .

Now, we can choose 0 < σ2
0 < η

λ′ such that LFPu > 0, ∀|x| > r as r is large enough.

Step 3 In this step, we show that there is a C0 > 0, so that C0u(x) ≤ p(x).
Consider the domain D = {|x| > r}, r is large enough such that LFPu > 0, LFPω <

0, LFPp = 0 in D.

Choose C0 > 0 small enough such that C0e
− r2

2σ2
0 < min

|x|=r
p(x). The minimum value on {|x| =

r} is positive due to the positivity requirement of the density p(x). Set v(x) = p(x)−C0u(x)
ω(x) , we

have
LFP(vω) < 0, x ∈ D and v(x) > 0, |x| = r.

Moreover, power law decay of p(x) says |x|αp(x) → 0 as |x| → ∞. So, |v(x)| → 0 as
|x| → ∞. Thus, v(x) is bounded in D.

Assume that there exists an x0 ∈ D, such that v(x0) < 0. There must be some point y0 ∈ D

such that
v(y0) = min

D
v(x) < 0

by continuity of v.
Thus, we should have

∑
i

∑
j

gijvxixj (y0) � 0 (since (gij) is a semi-positive definite matrix),

∇v(y0) = 0, v(y0) < 0. Therefore, at y0

LFP(vω) = (LFPω)v +
∑

i

(
biω + 2

∑
j

gijωxj

)
vxi + ω

∑
i

∑
j

gijvxixj � 0.

Since we know LFP(vω) < 0, this gives a contradiction.
Therefore, we must have v(x) � 0 in D, that is

p(x) � C0e
− |x|2

2σ2
0 , ∀ |x| � r.

Step 4 Now we use Step 3 to find a Gaussian lower bound for p(x).
Choose 0 < σL < σ0. Then for |x| large, we have

pL(x) =
1√

2πσ2
L

e
− |x|2

2σ2
L < C0e

− |x|2
2σ2

0 = C0u ≤ p(x).
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4.7 Conclusion of proofs for Theorems 3.1–3.3 and Corollary 3.1

Here, let us complete our proofs for the results in Section 3 by applying the propositions we
got from previous sections.

Theorem 3.1, the existence of the density function, can be concluded from Proposition 4.6
(degenerate diffusion case) and Proposition 4.5 (uniformly non-degenerate diffusion case) in
Section 4.3.

Theorem 3.2, Gaussian upper bound, is the direct result from Proposition 4.8 in Section
4.5.

Theorem 3.3, Gaussian lower bound, is the direct result from Proposition 4.9 in Section 4.6.
In Corollary 3.1, we further assume that the diffusion part is uniformly non-degenerate. So,

the uniqueness of the density function can be obtained from Proposition 4.4, the smoothness
and the Gaussian upper bound can be found in Proposition 4.7, and the Gaussian lower bound
can be obtained by applying Propositions 4.7 and 4.9.
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